首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Whole-genome sequencing (WGS) has played a significant role in understanding the epidemiology and biology of SARS-CoV-2 virus. Here, we investigate the use of SARS-CoV-2 WGS in Southeast and East Asian countries as a genomic surveillance during the COVID-19 pandemic. Nottingham–Indonesia Collaboration for Clinical Research and Training (NICCRAT) initiative has facilitated collaboration between the University of Nottingham and a team in the Research Center for Biotechnology, National Research and Innovation Agency (BRIN), to carry out a small number of SARS-CoV-2 WGS in Indonesia using Oxford Nanopore Technology (ONT). Analyses of SARS- CoV-2 genomes deposited on GISAID reveal the importance of clinical and demographic metadata collection and the importance of open access and data sharing. Lineage and phylogenetic analyses of two periods defined by the Delta variant outbreak reveal that: (1) B.1.466.2 variants were the most predominant in Indonesia before the Delta variant outbreak, having a unique spike gene mutation N439K at more than 98% frequency, (2) Delta variants AY.23 sub-lineage took over after June 2021, and (3) the highest rate of virus transmissions between Indonesia and other countries was through interactions with Singapore and Japan, two neighbouring countries with a high degree of access and travels to and from Indonesia.  相似文献   

2.
《Viruses》2022,14(10)
An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country’s genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available.  相似文献   

3.
Ngiambudulu M. Francisco  Stephanie van Wyk  Monika Moir  James Emmanuel San  Cruz S. Sebastião  Houriiyah Tegally  Joicymara Xavier  Akhil Maharaj  Zoraima Neto  Pedro Afonso  Domingos Jandondo  Joana Paixão  Julio Miranda  Kumbelembe David  Luzia Inglês  Amilton Pereira  Agostinho Paulo  Raisa Rivas Carralero  Helga Reis Freitas  Franco Mufinda  Silvia Lutucuta  Mahan Ghafari  Marta Giovanetti  Jennifer Giandhari  Sureshnee Pillay  Yeshnee Naidoo  Lavanya Singh  Derek Tshiabuila  Darren Patrick Martin  Lucious Chabuka  Wonderful Choga  Dorcas Wanjohi  Sarah Mwangi  Yusasha Pillay  Yenew Kebede  Edwin Shumba  Pascale Ondoa  Cheryl Baxter  Eduan Wilkinson  Sofonias Kifle Tessema  Aris Katzourakis  Richard Lessells  Tulio de Oliveira  Joana Morais 《Influenza and other respiratory viruses》2023,17(9):e13198

Background

In Angola, COVID-19 cases have been reported in all provinces, resulting in >105,000 cases and >1900 deaths. However, no detailed genomic surveillance into the introduction and spread of the SARS-CoV-2 virus has been conducted in Angola. We aimed to investigate the emergence and epidemic progression during the peak of the COVID-19 pandemic in Angola.

Methods

We generated 1210 whole-genome SARS-CoV-2 sequences, contributing West African data to the global context, that were phylogenetically compared against global strains. Virus movement events were inferred using ancestral state reconstruction.

Results

The epidemic in Angola was marked by four distinct waves of infection, dominated by 12 virus lineages, including VOCs, VOIs, and the VUM C.16, which was unique to South-Western Africa and circulated for an extended period within the region. Virus exchanges occurred between Angola and its neighboring countries, and strong links with Brazil and Portugal reflected the historical and cultural ties shared between these countries. The first case likely originated from southern Africa.

Conclusion

A lack of a robust genome surveillance network and strong dependence on out-of-country sequencing limit real-time data generation to achieve timely disease outbreak responses, which remains of the utmost importance to mitigate future disease outbreaks in Angola.  相似文献   

4.
In order to provide insights into the evolutionary and epidemiological viral dynamics during the current COVID-19 pandemic in South Eastern Italy, a total of 298 genomes of SARS-CoV-2 strains collected in the Apulia and Basilicata regions, between March 2020 and January 2021, were sequenced. The genomic analysis performed on the draft genomes allowed us to assign the genetic clades and lineages of belonging to each sample and provide an overview of the main circulating viral variants. Our data showed the spread in Apulia and Basilicata of SARS-CoV-2 variants which have emerged during the second wave of infections and are being currently monitored worldwide for their increased transmission rate and their possible impact on vaccines and therapies. These results emphasize the importance of genome sequencing for the epidemiological surveillance of the new SARS-CoV-2 variants’ spread.  相似文献   

5.
Background: The SARS-CoV-2 virus has assumed considerable importance during the COVID-19 pandemic. Its mutation rate is high, involving the spike (S) gene and thus there has been a rapid spread of new variants. Herein, we describe a rapid, easy, adaptable, and affordable workflow to uniquely identify all currently known variants through as few analyses. Our method only requires two conventional PCRs of the S gene and two Sanger sequencing reactions, and possibly another PCR/sequencing assay on a N gene portion to identify the B.1.160 lineage. Methods: We selected an S gene 1312 bp portion containing a set of SNPs useful for discriminating all variants. Mathematical, statistical, and bioinformatic analyses demonstrated that our choice allowed us to identify all variants even without looking for all related mutations, as some of them are shared by different variants (e.g., N501Y is found in the Alpha, Beta, and Gamma variants) whereas others, that are more informative, are unique (e.g., A57 distinctive to the Alpha variant). Results: A “weight” could be assigned to each mutation that may be present in the selected portion of the S gene. The method’s robustness was confirmed by analyzing 80 SARS-CoV-2-positive samples. Conclusions: Our workflow identified the variants without the need for whole-genome sequencing and with greater reliability than with commercial kits.  相似文献   

6.
7.
《Viruses》2022,14(6)
In this study, we analyzed the sequences of SARS-CoV-2 isolates of the Delta variant in Mexico, which has completely replaced other previously circulating variants in the country due to its transmission advantage. Among all the Delta sublineages that were detected, 81.5 % were classified as AY.20, AY.26, and AY.100. According to publicly available data, these only reached a world prevalence of less than 1%, suggesting a possible Mexican origin. The signature mutations of these sublineages are described herein, and phylogenetic analyses and haplotype networks are used to track their spread across the country. Other frequently detected sublineages include AY.3, AY.62, AY.103, and AY.113. Over time, the main sublineages showed different geographical distributions, with AY.20 predominant in Central Mexico, AY.26 in the North, and AY.100 in the Northwest and South/Southeast. This work describes the circulation, from May to November 2021, of the primary sublineages of the Delta variant associated with the third wave of the COVID-19 pandemic in Mexico and highlights the importance of SARS-CoV-2 genomic surveillance for the timely identification of emerging variants that may impact public health.  相似文献   

8.
This retrospective multi-center matched cohort study assessed the risk for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality in hospitalized patients when infected with the Omicron variant compared to when infected with the Delta variant. The study is based on a causal framework using individually-linked data from national COVID-19 registries. The study population consisted of 954 COVID-19 patients (of which, 445 were infected with Omicron) above 18 years old admitted to a Belgian hospital during the autumn and winter season 2021–2022, and with available viral genomic data. Patients were matched based on the hospital, whereas other possible confounders (demographics, comorbidities, vaccination status, socio-economic status, and ICU occupancy) were adjusted for by using a multivariable logistic regression analysis. The estimated standardized risk for severe COVID-19 and ICU admission in hospitalized patients was significantly lower (RR = 0.63; 95% CI (0.30; 0.97) and RR = 0.56; 95% CI (0.14; 0.99), respectively) when infected with the Omicron variant, whereas in-hospital mortality was not significantly different according to the SARS-CoV-2 variant (RR = 0.78, 95% CI (0.28–1.29)). This study demonstrates the added value of integrated genomic and clinical surveillance to recognize the multifactorial nature of COVID-19 pathogenesis.  相似文献   

9.
As of April 2021, the COVID-19 pandemic has swept through 213 countries and infected more than 132 million individuals globally, posing an unprecedented threat to human health. There are currently no specific antiviral treatments for COVID-19 and vaccination programmes, whilst promising, remain in their infancy. A key to restricting the pandemic is the ability to minimize human–human transmission and to predict the infection status of the population in the face of emerging SARS-CoV-2 variants. Success in this area is dependent on the rapid detection of COVID-19 positive individuals with current/previous SARS-CoV-2 infection status. In this regard, the ability to detect antibodies directed against the SARS-CoV-Spike protein in patient sera represents a powerful biomarker for confirmation of infection. Here, we report the design of a proof-of-concept cell–based fluorescent serology assay (termed C19-S-I-IFA) to detect SARS-CoV-2 infection. The assay is based on the capture of IgG antibodies in the serum of COVID-19-positive patients using cells exogenously expressing SARS-CoV-2-Spike and their subsequent fluorescent detection. We validate the assay in 30 blood samples collected in Oxford, UK, in 2020 during the height of the pandemic. Importantly, the assay can be modified to express emerging Spike-variants to permit assessments of the cross-reactivity of patient sera to emerging SARS-CoV-2 strains.  相似文献   

10.
为抗击2019年冠状病毒病(COVID-19)全球大流行,世界各地投入了大量资源开展基因组测序,目前已有超过55 000个SARS-CoV-2毒株序列汇集到GISAID网站。由于SARS-CoV-2病毒基因组较大、编码相对复杂,给基因组流行病学分析带来了挑战。本文总结了目前SARS-CoV-2病毒基因组流行病学研究进展,以便专业人员及时了解SARS-CoV-2病毒特征及传播趋势,充分利用基因组流行病学平台资源和工具,推动疫苗研制和治疗药物开发,促进这场全球大流行疫情的防控。  相似文献   

11.
The unprecedented growth of publicly available SARS-CoV-2 genome sequence data has increased the demand for effective and accessible SARS-CoV-2 data analysis and visualization tools. The majority of the currently available tools either require computational expertise to deploy them or limit user input to preselected subsets of SARS-CoV-2 genomes. To address these limitations, we developed ViralVar, a publicly available, point-and-click webtool that gives users the freedom to investigate and visualize user-selected subsets of SARS-CoV-2 genomes obtained from the GISAID public database. ViralVar has two primary features that enable: (1) the visualization of the spatiotemporal dynamics of SARS-CoV-2 lineages and (2) a structural/functional analysis of genomic mutations. As proof-of-principle, ViralVar was used to explore the evolution of the SARS-CoV-2 pandemic in the USA in pediatric, adult, and elderly populations (n > 1.7 million genomes). Whereas the spatiotemporal dynamics of the variants did not differ between these age groups, several USA-specific sublineages arose relative to the rest of the world. Our development and utilization of ViralVar to provide insights on the evolution of SARS-CoV-2 in the USA demonstrates the importance of developing accessible tools to facilitate and accelerate the large-scale surveillance of circulating pathogens.  相似文献   

12.
In early 2020, the COVID-19 pandemic sparked a global crisis that continues to pose a serious threat to human health and the economy. Further advancement in research is necessary and requires the availability of quality molecular tools, including monoclonal antibodies. Here, we present the development and characterization of a collection of over 40 new monoclonal antibodies directed against different SARS-CoV-2 proteins. Recombinant SARS-CoV-2 proteins were expressed, purified, and used as immunogens. Upon development of specific hybridomas, the obtained monoclonal antibody (mAb) clones were tested for binding to recombinant proteins and infected cells. We generated mAbs against structural proteins, the Spike and Nucleocapsid protein, several non-structural proteins (nsp1, nsp7, nsp8, nsp9, nsp10, nsp16) and accessory factors (ORF3a, ORF9b) applicable in flow cytometry, immunofluorescence, or Western blot. Our collection of mAbs provides a set of novel, highly specific tools that will allow a comprehensive analysis of the viral proteome, which will allow further understanding of SARS-CoV-2 pathogenesis and the design of therapeutic strategies.  相似文献   

13.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent responsible for the coronavirus disease 2019 (COVID-19). The high rate of mutation of this virus is associated with a quick emergence of new viral variants that have been rapidly spreading worldwide. Several mutations have been documented in the receptor-binding domain (RBD) of the viral spike protein that increases the interaction between SARS-CoV-2 and its cellular receptor, the angiotensin-converting enzyme 2 (ACE2). Mutations in the spike can increase the viral spread rate, disease severity, and the ability of the virus to evade either the immune protective responses, monoclonal antibody treatments, or the efficacy of current licensed vaccines. This review aimed to highlight the functional virus classification used by the World Health Organization (WHO), Phylogenetic Assignment of Named Global Outbreak (PANGO), Global Initiative on Sharing All Influenza Data (GISAID), and Nextstrain, an open-source project to harness the scientific and public health potential of pathogen genome data, the chronological emergence of viral variants of concern (VOCs) and variants of interest (VOIs), the major findings related to the rate of spread, and the mutations in the spike protein that are involved in the evasion of the host immune responses elicited by prior SARS-CoV-2 infections and by the protection induced by vaccination.  相似文献   

14.
A considerable number of new SARS-CoV-2 lineages have emerged since the first COVID-19 cases were reported in Wuhan. As a few variants showed higher COVID-19 disease transmissibility and the ability to escape from immune responses, surveillance became relevant at that time. Single-nucleotide mutation PCR-based protocols were not always specific, and consequently, determination of a high number of informative sites was needed for accurate lineage identification. A detailed in silico analysis of SARS-CoV-2 sequences retrieved from GISAID database revealed the S gene 921 bp-fragment, positions 22784–23705 of SARS-CoV-2 reference genome, as the most informative fragment (30 variable sites) to determine relevant SARS-CoV-2 variants. Consequently, a method consisting of the PCR-amplification of this fragment, followed by Sanger’s sequencing and a “single-click” informatic program based on a reference database, was developed and validated. PCR-fragments obtained from clinical SARS-CoV-2 samples were compared with homologous variant-sequences and the resulting phylogenetic tree allowed the identification of Alpha, Delta, Omicron, Beta, Gamma, and other variants. The data analysis procedure was automatized and simplified to the point that it did not require specific technical skills. The method is faster and cheaper than current whole-genome sequencing methods; it is available worldwide, and it may help to enhance efficient surveillance in the fight against the COVID-19 pandemic.  相似文献   

15.
We compared 19,207 cases of SARS-CoV-2 variant B.1.1.7/S gene target failure (SGTF), 436 B.1.351 and 352 P.1 to non-variant cases reported by seven European countries. COVID-19 cases with these variants had significantly higher adjusted odds ratios for hospitalisation (B.1.1.7/SGTF: 1.7, 95% confidence interval (CI): 1.0–2.9; B.1.351: 3.6, 95% CI: 2.1–6.2; P.1: 2.6, 95% CI: 1.4–4.8) and B.1.1.7/SGTF and P.1 cases also for intensive care admission (B.1.1.7/SGTF: 2.3, 95% CI: 1.4–3.5; P.1: 2.2, 95% CI: 1.7–2.8).  相似文献   

16.
Despite unprecedented global sequencing and surveillance of SARS-CoV-2, timely identification of the emergence and spread of novel variants of concern (VoCs) remains a challenge. Several million raw genome sequencing runs are now publicly available. We sought to survey these datasets for intrahost variation to study emerging mutations of concern. We developed iSKIM (“intrahost SARS-CoV-2 k-mer identification method”) to relatively quickly and efficiently screen the many SARS-CoV-2 datasets to identify intrahost mutations belonging to lineages of concern. Certain mutations surged in frequency as intrahost minor variants just prior to, or while lineages of concern arose. The Spike N501Y change common to several VoCs was found as a minor variant in 834 samples as early as October 2020. This coincides with the timing of the first detected samples with this mutation in the Alpha/B.1.1.7 and Beta/B.1.351 lineages. Using iSKIM, we also found that Spike L452R was detected as an intrahost minor variant as early as September 2020, prior to the observed rise of the Epsilon/B.1.429/B.1.427 lineages in late 2020. iSKIM rapidly screens for mutations of interest in raw data, prior to genome assembly, and can be used to detect increases in intrahost variants, potentially providing an early indication of novel variant spread.  相似文献   

17.
The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.

The human genome encodes a diverse array of antiviral interferons (IFNs). These include the type I IFNs (IFN-Is) such as the 12 IFNα subtypes IFNβ and IFNω that signal through the ubiquitous IFNΑR (IFN α-receptor), and the type III IFNs (IFN-IIIs) such as IFNλ1, IFNλ2, and IFNλ3 that signal through the more restricted IFNλR receptor that is present in lung epithelial cells (1). IFN diversity may be driven by an evolutionary arms race in which viral pathogens and hosts reciprocally evolve countermeasures (2). For instance, the IFNα subtypes exhibit >78% amino acid sequence identity, but IFNα14, IFNα8, and IFNα6 most potently inhibited HIV-1 in vitro and in vivo (35), whereas IFNα5 most potently inhibited influenza H3N2 in lung explant cultures (6). Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was sensitive to IFNα2, IFNβ, and IFNλ (79), and several clinical trials of IFNα2 and IFNβ demonstrated therapeutic promise for coronavirus disease 2019 (COVID-19) (1012). A recent Phase III clinical trial demonstrating that IFNβ may not have therapeutic benefits in vivo (13) could be due to the late timing of administration among hospitalized/severely ill patients, cotreatment with glucocorticoids such as dexamethasone that directly antagonize IFN signaling (14), and the use of a subcutaneous route that may not efficiently target IFNs to pulmonary epithelial cells. To date, a direct comparison of multiple IFN-Is and IFN-IIIs against diverse SARS-CoV-2 variants of concern has not yet been done.The present study was initiated to determine which IFNs would best inhibit SARS-CoV-2. Initially, we selected five isolates from prominent lineages (15) during the early phase of the pandemic (Fig. 1 and SI Appendix, Table S1). USA-WA1/2020 is the standard strain used in many in vitro and in vivo studies of SARS-CoV-2 and belongs to lineage A (15). It was isolated from the first COVID-19 patient in the United States, who had a direct epidemiologic link to Wuhan, China, where the virus was initially detected (16). By contrast, subsequent infection waves from Asia to Europe (17) were associated with the emergence of the D614G mutation (18). Lineage B strains with G614 spread globally and displaced ancestral viruses with striking speed, likely due to increased transmissibility (19, 20). These strains accumulated additional mutations in Italy as lineage B.1, which then precipitated a severe outbreak in New York City (21). Later, in the United Kingdom, lineage B.1.1.7 acquired an N501Y mutation associated with enhanced transmissibility (15). Lineage B.1.351, first reported in South Africa, additionally acquired an additional E484K mutation associated with resistance to neutralizing antibodies (22, 23). Both B.1.1.7 and B.1.351 were reported in multiple countries, and in some cases have become dominant for extended periods (24). Subsequent waves of infection after our initial preprint was deposited in March 2021 (25) was associated with the P.1, B.1.617.2, and B.1.1.529 lineages (2629). The emergence of these novel variants provided a unique opportunity to determine whether SARS-CoV-2 has evolved since its initial introduction into humans to better counteract innate immune selection pressures driven by the antiviral IFNs.Open in a separate windowFig. 1.Selection of SARS-CoV-2 strains for IFN sensitivity studies. (A) Global distribution of SARS-CoV-2 clades. GISAID.org plotted the proportion of deposited sequences in designated clades against collection dates. The 10 isolates chosen are noted by colored dots. (B) SARS-CoV-2 strains selected for this study included representatives of lineages A, B, B.1, B.1.351, and B.1.1.7 (SI Appendix, Table S1). Lineage P.1 (which branched off from lineage B.1.1.28), B.1.617.2, and B.1.1.529 were added after the initial preprint submission and were evaluated for IFNβ and IFNλ1 sensitivity. Lineage B isolates encode the D614G mutation associated with increased transmissibility. *Amino acid mutations were relative to the reference hCOV-19/Wuhan/WIV04/2019 sequence.  相似文献   

18.
Background: After its initial detection in Wuhan, China, in December 2019, SARS-CoV-2 has spread rapidly, causing successive epidemic waves worldwide. This study aims to provide a genomic epidemiology of SARS-CoV-2 in Burkina Faso. Methods: Three hundred and seventy-seven SARS-CoV-2 genomes obtained from PCR-positive nasopharyngeal samples (PCR cycle threshold score < 35) collected between 5 May 2020, and 31 January 2022 were analyzed. Genomic sequences were assigned to phylogenetic clades using NextClade and to Pango lineages using pangolin. Phylogenetic and phylogeographic analyses were performed to determine the geographical sources and time of virus introduction in Burkina Faso. Results: The analyzed SARS-CoV-2 genomes can be assigned to 10 phylogenetic clades and 27 Pango lineages already described worldwide. Our analyses revealed the important role of cross-border human mobility in the successive SARS-CoV-2 introductions in Burkina Faso from neighboring countries. Conclusions: This study provides additional insights into the genomic epidemiology of SARS-CoV-2 in West Africa. It highlights the importance of land travel in the spread of the virus and the need to rapidly implement preventive policies. Regional cross-border collaborations and the adherence of the general population to government policies are key to prevent new epidemic waves.  相似文献   

19.
20.
Small animal models are of crucial importance for assessing COVID-19 countermeasures. Common laboratory mice would be well-suited for this purpose but are not susceptible to infection with wild-type SARS-CoV-2. However, the development of mouse-adapted virus strains has revealed key mutations in the SARS-CoV-2 spike protein that increase infectivity, and interestingly, many of these mutations are also present in naturally occurring SARS-CoV-2 variants of concern. This suggests that these variants might have the ability to infect common laboratory mice. Herein we show that the SARS-CoV-2 beta variant attains infectibility to BALB/c mice and causes pulmonary changes within 2–3 days post infection, consistent with results seen in other murine models of COVID-19, at a reasonable virus dose (2 × 105 PFU). The findings suggest that common laboratory mice can serve as the animal model of choice for testing the effectiveness of antiviral drugs and vaccines against SARS-CoV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号