首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stachytarpheta leaf curl virus is a novel monopartite begomovirus species   总被引:2,自引:0,他引:2  
Xiong Q  Fan S  Guo X  Zhou X 《Archives of virology》2005,150(11):2257-2270
Summary. Begomovirus isolates were obtained from Stachytarpheta jamaicensis plants showing leaf curl and chlorosis symptoms collected in the Hainan province of China. The complete sequences of isolates Hn5-4, Hn6-1, Hn30 and Hn34 were determined to be 2748, 2751, 2748 and 2748 nucleotides long, respectively. The complete sequences of the four isolates share more than 94.9% nucleotide sequence identity, but all of them have less than 86% nucleotide sequence identity with other reported begomoviruses. The molecular data show that Hn5-4, Hn6-1, Hn30 and Hn34 are isolates of a distinct begomovirus species, for which the name Stachytarpheta leaf curl virus (StaLCV) is proposed. PCR and Southern blot analyses demonstrate that all the collected field samples are not associated with DNAβ or DNA-B components. An infectious clone of StaLCV isolate Hn5-4 was constructed, and could efficiently infect Nicotiana benthamiana, N. tabacum Samsun, N. glutinosa, Lycopersicon esculentum and Petunia hybrida plants, inducing upward leaf roll and vein swelling symptoms. In addition, we illustrate that StaLCV can functionally interact with distinct DNAβ molecules in plants. These authors contributed equally to this work.  相似文献   

2.
For last two decades, begomoviruses (family Geminiviridae) have been a major constraint for tomato production in Oman, particularly in the Al-Batinah region, the major agricultural area of Oman. Farms in the Al-Batinah region were surveyed during January-March and November-December in 2012 and January-February in 2013. Leaf samples of tomato plants showing typical leaf curl disease symptoms were collected and analyzed for begomoviruses. Out of fifteen begomovirus clones sequenced, seven were shown to be tomato yellow leaf curl virus strain Oman (TYLCV-OM); three, chili leaf curl virus strain Oman (ChLCV-OM); and one, tomato leaf curl Oman virus (ToLCOMV) – viruses that have previously been shown to occur in Oman. Four sequences were shown to have relatively low percent identity values to known begomoviruses, with the highest (86 %) to isolates of pepper leaf curl Lahore virus, indicating that these should be included in a new species, for which the name “Tomato leaf curl Al Batinah virus” (ToLCABV) is proposed. Although the betasatellite tomato leaf curl betasatellite (ToLCB; 7 full-length sequences isolated) was identified with some isolates of ChLCV-OM, TYLCV-OM and ToLCOMV, it was not identified in association with any of the ToLCABV isolates. Analysis of the sequences of the TYLCV-OM and ToLCOMV isolates characterized here did not show them to differ significantly from previously characterized isolates of these viruses. The three isolates of ChLCV-OM characterized were shown to have a recombination pattern distinct from earlier characterized isolates. ToLCABV was shown to have resulted from recombination between ChLCV-OM and ToLCOMV. A clone of ToLCABV was infectious by Agrobacterium-mediated inoculation to Nicotiana benthamiana and tomato, inducing symptoms typical of those seen in tomato in the field. Additionally, ToLCABV was shown to be able to interact in planta with ToLCB, resulting in a change in symptom phenotype, although the betasatellite did not appear to affect viral DNA levels.  相似文献   

3.
A begomovirus was isolated from tomato plants showing leaf curl and stunting symptoms in farmers’ fields near the district of Kalyani, West Bengal, India. Viral genomic components amplified by rolling-circle amplification were cloned and sequenced. The genome organization of this virus was found to be similar to those of Old World monopartite begomovirus, with DNA A and a betasatellite component. Neither alphasatellite nor DNA B component was detected. The begomovirus showed highest sequence identity of 93.6% to tomato leaf curl Joydebpur virus (ToLCJoV-[IN:Kal:Chi:06]) and was thus identified to be an isolate of ToLCJoV. The betasatellite isolated from these samples was identified as tomato leaf curl Joydebpur betasatellite. ToLCJoV-[IN:Kal:Tom:08] alone induced severe symptoms in Solanum lycopersicum, N. benthamiana and N. glutinosa plants, and its severity was enhanced when co-inoculated with the cognate betasatellite. ToLCJoV-[IN:Kal:Tom:08] trans-replicated four more non-cognate betasatellites and induced severe symptoms in N. benthamiana and tomato. Since DNA A replicated efficiently and caused systemic symptom expression, it is hypothesized that ToLCJoV is essentially a monopartite virus, which could have acquired a betasatellite from an unknown source.  相似文献   

4.
Tomato leaf curl is a serious malady in the state of Maharashtra, India, causing nearly 100 % yield loss. An extensive survey was done in the affected fields of tomato in the year 2008, and members of three species of begomoviruses were identified as causing the disease. More than 60 % of the samples from diseased plants were infected with tomato leaf curl Gujarat virus (ToLCGuV). Isolates collected from these fields differed from the Varanasi isolate of ToLCGuV in not having a DNA B component. Instead, they were like typical Old World monopartite begomoviruses in that they were associated with only one betasatellite, tomato yellow leaf curl Thailand betasatellite (TYLCTHB). ToLCGuV alone is readily infectious, expressing systemic symptoms in Nicotiana benthamiana and tomato. Co-inoculation of ToLCGuV with TYLCTHB, increased symptom severity and reduced the incubation time required for symptom expression. ToLCGuV successfully interacted with heterologous DNA B component of ToLCNDV [IN:Pun:JID:08], and co-inoculation of these two resulted in yellow mottling symptoms that were typical of DNA B.  相似文献   

5.
Singh MK  Singh K  Haq QM  Mandal B  Varma A 《Virus genes》2011,43(2):296-306
Leaf curl disease of tobacco (TbLCD) is endemic in India. A monopartite Begomovirus, a betasatellite and an alphasatellite were found associated with the disease in Pusa, Bihar. The DNA-A of the Begomovirus associated with TbLCD in Pusa, Bihar was found to comprise of 2707 nt with a typical Old World begomovirus-like genome organization. The full-length sequence of DNA-A [HQ180391] showed that the Pusa isolate is a newly described member of the genus Begomovirus, as it had <89% sequence homology with DNA-A of all the known begomoviruses. The isolate is tentatively named as Tobacco leaf curl Pusa virus [India:Pusa:2010]. The betasatellite (HQ180395) associated with TbLCD in Pusa was identified as a variant of Tomato leaf curl Bangladesh betasatellite [IN:Raj:03], with which it shared 90.4% sequence identity. The alphasatellite (HQ180392) associated with the disease had highest 87% nucleotide sequence identity with Tomato leaf curl alphasatellite. The Begomovirus, betasatellite, and alphasatellite associated with TbLCD in Pusa, Bihar, India were found to be recombinants of extant begomoviruses, betasatellites and alphasatellites spreading in the Indian sub-continent and South-East Asia.  相似文献   

6.
7.
Previous studies have shown that isolates of tomato yellow leaf curl Thailand virus (TYLCTHV) originated from Thailand are bipartite begomoviruses, while all the seven TYLCTHV isolates found in China are associated with DNAβ molecules. In this study, infectious clones of TYLCTHV isolate Y72 (TYLCTHV-[Y72]) and its DNAβ were constructed to verify the bipartite or monopartite nature of TYLCTHV. Agroinoculation showed that TYLCTHV-[Y72] alone was able to induce significant symptoms in Nicotiana benthamiana, Nicotiana glutinosa, and Solanum lycopersicum plants, but co-inoculation with its associated satellite DNAβ produced more severe symptoms, which is similar to tobacco curly shoot virus. Southern blot results showed that TYLCTHV DNAβ could increase the virus accumulation in systemically infected tissues. Thus, TYLCTHV-[Y72] is a monopartite begomovirus, which may represent an evolutionary intermediate between the begomoviruses requiring DNAβ and begomoviruses dispensable of DNAβ. Wei Guo and Xiuling Yang contributed equally to this paper.  相似文献   

8.
Croton yellow vein mosaic virus (CYVMV) is a widely occurring begomovirus in Croton bonplandianum, a common weed in the Indian subcontinent. In this study, CYVMV (genus Begomovirus, family Geminiviridae) was transmitted by whiteflies (Bemisia tabaci) to as many as 35 plant species belonging to 11 families, including many vegetables, tobacco varieties, ornamentals and weeds. CYVMV produced bright yellow vein symptoms in croton, whereas in all the other host species, the virus produced leaf curl symptoms. CYVMV produced leaf curl in 13 tobacco species and 22 cultivars of Nicotiana tabacum and resembled tobacco leaf curl virus (TobLCV) in host reactions. However, CYVMV was distinguished from TobLCV in four differential hosts, Ageratum conyzoides, C. bonplandianum, Euphorbia geniculata and Sonchus bracyotis. The complete genome sequences of four isolates originating from northern, eastern and southern India revealed that a single species of DNA-A and a betasatellite, croton yellow vein mosaic betasatellite (CroYVMB) were associated with the yellow vein mosaic disease of croton. The sequence identity among the isolates of CYVMV DNA-A and CroYVMB occurring in diverse plant species was 91.8-97.9 % and 83.3-100 %, respectively. The CYVMV DNA-A and CroYVMB generated through rolling-circle amplification of the cloned DNAs produced typical symptoms of yellow vein mosaic and leaf curling in croton and tomato, respectively. The progeny virus from both the croton and tomato plants was transmitted successfully by B. tabaci. The present study establishes the etiology of yellow vein mosaic disease of C. bonplandianum and provides molecular evidence that a weed-infecting monopartite begomovirus causes leaf curl in tomato.  相似文献   

9.
Recent reports have suggested that cotton leaf curl virus (CLCuV), a geminivirus of the genus Begomovirus, may be responsible for cotton leaf curl disease in Pakistan. However, the causal agent of the disease remains unclear as CLCuV genomic components resembling begomovirus DNA A are unable to induce typical disease symptoms when reintroduced into plants. All attempts to isolate a genomic component equivalent to begomovirus DNA B have been unsuccessful. Here, we describe the isolation and characterisation of a novel circular single-stranded (ss) DNA associated with naturally infected cotton plants. In addition to a component resembling DNA A, purified geminate particles contain a smaller unrelated ssDNA that we refer to as DNA 1. DNA 1 was cloned from double-stranded replicative form of the viral DNA isolated from infected cotton plants. Blot hybridisation using probes specific for either CLCuV DNA or DNA 1 was used to demonstrate that both DNAs co-infect naturally infected cotton plants from different geographical locations. DNA 1 was detected in viruliferous Bemisia tabaci and in tobacco plants infected under laboratory conditions using B. tabaci, indicating that it is transmitted by whiteflies. Sequence analysis showed that DNA 1 is approximately half the size of CLCuV DNA but shares no homology, indicating that it is not a defective geminivirus component. DNA 1 has some homology to a genomic component of members of Nanoviridae, a family of DNA viruses that are normally transmitted by aphids or planthoppers. DNA 1 encodes a homologue of the nanovirus replication-associated protein (Rep) and has the capacity to autonomously replicate in tobacco. The data suggest that a nanovirus-like DNA has become whitefly-transmissible as a result of its association with a geminivirus and that cotton leaf curl disease may result from a mutually dependent relationship that has developed between members of two distinct DNA virus families that share a similar replication strategy.  相似文献   

10.
11.
The functional properties of proteins [capsid protein (CP), V1, and C4] potentially involved with movement of the monopartite begomovirus, Tomato yellow leaf curl virus (TYLCV), were investigated using microinjection of Escherichia coli expressed proteins and transient expression of GFP fusion proteins. The TYLCV CP localized to the nucleus and nucleolus and acted as a nuclear shuttle, facilitating import and export of DNA. Thus, the CP serves as the functional homolog of the bipartite begomovirus BV1. The TYLCV V1 localized around the nucleus and at the cell periphery and colocalized with the endoplasmic reticulum, whereas C4 was localized to the cell periphery. Together, these patterns of localization were similar to that of the bipartite begomovirus BC1, known to mediate cell-to-cell movement. However, in contrast to BC1, V1 and C4, alone or in combination, had a limited capacity to move and mediate macromolecular trafficking through mesophyll or epidermal plasmodesmata. Immunolocalization and in situ PCR experiments, conducted with tomato plants at three stages of development, established that TYLCV infection was limited to phloem cells of shoot apical, leaf, stem, and floral tissues. Thus, the V1 and/or C4 may be analogs of the bipartite begomovirus BC1 that have evolved to mediate TYLCV movement within phloem tissue.  相似文献   

12.
Begomoviruses (family Geminiviridae) cause severe damage to tomato crops worldwide. Among them, tomato leaf curl disease (ToLCD)-associated begomoviruses are a major concern for tomato production in Sudan. Here, we report the detection of unexpectedly large cotton leaf curl Gezira alphasatellite molecules (up to 1467 nt) associated with an isolate of a novel strain of tomato leaf curl Sudan virus (ToLCSDV) in tomato plants affected by ToLCD. A recombinant nature is suggested for this ToLCSDV isolate.  相似文献   

13.
Begomoviruses are emerging as serious threat to many crops throughout the world particularly in tropical and sub-tropical regions. A leaf curl disease with symptoms typical of infection by many begomoviruses was observed in French bean (Phaseolus vulgaris) at Kanpur, India, during 2010–2012. The disease caused downward leaf curling and made the plants unproductive. The disease was transmitted from infected to healthy plants through whitefly (Bemisia tabaci). The products of five samples digested with EcoRI yielded DNA fragments of about 2.7 kb. The complete sequence of the Fb1 sample comprised 2,741 nucleotides with genome organization typical of begomoviruses having two ORFs in virion-sense and five ORFs in complementary-sense separated by an intergenic region with begomovirus conserved nonanucleotide sequence, TAATATTAC. The complete DNA-A sequence homology was most closely related to Cotton leaf curl Bangalore virus with 80 % nucleotide sequence identity. Based on the demarcation criteria for identifying a begomovirus species, Fb1 is considered as a distinct begomovirus species, named French bean leaf curl virus and designated as FbLCV-[IN:Knp:12]. The complete sequence of associated satellite DNA-β comprises 1,379 nucleotides with single ORF and has 80 % identity with Papaya leaf curl beta satellite. There was no evidence of recombination in DNA-A of FbLCV and associated beta satellite DNA molecule.  相似文献   

14.
The full-length genome of a begomovirus and its cognate DNA-β satellite component associated with chilli leaf curl disease (ChLCD), originating from Varanasi, India, were cloned. Sequence analysis revealed that the viral genome (EF190217) is 2,750 bp and the DNA-β satellite (EF190215) is 1,361 bp in length. Agroinoculation with partial tandem repeats of the viral genome along with the satellite induced symptoms typical of ChLCD in chilli and Nicotiana benthamiana. However, symptom expression was delayed and milder when the viral genome was agroinoculated alone in these hosts. Sequence comparisons revealed that the genome had the highest sequence identity (95%) with that of chilli leaf curl virus-PK[PK:Mul:98]. The DNA-β satellite shared maximum sequence identity (88%) with a DNA-β satellite associated with tomato leaf curl disease from Rajasthan (ToLCBDB-[IN:Raj:03]). These results demonstrate that ChLCD is caused by a complex consisting of the monopartite chilli leaf curl virus and a DNA-β satellite component. This is the first experimental demonstration of Koch’s postulates using cloned DNA molecules associated with chilli leaf curl disease. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Idris AM  Brown JK 《Archives of virology》2005,150(5):1003-1012
Summary. Two distinct viral genotypes were identified in the same tomato plant collected from Gezira, Sudan and are provisionally designated Tomato leaf curl Sudan virus (ToLCSDV-Gez) and Tomato yellow leaf curl virus-Sudan (TYLCV-SD). A third genotype was identified in tomato samples collected in Shambat, Sudan (ToLCSDV-Sha). The ToLCSDV-Gez and ToLCSDV-Sha isolates were 90% identical, TYLCV-SD from Gezira shared 93% identity with TYLCV-Mld. Recombination analyses identified two fragments in the ToLCSDV-Gez and TYLCV-SD genomes, providing evidence that these two genomes had undergone intermolecular recombination. A half unit size (737nt) single-stranded satellite DNA was associated with ToLCSDV-Gez and TYLCV-SD.  相似文献   

16.
Alphasatellites and betasatellites are begomovirus-associated single-stranded circular DNA molecules. Two distinct alphasatellites, Gossypium darwinii symptomless alphasatellite and Gossypium mustelinium symptomless alphasatellite, were previously isolated from Gossypium davidsonii and G.mustelinium. Here we show that the replication-associated proteins (Rep: a rolling-circle replication initiator protein) encoded by these alphasatellites interact with the Rep and C4 proteins encoded by their helper begomovirus, Cotton leaf curl Rajasthan virus (CLCuRaV), in a yeast two-hybrid assay. Both the alphasatellite-encoded Reps were found to have strong gene silencing suppressor activity, in contrast to the betasatellite-encoded βC1 and CLCuRaV-encoded C2, C4 and V2 proteins. The presence of alphasatellites maintained suppression of gene silencing in the youngest, actively growing tissue of CLCuRaV-betasatellite-infected plants. This is the first demonstration of a rolling-circle replication initiator protein with suppressor of gene silencing activity and provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus-betasatellite complexes.  相似文献   

17.
The complete genome sequence of a new monopartite begomovirus isolate SC-1 was obtained from sweet potato samples in Sichuan province, China. The viral genome consists of 2,764 nucleotides (nt) and encodes two open reading frames (ORFs) called AV1 and AV2 genes in the viral-sense strand and four ORFs (AC1–AC4) in the complementary-sense strand. Sequence comparisons revealed that it shared the highest level of nt sequence identity (81.2 %) with Sweet potato leaf curl Georgia virus (AF326775). Phylogenetic analysis showed that the SC-1 genome was in a separate clade from other 29 begomovirus isolates. Thus, the SC-1 isolate is a novel species according to the demarcation criteria of species in the genus Begomovirus, for which the name “Sweet potato leaf curl China Sichuan Virus” (SPLCCSV) is proposed. Recombination analysis suggests that SPLCCSV has sequences derived from recombination between Sweet potato leaf curl virus (SPLCV) isolate GZ01 (JX286653) and SPLCV isolate Merremia N4 (DQ644563).  相似文献   

18.
Pea (Pisum sativum) plants exhibiting leaf distortion, yellowing, stunted growth and reduction in leaf size from Rampur, Nepal were shown to be infected by a begomovirus in association with betasatellites and alphasatellites. The begomovirus associated with the disease showed only low levels of nucleotide sequence identity (<91%) to previously characterized begomoviruses. This finding indicates that the pea samples were infected with an as yet undescribed begomovirus for which the name Pea leaf distortion virus (PLDV) is proposed. Two species of betasatellite were identified in association with PLDV. One group of sequences had high (>78%) nucleotide sequence identity to isolates of Ludwigia leaf distortion betasatellite (LuLDB), and the second group had less than 78% to all other betasatellite sequences. This showed PLDV to be associated with either LuLDB or a previously undescribed betasatellite for which the name Pea leaf distortion betasatellite is proposed. Two types of alphasatellites were identified in the PLDV-infected pea plants. The first type showed high levels of sequence identity to Ageratum yellow vein alphasatellite, and the second type showed high levels of identity to isolates of Sida yellow vein China alphasatellite. These are the first begomovirus, betasatellites and alphasatellites isolated from pea.  相似文献   

19.
The complete genome sequence of a monopartite begomovirus isolate TY01 was obtained from diseased Pouzolzia zeylanica plants exhibiting golden mosaic symptoms in Baise, Guangxi Province, China. It consisted of 2723 nucleotides (nt) and encoded two ORFs (CP and AV2) in the virion-sense DNA and five ORFs (AC1-AC5) in the complementary-sense DNA. Compared with the DNA-A sequences of other begomoviruses, it has the highest (78.5 %) nucleotide sequence identity with ageratum yellow vein virus (AYVV) isolate AFSP6D from Thailand, which is less than the 89 % identity in the complete genome that has been defined as the threshold value for demarcation of species in the genus Begomovirus, family Geminiviridae. Phylogenetic analysis showed that TY01 was grouped in a separate clade from the other 28 begomovirus isolates. These results indicate that isolate TY01 is a member of a novel Begomovirus species, for which the name “Pouzolzia golden mosaic virus” (PGMV) is proposed.  相似文献   

20.
Das S  Ghosh R  Paul S  Roy A  Ghosh SK 《Archives of virology》2008,153(9):1791-1796
Yellow vein mosaic disease of mesta in northern India was found to be associated with a distinct begomovirus species. Except the AC1 gene, this begomovirus isolate shares low sequence identity with the Mesta yellow vein mosaic virus reported to be associated with a similar disease of mesta from eastern India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号