首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This publication presents an assessment of the influence of a surface treatment such as shot-peening on the fatigue life of a compressor blade exposed to resonant vibrations. As part of the work, a geometric model of the blade was developed, and a numerical modal and fatigue analysis were performed. The fatigue analysis was based on the Manson–Coffin–Basquin and Ramberg–Osgood models. Additionally, the location of the highest equivalent stresses was established. Based on the results of the strength analysis, two points were identified where a fatigue crack may potentially occur. As part of the work, the influence of different values of residual stresses on the results of the fatigue life was determined. The obtained results were compared to the literature values of fatigue life for this blade. A secondary objective of the study was to determine the size of the grains at various points of the blade, as well as the thickness of the layer plasticized as a result of peening. The relationship between the location of the highest values of the equivalent stresses and the thickness of the plasticized layer was determined. An explanation of the effect of shot-peening on the increase in the fatigue life of the blade was proposed.  相似文献   

2.
The present paper provides a semianalytic solution for finite plane strain bending under tension of an incompressible elastic/plastic sheet using a material model that combines isotropic and kinematic hardening. A numerical treatment is only necessary to solve transcendental equations and evaluate ordinary integrals. An arbitrary function of the equivalent plastic strain controls isotropic hardening, and Prager’s law describes kinematic hardening. In general, the sheet consists of one elastic and two plastic regions. The solution is valid if the size of each plastic region increases. Parameters involved in the constitutive equations determine which of the plastic regions reaches its maximum size. The thickness of the elastic region is quite narrow when the present solution breaks down. Elastic unloading is also considered. A numerical example illustrates the general solution assuming that the tensile force is given, including pure bending as a particular case. This numerical solution demonstrates a significant effect of the parameter involved in Prager’s law on the bending moment and the distribution of stresses at loading, but a small effect on the distribution of residual stresses after unloading. This parameter also affects the range of validity of the solution that predicts purely elastic unloading.  相似文献   

3.
Residual stresses affect the fatigue behavior, given that compressive stresses delay the phenomenon, while tensile stresses accelerate it. However, the mechanisms behind the effect of residual stresses are not totally understood. A numerical study is developed here to understand the effect of thermal residual stresses (TRSs) on fatigue crack growth (FCG). The crack driving force was assumed to be the cumulative plastic strain at the crack tip. The heating of a region ahead of the crack tip produced elastic compressive TRS, which were 69% of material’s yield stress. Alternatively, plastic deformation was produced by severe cooling followed by heating to generate compressive residual stresses. The crack propagation in the compressive residual stress field produced a decrease in the FCG rate. On the other hand, without the contact of crack flanks, the TRS showed no effect on FCG. Therefore, the TRSs only affect FCG by changing the crack closure level.  相似文献   

4.
A coherent precipitate formed in a metallic alloy is of importance in its strengthening mechanism, owing to dislocation/precipitate interaction. Therefore, the present study investigated the effect of <001> rod-shaped precipitates on misfit hardening in aluminium alloys by means of parametric dislocation dynamics simulation based on Green’s function method. The simulation results revealed that the topological evolution of the dislocation microstructure is greatly influenced by local internal stress around the <001> rod precipitate. The strong orientation dependence of misfit hardening was observed for the gradients of the stress–strain curves and their maximum shear stresses, where the difference in the maximum stress values amounted to 30%. The strong and weak hardening behaviours associated with the internal stress of <001> rod precipitates were implemented in terms of the energy associated with the dislocation motion.  相似文献   

5.
AISI 316L stainless steels are widely employed in applications where durability is crucial. For this reason, an accurate prediction of its behaviour is of paramount importance. In this work, the spotlight is on the cyclic response and low-cycle fatigue performance of this material, at room temperature. Particularly, the first aim of this work is to experimentally test this material and use the results as input to calibrate the parameters involved in a kinematic and isotropic nonlinear plasticity model (Chaboche and Voce). This procedure is conducted through a newly developed calibration procedure to minimise the parameter estimates errors. Experimental data are eventually used also to estimate the strain–life curve, namely the Manson–Coffin curve representing the 50% failure probability and, afterwards, the design strain–life curves (at 5% failure probability) obtained by four statistical methods (i.e., deterministic, “Equivalent Prediction Interval”, univariate tolerance interval, Owen’s tolerance interval for regression). Besides the characterisation of the AISI 316L stainless steel, the statistical methodology presented in this work appears to be an efficient tool for engineers dealing with durability problems as it allows one to select fatigue strength curves at various failure probabilities depending on the sought safety level.  相似文献   

6.
Vibration fatigue characteristics are critical for rotating machinery components such as turbine rotor blades. Lattice structures are gaining popularity in engineering applications due to their unique ability to reduce weight and improve the mechanical properties. This study is an experimental investigation of octet-truss lattice structure utilization in turbine rotor blades for weight reduction and to improve vibration fatigue characteristics. One completely solid and three lattice infilled blades with variable strut thickness were manufactured via additive manufacturing. Both free and forced experimental vibration analyses were performed on the blades to investigate their modal and vibration fatigue characteristics. The blades were subjected to random vibration using a vibration shaker. The response was measured using a triaxial accelerometer in terms of vibration acceleration time histories in the X, Y, and Z directions. Results indicate a weight reduction of up to 24.91% and enhancement in the first natural frequency of up to 5.29% were achieved using lattice infilled blades. The fatigue life of the blades was investigated using three frequency domain approaches, namely, Lalanne, Dirlik and narrow band. The fatigue life results indicate that the 0.25 mm lattice blade exhibits the highest fatigue life, while the solid blade exhibits the lowest fatigue life of all four blades. The fatigue life of the 0.25 mm lattice blade was 1822-, 1802-, and 1819- fold higher compared to that of the solid blade, using the Lalanne, Dirlik, and narrow-band approaches, respectively. These results can serve as the first step towards the utilization of lattice structures in turbine blades, with thermal analysis as the next step. Therefore, apart from being light weight, the octet-truss lattice infilled blades exhibited superior vibration fatigue characteristics to vibration loads, thereby making them a potential replacement for solid blades in turbine rotors.  相似文献   

7.
The hydroturbine runner is the core of the whole hydroelectric generating unit, which is employed to transform water energy into mechanical energy. In the process of service, the runner frequently suffers from abrasion due to erosion and cavitation. Defects are usually repaired by welding. To acquire suitable weld cladding repair process parameters, a combination of experimental and numerical simulation was applied to investigate the temperature and weld residual stress distribution in the repair zone under the different welding repair approaches. The results illustrate that the temperature and welding residual stress distribution of the blade and the shroud are out of symmetry, the temperature conduction rate is faster on the blade side, and the high-stress zone is predominantly concentrated in the weld and its adjacent area. When the preheating temperature is up to 150 °C, the peak value of welding residual stress reaches a minimum of 796.29 MPa. The welding sequence can adjust the distribution trend of welding residual stresses. The welding sequence of three-stage welding can effectively reduce the welding residual stresses near the shroud at the water outlet side of the blade. The results of the study will provide theoretical guidance for the welding repair of hydraulic turbine runners.  相似文献   

8.
Alterations to the bone structure from cycle loadings can undermine its damage resistance at multiple scales. The accumulation of fatigue damage in a bone is commonly characterized by the reduction in the elastic modulus. In this study, nano-indentation was used for investigating microscopic damage evolution of bovine tibia samples subjected to fatigue loading. Indentation tests were conducted in the same 60 μm × 120 μm area with different degrees of damage, including fracture, and the evolution of reduced modulus was observed. The results showed that bone’s reduced modulus decreased significantly during the initial 40% of the life fraction, whereas it proceeded slowly during the remaining period. As the size of the residual indentations was about 4 μm in length, the degradation of bone’s reduced modulus reflected the accumulation of fatigue damage at smaller scales.  相似文献   

9.
Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.  相似文献   

10.
The effect of the heat treatment on the residual stresses of welded cladded steel samples is analyzed in this study. The residual stresses across the plate’s square sections were determined using complementary methods; applying diffraction with neutron radiation and mechanically using the contour method. The analysis of the large coarse grain austenitic cladded layers, at the feasibility limits of diffraction methods, was only made possible by applying both methods. The samples are composed of steel plates, coated on one of the faces with stainless steel filler metals, this coating process, usually known as cladding, was carried out by submerged arc welding. After cladding, the samples were submitted to two different heat treatments with dissimilar parameters: one at a temperature of 620 °C maintained for 1 h and, the second at 540 °C, for ten hours. There was some difference in residual stresses measured by the two techniques along the surface of the coating in the as-welded state, although they are similar at the welding interface and in the heat-affected zone. The results also show that there is a residual stress relaxation for both heat-treated samples. The heat treatment carried out at a higher temperature showed sometimes more than 50% reduction in the initial residual stress values and has the advantage of being less time consuming, giving it an industrial advantage and making it more viable economically.  相似文献   

11.
This article presents issues concerning the relationship between the degradation of the coating of gas turbine blades and changes in the color of its surface. Conclusions were preceded by the determination of parameters characterizing changes in the technical condition of protective coatings made based on a metallographic examination that defined the morphological modifications of the microstructure of the coating, chemical composition of oxides, and roughness parameters. It has been shown that an increased operating time causes parameters that characterize the condition of the blades to deteriorate significantly. Results of material tests were compared with those of blade surface color analyses performed using a videoscope. Image data were represented in two color models, i.e., RGB and L*a*b* with significant differences being observed between parameters in both representations. The study results demonstrated a relationship between the coating degradation degree and changes in the color of the blade’s surface. Among others, this approach may be used as a tool to assess the condition of turbine blades as well as entire gas turbines.  相似文献   

12.
This paper presents an analytical investigation on the forced vibration characteristics of a rotating functionally graded material (FGM) blade subjected to rub-impact and base excitation. Based on the Kirchhoff plate theory, the rotating blade is modelled theoretically. The material properties of the FGM blade are considered to vary continuously and smoothly along the thickness direction according to a volume fraction power-law distribution. By employing Hamilton’s principle, the equations of motion are derived. Then, the Galerkin method and the small parameter perturbation method are utilized to obtain the analytical solution for the composite blade under a combined action of radial force, tangential force and displacement load. Finally, special attention is given to the effects of power-law index, rub-impact location, friction coefficient, base excitation amplitude and blade aspect ratio on the vibration characteristics of the FGM structure. The obtained results can play a role in the design of rotating FGM blades to achieve significantly improved structural performance.  相似文献   

13.
Polymer-based nanocomposites are being considered as replacements for conventional materials in medium to high-temperature applications. This article aims to discover the synergistic effects of reinforcements on the developed polymer-based nanocomposite. An epoxy-based polymer composite was manufactured by reinforcing graphene nanoplatelets (GNP) and h-boron nitride (h-BN) nanofillers. The composites were prepared by varying the reinforcements with the step of 0.1 from 0.1 to 0.6%. Ultrasonication was carried out to ensure the homogenous dispersion of reinforcements. Mechanical, thermal, functional, and scanning electron microscopy (SEM) analysis was carried out on the novel manufactured composites. The evaluation revealed that the polymer composite with GNP 0.2 by wt % has shown an increase in load-bearing capacity by 265% and flexural strength by 165% compared with the pristine form, and the polymer composite with GNP and h-BN 0.6 by wt % showed an increase in load-bearing capacity by 219% and flexural strength by 114% when compared with the pristine form. Furthermore, the evaluation showed that the novel prepared nanocomposite reinforced with GNP and h-BN withstands a higher temperature, around 340 °C, which is validated by thermogravimetric analysis (TGA) trials. The numerical simulation model is implemented to gather the synthesised nanocomposite’s best composition and mechanical properties. The minor error between the simulation and experimental data endorses the model’s validity. To demonstrate the industrial applicability of the presented material, a case study is proposed to predict the temperature range for compressor blades of gas turbine engines containing nanocomposite material as the substrate and graphene/h-BN as reinforcement particles.  相似文献   

14.
Diffraction and phase contrast tomography techniques were successfully applied to an austenitic–ferritic duplex stainless steel representing exemplarily a metallic material containing two phases with different crystal structures. The reconstructed volumes of both phases were discretized by finite elements. A crystal plasticity finite-element analysis was executed in order to simulate the development of the experimentally determined first and second order residual stresses, which built up due to the manufacturing process of the material. Cyclic deformation simulations showed the single-grain-resolved evolution of initial residual stresses in both phases and were found to be in good agreement with the experimental results. Solely in ferritic grains, residual stresses built up due to cyclic deformation, which promoted crack nucleation in this phase. Furthermore, phase contrast tomography was applied in order to analyze the mechanisms of fatigue crack nucleation and short fatigue crack propagation three-dimensionally and nondestructively. The results clearly showed the significance of microstructural barriers for short fatigue crack growth at the surface, as well as into the material. The investigation presented aims for a better understanding of the three-dimensional mechanisms governing short fatigue crack propagation and, in particular, the effect of residual stresses on these mechanisms. The final goal was to generate tailored microstructures for improved fatigue resistance and enhanced fatigue life.  相似文献   

15.
This paper presents a numerical method for studying the stress–strain state and obtaining the nonlinear elastic characteristics of longitudinal–transverse transducers. The authors propose a mathematical model that uses a direct numerical solution of the boundary value problem based on the plain curved rod equations in Matlab. The system’s stress–strain state and nonlinear elastic characteristic are obtained using the method of successive loadings based on the curved rod’s linearized equations. For most ultrasonic instruments, the operating frequency of ultrasonic vibrations is close to 20 kHz. On the other hand, the received own oscillation frequencies are close to the working range. Using the method of successive loadings in the mathematical complex Matlab, a numerical calculation of the stress–strain state of a flat, curved rod at large displacements has been carried out. The proposed model can be considered an initial approximation to the solution of the spatial problem of the longitudinal–torsional transducer.  相似文献   

16.
For the investigation of fatigue damage behavior of textile reinforced concrete (TRC)-strengthened RC beams, in this study, eight RC beams were fabricated, and five of them were strengthened with TRC and tested under fatigue loading until failure, using a four-point bending setup. Research parameters included reinforcement ratio, textile ratio, and strengthening methods (single-side and U-wrapped). The failure mode, fatigue life, fatigue deformation, and other properties of TRC-strengthened beams were analyzed. Experimental results revealed that there were two fatigue failure modes for TRC-strengthened RC beams. In the first mode, the textile was snapped, but the steel bars did not rupture. In the second mode, both the textile and steel bars broke. Fatigue failure modes depended on the textile ratio. The TRC-strengthened beam’s fatigue life was significantly higher than the non-strengthened RC beam. At the same textile ratio, the TRC-strengthened beam’s fatigue life using the single-side method was longer than that using the U-wrapped method. With the increase in fatigue loading time, the midspan deflection of the TRC-strengthened beam was developed in three stages, namely rapid development stage, stable development stage, and destabilized development stage. The residual deflection and strain damage accumulation of tensile steel bars of TRC-strengthened beams were significantly reduced with the increase in textile or reinforcement ratios; thus, the beam’s fatigue life was prolonged.  相似文献   

17.
In this paper, a novel method for high temperature fatigue strength assessment of nickel superalloy turbine blades after operation at different times (303 and 473 h) was presented. The studies included destructive testing (fatigue testing at temperature 950 °C under cyclic bending load), non-destructive testing (Fluorescent Penetrant Inspection and Eddy Current method), and finite element modelling. High temperature fatigue tests were performed within load range from 5200 to 6600 N using a special self-designed blade grip attached to the conventional testing machine. The experimental results were compared with the finite element model generated from the ANSYS software. It was found that failure of turbine blades occurred in the area with the highest stress concertation, which was accurately predicted by the finite element (FE) model.  相似文献   

18.
A field campaign was carried out to investigate ice accretion features on large turbine blades (50 m in length) and to assess power output losses of utility-scale wind turbines induced by ice accretion. After a 30-h icing incident, a high-resolution digital camera carried by an unmanned aircraft system was used to capture photographs of iced turbine blades. Based on the obtained pictures of the frozen blades, the ice layer thickness accreted along the blades’ leading edges was determined quantitatively. While ice was found to accumulate over whole blade spans, outboard blades had more ice structures, with ice layers reaching up to 0.3 m thick toward the blade tips. With the turbine operating data provided by the turbines’ supervisory control and data acquisition systems, icing-induced power output losses were investigated systematically. Despite the high wind, frozen turbines were discovered to rotate substantially slower and even shut down from time to time, resulting in up to 80% of icing-induced turbine power losses during the icing event. The research presented here is a comprehensive field campaign to characterize ice accretion features on full-scaled turbine blades and systematically analyze detrimental impacts of ice accumulation on the power generation of utility-scale wind turbines. The research findings are very useful in bridging the gaps between fundamental icing physics research carried out in highly idealized laboratory settings and the realistic icing phenomena observed on utility-scale wind turbines operating in harsh natural icing conditions.  相似文献   

19.
The structural and strength analysis of the materials used to construct an important engine element such as the turbine is of great significance, at both the design stage and during tests and training relating to emergency situations. This paper presents the results of a study on the chemical composition, morphology, and phased structure of the metallic construction material used to produce the blades of the high- and low-pressure turbines of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. On the basis of an analysis of the chemical composition and phased structure, the data obtained from tests of the blade material allowed the grade of the alloy used to construct the tested elements of the jet engine turbine to be determined. The structural stability of the material was found to be lower in comparison with the engine operating conditions, which was shown by a clear decrease in the resistance properties of the blade material. The results obtained may be used as a basis for analyzing the life span of an object or a selection of material replacements, which may enable the production of the analyzed engine element.  相似文献   

20.
Additive manufacturing of Alloy 718 has become a popular subject of research in recent years. Understanding the process-microstructure-property relationship of additively manufactured Alloy 718 is crucial for maturing the technology to manufacture critical components. Fatigue behaviour is a key mechanical property that is required in applications such as gas turbines. Therefore, in the present work, low cycle fatigue behaviour of Alloy 718 manufactured by laser beam powder bed fusion process has been investigated. The material was tested in as-built condition as well as after two different thermal post-treatments. Three orientations with respect to the building direction were tested to evaluate the anisotropy. Testing was performed at room temperature under controlled amplitudes of strain. It was found that defects, inclusions, strengthening precipitates, and Young’s modulus influence the fatigue behaviour under strain-controlled conditions. The strengthening precipitates affected the deformation mechanism as well as the cycle-dependent hardening/softening behaviour. The defects and the inclusions had a detrimental effect on fatigue life. The presence of Laves phase in LB-PBF Alloy 718 did not have a detrimental effect on fatigue life. Young’s modulus was anisotropic and it contributed to the anisotropy in strain-life relationship. Pseudo-elastic stress vs. fatigue life approach could be used to handle the modulus-induced anisotropy in the strain-life relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号