首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Contractions and overflow of tritium and ATP elicited by single electrical pulses or short pulse trains were studied in the guinea-pig isolated vas deferens preincubated with [3H]-noradrenaline. ATP was measured using the luciferase technique.A single pulse caused only a small contraction and minimal tritium and ATP overflow. In contrast, trains of 6 pulses elicited marked contractions as well as tritium and ATP overflow. In experiments with 6 pulses/100 Hz, prazosin 0.3 M reduced the contraction by 73 %, did not change the evoked overflow of tritium, and reduced the evoked overflow of ATP by 85%. Suramin 300 M reduced the contraction by 69% but changed neither the evoked overflow of tritium nor that of ATP. The combination of prazosin 0.3 gM and suramin 300 M abolished the contraction, did not change the evoked overflow of tritium, and reduced the evoked overflow of ATP by 70%. When 6 pulses were applied at frequencies of 1, 2, 10 or 100 Hz, all responses increased with frequency up to a maximum at 10 Hz, but contractions and the evoked overflow of ATP increased with frequency to a greater extent than the evoked overflow of tritium. A similar frequency overflow relationship was observed when the medium contained prazosin 0.3 M and suramin 300 M (and evoked ATP overflow was greatly reduced). Yohimbine 1 M did not affect the overflow of tritium evoked by 6 pulses/100 Hz but increased that evoked by 6 pulses/10 Hz.The results demonstrate an overflow of both noradrenaline and ATP in response to short pulse trains. As observed previously for prolonged pulse trains, the major part of the evoked overflow of ATP was derived from non-neural cells. The ATP overflow remaining during 1-adrenoceptor blockade by prazosin and P2-purinoceptor blockade by suramin is likely to reflect neural release of ATP. The results support the view that release of ATP increases with frequency to a greater extent than release of noradrenaline. The latency for the onset of prejunctional 2-autoinhibition in guinea-pig vas deferens is between 50 and 500 ms. Correspondence to: I. von Kügelgen at the above address  相似文献   

2.
The ATP-induced increase in tritium outflow from cultured chick sympathetic neurons prelabelled with [3H]-noradrenaline was investigated.Seven days-old dissociated cell cultures of embryonic paravertebral ganglia, loaded with [3H]-noradrenaline (0.05 M), were superfused in the presence of (+)-oxaprotiline and exposed to ATP, ATP-analogues, or 1,1-dimethyl-4-piperazinium (DMPP) for 2 min. ATP (3 LM-3 mM), 2-methylthio-ATP (3–100 M), as well as DMPP (10 and 100 M) induced a significant overflow of tritium. The EC50-value of ATP was 20 M. Both the ATP-induced and the DMPP-induced tritium overflow was Ca2+-dependent and sensitive to tetrodotoxin (0.3 M) and -conotoxin (0.1 M); in addition, it was inhibited by the 2-adrenoceptor agonist 5-bromo-6-(2-imidazoline-2-ylamino)-quinoxaline (UK-14,304; 1 M). The effects of ATP and DMPP were not additive. The ATP-induced as well as the DMPP-induced overflow of tritium was diminished by the P2-purinoceptor antagonists suramin (300 M) and reactive blue 2 (3 M); in all 4 cases, the inhibition amouted to approximately 40%. The tritium overflow induced by ATP or DMPP was almost abolished by the nicotinic receptor antagonist mecamylamine (10 M) and markedly inhibited by hexamethonium (100 M). Neither ATP nor electrical stimulation caused an overflow of tritium from cultures loaded with [3H]-choline.The results suggest that ATP at molar concentrations induces noradrenaline release from cultured chick sympathetic neurons via an action on a subclass of the nicotinic cholinoceptor.  相似文献   

3.
Summary Contractions, release of previously stored [3H]-noradrenaline (measured as overflow of total tritiated compounds) and release of ATP elicited by electrical field stimulation (210 pulses, 7 Hz) were studied in the superfused vas deferens of the guinea pig. Prazosin and suramin were used to suppress non-neural ATP release, and effects of bromoxidine and rauwolscine on the neural release thus isolated were examined.Electrical stimulation elicited reproducible contraction, tritium overflow and ATP overflow. Both prazosin (0.03–3 M) and suramin (30–300 M) reduced contractions as well as the evoked overflow of ATP. No visible contraction remained in 21 of 28 tissues exposed to prazosin 0.3 M combined with suramin 300 M. The evoked overflow of ATP under these conditions was about 17% of that observed in the absence of drugs. In the presence of prazosin 0.3 M and suramin 300 M, bromoxidine (0.01–1 M) decreased and rauwolscine (0.1–10 M) increased the evoked overflow of both tritium and ATP. Rauwolscine increased the evoked overflow of tritium to a significantly greater extent than the overflow of ATP.It is concluded that the overflow of ATP elicited by electrical (neural) stimulation in the presence of prazosin 0.3 M and suramin 300 M reflects purely neural release of ATP. This release of ATP, like the release of noradrenaline, is modulated through prejunctional 2-adrenoceptors. The 2-adrenoceptor modulation of the release of noradrenaline seems to be more marked than the modulation of the release of ATP. Correspondence to B. Driessen at the above address  相似文献   

4.
Summary Effects of ATP, adenosine and purinoceptor antagonists on field stimulation-evoked (3 Hz, 2 min) [3H]-noradrenaline overflow were investigated in the rat isolated iris.ATP and adenosine inhibited the evoked overflow of [3H]-noradrenaline. 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) shifted the concentration-response curve of ATP to the right in a concentration-dependent manner, but with a potency (–log KB = 7.88) much lower than expected for an A1 adenosine receptor. In the continuous presence of DPCPX, the ATP-induced prejunctional inhibition was unaffected by suramin (100 mol/l) and DIDS (4,4-diisothiocyanatostilbene-2,2-disulfonic acid, 50 mol/l) but was antagonized by the P2Y-receptor antagonist cibacron blue ( = reactive blue 2;30 and 100 mol/l, –log KB = 4.7)and ,-methylene-ATP (10 mol/l). Whereas the evoked [3H]-noradrenaline overflow was unaffected by suramin and DIDS, cibacron blue and ,-methylene-ATP caused a small and transient increase. Cibacron blue at 30 mol/l failed to antagonize the inhibition of evoked [3H]-noradrenaline overflow that adenosine produced in the absence of DPCPX. Basal [3H]-noradrenaline overflow was enhanced by cibacron blue, not changed by ,-methylene-ATP and DIDS, and decreased by suramin.The results show that exogenous ATP inhibits sympathetic neurotransmission in the rat iris via A1 and P2Y-like purinoceptors. The latter have a low apparent affinity for cibacron blue and probably are blocked by ,-methylene-ATP. Under the present conditions, endogenous purines exert a tonic inhibition not only via A1- but also via these P2Y-receptors. Correspondence to: H. Fuder at the above address  相似文献   

5.
Summary The effect of nicotine (1–10 M) and tacrine (9-amino-1,2,3,4-tetrahydroacridine; THA) on stimulation evoked release of [3H]acetylcholine from the rat brain slice preparation preincubated with [3H]choline was investigated.In these preparations, nicotine enhanced while tacrine inhibited evoked [3H]acetylcholine release. These effects were blocked by (+)tubocurarine (1 M) and atropine (0.1 M) respectively. In the presence of idazoxan (0.3 M) plus atropine (0.1 M), nicotine (3 M) continued to enhance evoked [3H]acetylcholine release while the inhibitory effect of tacrine (1 M) on evoked [3H]acetylcholine release was reversed to an enhancement. Under these circumstances the effects of both nicotine and tacrine were blocked by (+)tubocurarine (1 M).These findings demonstrate that tacrine can both inhibit or enhance [3H]acetylcholine release, most likely through its activity as a cholinesterase inhibitor. Under normal circumstances following tacrine the predominant effect of the elevated levels of acetylcholine will be activation of inhibitory presynaptic muscarine receptors on cholinergic nerves and an inhibition of evoked [3H]acetylcholine release. Under conditions where both presynaptic inhibitory muscarine and 2-adrenoceptors are blocked, the elevated levels of acetylcholine produced by tacrine will lead to the activation of facilitatory presynaptic nicotine cholinoceptors on cholinergic nerves and an enhancement of evoked [3H]acetylcholine release. Send offprint requests to R. Loiacono at the above address  相似文献   

6.
Summary Experiments were carried out in rabbit cerebrocortical slices in order to find out whether the attenuation by presynaptic 2-autoreceptors of effects mediated by presynaptic opioid - and adenosine A1-receptors requires activation of the 2-receptors. The slices were preincubated with 3H-noradrenaline and then superfused with medium containing desipramine 1 mol/l. They were stimulated electrically either with single pulses or with trains of 32 pulses at 1 Hz.The overflow of tritium elicited by a single pulse amounted to 0.21% of the tritium content of the tissue. It was Ca2+-dependent and tetrodotoxin-sensitive and not changed by rauwolscine 1 mol/l or yohimbine 0.3 mol/l. Ethylketocyclazocine (EK; 0.1–10 nmol/l) and R-(–)-N6-phenylisopropyladenosine (PIA; 1–1,000 nmol/1) potently inhibited the overflow evoked by a single pulse, and their effects were not changed by yohimbine. — The overflow of tritium elicited by trains of 32 pulses at 1 Hz amounted to 0.92% of the tritium content of the tissue and was increased approximately fourfold by yohimbine 0.3 mol/l. EK and PIA were less potent inhibitors than in the one pulse experiments. Yohimbine greatly enhanced the effects of EK and PIA. The enhancement was even more pronounced when the Ca2+ concentration in the medium was reduced in order to obtain a control tritium overflow similar to that evoked by 32 pulses in the absence of yohimbine.The results demonstrate that there is no 2-adrenergic autoinhibition when noradrenaline release is elicited by a single pulse. Under these conditions, the non-activated presynaptic 2-adrenoceptor does not interfere with presynaptic opioid - and adenosine A1-receptor mechanisms. It is only when the autoreceptor is activated by released noradrenaline that it attenuates neighbouring presynaptic receptor mechanisms, and this attenuation is removed by 2-adrenoceptor antagonists.Send offprint requests to N. Limberger at the above address  相似文献   

7.
The macrolide antibiotic bafilomycin A1, a selective inhibitor of the vesicular H+-transporting ATPase, increased irreversibly the overflow of 3,4-dihydroxyphenylethylene glycol from isolated segments of the rat tail artery. Maximum increase in the overflow was produced by exposing the tissues to 0.5 mol/l bafilomycin As. Unless the Na-dependent neuronal amine carrier (uptake1) was inhibited, overflow of noradrenaline was below the detection limit. The bafilomycin As-induced increase in overflow of noradrenaline from tissues with inhibited uptakes was accompanied by a significant decrease in the (noradrenaline overflow:glycol overflow) ratio. Unlike reserpine and tetrabenazine, the antibiotic did not alter the (noradrenaline overflow:glycol overflow) ratio in arteries incubated in Ca2+-free, 120 mmol/1 K+ medium.Bafilomycin A1 increased overflow of noradrenaline and normetanephrine from tissues with inhibited monoamine oxidase. Inhibitors of extraneuronal catecholamine transport (uptake2), corticosterone, 3-O-methylisoprenaline and 1,1-diethyl-2,2-cyanine, suppressed overflow of normetanephrine while increasing that of noradrenaline. Further increase in overflow of noradrenaline was produced by concomitant inhibition of uptake1. A similar effect was observed in tissues previously exposed to phenoxybenzamine. After exposure to bafilomycin As, tyramine and (+) amphetamine (10 mol/l) were equally effective in increasing overflow of noradrenaline from tissues with inhibited monoamine oxidase into corticosterone-containing medium.Bafilomycin A1 promotes leakage of noradrenaline from storage vesicles without affecting its conversion to 3,4-dihydroxyphenylethylene glycol. When uptake1 is inhibited, axoplasmic noradrenaline can be translocated effectively across the axonal membrane by the diffusional efflux. When uptakes is inhibited, spontaneous quantal release contributes significantly to overflow of noradrenaline into normal media. The diffusional efflux of noradrenaline is unaffected by inhibitors of uptake2. Even at highly elevated concentrations of axoplasmic noradrenaline, the uptake1-mediated influx of noradrenaline exceeds the uptake1-mediated efflux. Enhancement of noradrenaline overflow from tissues with inhibited monoamine oxidase by indirectly acting sympathomimetic amines depends primarily on their ability to induce leakage of the transmitter from storage vesicles rather than its translocation across the axonal membrane.  相似文献   

8.
Summary Brain cortex slices were preincubated with 3H-noradrenaline and superfused with physiological salt solution containing desipramine. We studied the inhibition of the electrically evoked tritium overflow caused by histamine in the presence of -adrenoceptor ligands (mouse and rat brain cortex), and the inhibition caused by talipexole (the former B-HT 920) in the presence of H3-receptor ligands (mouse brain cortex).In mouse brain cortex slices, the inhibitory effect of histamine on the tritium overflow evoked by 36 pulses, 0.3 Hz was not changed by the 1-adrenoceptor antagonist prazosin, but increased by the 2-adrenoceptor antagonist rauwolscine. When the current strength or the duration of electrical pulses was reduced to compensate for the increase in evoked tritium overflow produced by rauwolscine, the latter still. enhanced the effect of histamine. The histamine-induced inhibition of tritium overflow evoked by 360 pulses, 3 Hz was not affected by the 1-adrenoceptor agonist phenylephrine but attenuated by the 2-adrenoceptor- agonist talipexole. Finally, the inhibition by histamine of the tritium overflow evoked by 3 pulses, 100 Hz was attenuated by talipexole but not affected by rauwolscine. Conversely,. the inhibitory effect of talipexole on tritium overflow elicited by 360 pulses, 3 Hz was slightly attenuated by the H3-receptor agonist R-(–)--methylhistamine but not, affected by the H3- receptor antagonist thioperamide. In rat brain cortex slices, histamine only tended to inhibit tritium overflow evoked by 360 pulses, 3 Hz, both in the absence of -adrenoceptor antagonists and in the presence of prazosin. However, histamine markedly inhibited the evoked overflow in the presence of rauwolscine. Again, enhancement of the histamine-induced inhibition also occurred when the current strength or the duration of pulses was reduced in order to compensate for the increase in evoked tritium overflow produced by rauwolscine.The results suggest that the 2-autoreceptors and the H3-heteroreceptors at the noradrenergic nerve endings in the brain of mouse and rat interact with each other. Activation of the 2-autoreceptors decreases, whereas blockade of the activated (but not of the non-activated) 2-autoreceptors increases, the inhibitory effect of histamine. Activation of the H3-heteroreceptors slightly decreases, whereas blockade of the H3-receptors fails to affect, the inhibitory effect of talipexole.Send offprint requests to E. Schlicker at the above address  相似文献   

9.
Summary Rat hippocampal synaptosomes preloaded with [3H]serotonin and maintained in a superfusion apparatus were exposed for 3 min to d-fenfluramine or fluoxetine. Both drugs evoked a tritium overflow which was reserpine-sensitive requiring the presence of intact synaptic vesicles. However the two drugs displayed different characteristics: 1) the overflow was immediate with dfenfluramine whereas the releasing activity of fluoxetine showed a delay of about 2 min; 2) d-fenfluramine-induced overflow was already apparent at 0.15 mol/l whereas the minimal effective concentration of fluoxetine was 2.5 mol/l. Their concentration-effect curves were differently shaped, the effect of d-fenfluramine being saturable at 5–20 mol/l (EC50 about 1 gmol/l) while no saturation was observed with fluoxetine up to 10 mol/l; 3) only 1907o of the tritium overflow evoked by fluoxetine (2.5–10 mol/l) consisted of true [3H]serotonin, compared with 7001o when 0.5 mol/l d-fenfluramine was used; 4) the releasing action of 0.5 mol/l d-fenfluramine was completely Ca++-dependent, while at higher dfenfluramine concentrations the Ca++-independent overflow became more important. The fluoxetine induced overflow was mainly. (70010) Ca++-independent; 5) the releasing acitvity of d-fenfluramine was mainly (80%) blocked by the serotonin uptake blockers indalpine, midalcipram and also fluoxetine whereas fluoxetine-induced overflow was insensitive to inhibition of the serotonin carrier.In conclusion, the releasing activity of d-fenfluramine is already present at a very low concentration (0.5 mol/l) and at this concentration its mechanism of action was Ca++-dependent, together with the requirement of a functional serotonin carrier. These data therefore do not support the hypothesis of a simple. displacement of 5-HT from its storage vesicles but suggest an exocytotic release possibly triggered by interaction of d-fenfluramine with intracellular receptors. A direct releasing activity is also shown for fluoxetine, very marked at 5–10 mol/l; such effect is different from that of d-fenfluramine and is probably due to the overflow of 5-hydroxyindoleacetic acid, formed in the synaptosomes after the fluoxetine-induced displacement of serotonin from its storage vesicles. The active concentrations of fluoxetine on serotonin release are compatible with those found in rat brain at doses inducing an anorectic activity. Send offprint requests to M. Gobbi at the above address  相似文献   

10.
Summary The human saphenous vein was used to examine whether presynaptic histamine receptors can modulate noradrenaline release and, if so, to determine their pharmacological characteristics. Strips of this blood vessel were incubated with [3H]noradrenaline and subsequently superfused with physiological salt solution containing desipramine and corticosterone. Electrically (2 Hz) evoked 3H overflow was inhibited by histamine and the H3 receptor agonist R-(–)--methylhistamine. Histamine-induced inhibition of electrically evoked tritium overflow was not affected by 2-adrenoceptor blockade by rauwolscine. S-(+)--methylhistamine (up to 10 mol/l) as well as the histamine H1 and H2 receptor agonists 2-(2-thiazolyl)ethylamine (up to 3 mol/l) and dimaprit (up to 30 mol/l), respectively, were ineffective. The selective histamine H3 receptor antagonist thioperamide abolished the inhibitory effect of histamine. The histamine H2 and H1 receptor antagonists ranitidine and pheniramine, respectively, did not affect the histamine-induced inhibition of evoked tritium overflow. The present results are compatible with the suggestion that the sympathetic nerves of the human saphenous vein are endowed with inhibitory presynaptic histamine receptors of the H3 class. Send offprint requests to M. Gothert at the above address  相似文献   

11.
Summary In superfused rat hypothalamic slices prelabelled with [3H]-noradrenaline, the 2-adrenoceptor agonist UK 14304 inhibited in a concentration-dependent manner the electrically-evoked release of tritium. This inhibition was antagonized by the 2-adrenoceptor blocking agent idazoxan, which by itself increased the electrically-evoked tritium overflow. Exposure to forskolin, an adenylate cyclase activator, increased the electrically-evoked release of [3H]-noradrenaline. In the presence of forskolin (1 mol/l), both the inhibitory effect of UK 14304 and the increasing effect of idazoxan on the electrically-evoked release of [3H]-noradrenaline were less pronounced than in the absence of the adenylate cyclase activator. Exposure to forskolin and to the phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine shifted to the right the concentration-effect curve for UK 14304 in a similar manner as that observed in the presence of forskolin alone. Exposure to phorbol-12,13-dibutyrate (0.01–10 mol/l), a drug which activates protein kinase C, increased the electrically-evoked release of [3H]-noradrenaline. In the presence of phorbol-12,13-dibutyrate (0.1 and 1 mol/l), the concentration effect curve for UK 14304 on tritium overflow was significantly shifted to the right. The increasing effect of idazoxan on tritium overflow was significantly less pronounced in the presence of 1 mol/l phorbol-12,13-dibutyrate.In superfused rat hypothalamic slices prelabelled with [3H]-5-hydroxytryptamine, the 2-adrenoceptor agonist UK 14304 significantly inhibited the electrically-evoked release of tritium. Exposure to forskolin increased in a concentration-dependent manner [3H]-5-hydroxytryptamine overflow, but did not modify the UK 14304-mediated inhibition. Exposure to 3-isobutyl-1-methylxanthine enhanced the electrically-evoked release of [3H]-5-hydroxytryptamine. In the presence of both forskolin (1 mol/l) and 3-isobutyl-l-methylxanthine (1 mmol/l), the concentration-response curve for UK 14304 was significantly shifted to the right. Exposure to phorbol-12,13-dibutyrate (0.01–10 mol/l) enhanced in a concentration-dependent manner the electrically-evoked overflow of [3H]-5-hydroxytryptamine. In the presence of phorbol-12,13-dibutyrate (0.1 and 1 mol/l), UK 14304 was significantly less potent to inhibit tritium release than in the absence of the protein kinase C activator.It is concluded that both cyclic AMP and phosphoinositide turnover are involved in the modulation of noradrenaline and 5-hydroxytryptamine release by presynaptic 2-adrenoceptors in rat hypothalamic slices. However, these interactions do not represent definitive proof for a cause-effect relationship for the second messengers mediating the 2-adrenoceptor induced inhibition of transmitter release either as autoreceptor or as heteroreceptor.Send offprint requests to S. Z. Langer at the above address  相似文献   

12.
Release of endogenous ATP elicited by electrical (neural) stimulation and exogenous agonists was studied in the rat isolated vas deferens. The aims were to dissect neural and postjunctional contributions to the nerve activity-evoked overflow of ATP and to clarify the role of transmitter receptors and calcium in postjunctional ATP release.In tissues preincubated with [3H]-noradrenaline, electrical stimulation (100 pulses/10 Hz) elicited contraction and an overflow of tritium and ATP. Contractions as well as ATP overflow were reduced by prazosin 0.3 M and even more so by prazosin 0.3 M combined with suramin 300 M. They were also reduced by nifedipine 10 M and even more so by nifedipine 10 M combined with ryanodine 20 M (the additional effect of ryanodine on ATP overflow was not significant). In tissues not pretreated with [3H]-noradrenaline, exogenous noradrenaline 10 M and ,-methylene ATP 10 M elicited contraction and an overflow of ATP. Responses to noradrenaline were blocked by prazosin 0.3 M but not suramin 300 M and were greatly reduced by nifedipine 10 M and in Ca2+-free medium. Responses to ,-methylene ATP were blocked by suramin 300 M but not prazosin 0.3 M were reduced by nifedipine 10 M (effect on ATP overflow not significant) and were reduced even more in Ca2+-free medium. Neuropeptide Y 0.3 M caused only very small contraction and ATP overflow. The electrically as well as the agonist-evoked ATP overflow correlated well with the contraction responses except in experiments with suramin which retarded the removal, by vas deferens tissue, of ATP from the medium.Itsis concluded that the overflow of ATP from rat vas deferens elicited by electrical (neural) stimulation is at least 90% postjunctional, presumably smooth muscle, in origin. ATP is released from postjunctional cells as a consequence of both 1-adrenoceptor and P2-purinoceptor activation. Ca2+ is a second messenger in the postjunctional ATP release response; its major part enters through L-type channels. A purely neural overflow of ATP was not isolated under the conditions of the experiments. Correspondence to: R. Bültmann at the above address  相似文献   

13.
Summary Spirally cut strips of human saphenous veins preincubated with 3H-noradrenaline were superfused in the presence of corticosterone and, unless stated otherwise, of cocaine or desipramine. Tritium overflow was stimulated electrically (2 Hz). Adrenaline (in the presence of rauwolscine), isoprenaline and the preferential 2-adrenoceptor agonist procaterol concentration-dependently increased the electrically evoked tritium overflow. Prenalterol, a -adrenoceptor agonist with moderate preference for 1-adrenoceptors, was ineffective. The concentration-response curve of isoprenaline was shifted to the right by the nonselective -adrenoceptor antagonist propranolol and by the preferential 2-adrenoceptor antagonist ICI 118,551, but was not affected by the 1-selective antagonist atenolol. In experiments on strips preexposed to adrenaline 10 nmol/l (i. e. a concentration higher than that which normally occurs in vivo) for 32 min in the absence of cocaine or desipramine, the electrically evoked 3H overflow was not affected 12 and 44 min after withdrawal of adrenaline, irrespective of whether propranolol was absent or present in the superfusion fluid. — In veins incubated with 3H-adrenaline, a considerable amount of the radioactivity was accumulated. During subsequent superfusion with 3H-adrenaline-free solution, electrical stimulation induced tritium overflow in a tetrodotoxin-sensitive manner. Propranolol failed to modify the evoked tritium overflow. — It is concluded that the sympathetic nerve fibres of the human saphenous vein are endowed with facilitatory presynaptic 2-adrenoceptors. These receptors do not seem to play a substantial role in a local adrenaline (previously taken up)-mediated positive feedback loop regulating noradrenergic transmission, at least under the present in vitro conditions.This study was supported by a grant of the Deutsche Forschungsgemeinschaft Send offprint requests to M. Göthert  相似文献   

14.
The effect of Evans blue on nucleotide breakdown, nucleotide-evoked contractions and electrically evoked contractions, overflow of ATP and overflow of tritium (after labelling with [3H]-noradrenaline) was studied in rat vas deferens. Pieces of vas deferens degraded 83 to 85% of added ATP, ADP and 2-methylthio ATP (all 100 M) over 30 min. Evans blue (100 M) reduced this degradation to 22 to 26%. Nucleotides elicited contraction with potency declining in the order , \-methylene ATP > 2-methylthio ATP > ATP > ADP. Evans blue (100 M) shifted the concentration-response curve of , \-methylene ATP to the right and increased the maximum. Concentration-response curves of ATP, ADP and 2-methylthio ATP, in contrast, were shifted to the left and responses were much potentiated. In the presence of Evans blue, the rank order of potency was ATP > 2-methylthio ATP > , \-methylene ATP > ADP. Electrical field stimulation (100 pulses at 10 Hz) elicited contraction and an overflow of tritium and ATP. Evans blue (100 M) did not alter the contraction and the evoked overflow of tritium but increased 24-fold the evoked overflow of ATP. The results indicate that Evans blue may serve as an — albeit impure — ecto-nucleotidase inhibitor in functional experiments. Such experiments demonstrate that the low potency of ATP (and also ADP and 2-methylthio ATP) in eliciting contraction, and the small size of the overflow of ATP upon sympathetic nerve stimulation, are due to rapid breakdown.  相似文献   

15.
Effects of isoprenaline on contraction, release of noradrenaline and release of ATP elicited by electrical field stimulation (210 pulses, 7 Hz) as well as on contractions elicited by exogenous noradrenaline and ATP were studied in the isolated vas deferens of the guinea pig. Release of noradrenaline was assessed as overflow of total tritium after preincubation with [3H]-noradrenaline. ATP was measured by means of the luciferin-luciferase technique.In [3H]-noradrenaline-pretreated tissues, electrical stimulation elicited an overflow of tritium and ATP and a biphasic contraction. Isoprenaline (1–100 nM) reduced the contraction, mainly phase I, and enhanced the evoked overflow of tritium; evoked overflow of ATP was not changed significantly. No, or almost no, contraction remained in [3H]-noradrenaline-pre-treated tissues exposed to both prazosin (0.3 M) and suramin (300 M), and the evoked overflow of ATP was reduced by about 82%. Under these conditions, isoprenaline (1–100 nM) again enhanced the evoked overflow of tritium, but it now decreased the evoked overflow of ATP. Propranolol (1 M), when added on top of prazosin and suramin, prevented the effects of isoprenaline (1–100 nM). In some tissues not pretreated with [3H]-noradrenaline, purinergic and adrenergic components of the neurogenic contraction (again to 210 pulses, 7 Hz) were isolated by exposure to prazosin (0.3 M) and suramin (300 M), respectively. Isoprenaline (1–100 nM) decreased the isolated purinergic component but did not change significantly the isolated adrenergic component. Contractions elicited by ATP (1000 M) were not changed and contractions elicited by noradrenaline (100 M) were slightly increased by isoprenaline (1–100 nM). Isoprenaline (100 nM) did not change the degradation of ATP (100 M) by pieces of the vas deferens.It is concluded that, in the guinea-pig vas deferens, activation of prejunctional -adrenoceptors modulates the neural release of noradrenaline and ATP in opposite directions: release of noradrenaline is enhanced, whereas release of ATP is decreased.  相似文献   

16.
Summary Segments of the rabbit ear artery were preincubated with (–)-3H-noradrenaline and then perfused/superfused and stimulated by transmural electrical pulses. The outflow of 3H-noradrenaline and total tritium was determined.In the first series of experiments, stimulation periods of approximately constant length (50 s) were used (cocaine 5 M present). Thirteen pulses (0.25 Hz) elicited an overflow of 3H-noradrenaline of 0.024% of tissue tritium; 26 pulses (0.5 Hz) elicited an overflow of 0.059%, and 52 pulses (1 Hz) of 0.166%. Rauwolscine 1 M did not change the overflow evoked by 13 pulses, increased that evoked by 26 pulses and increased most markedly that evoked by 52 pulses. Phentolamine 1 M decreased the overflow at 13, did not change the overflow at 26, and increased the overflow at 52 pulses. Corynanthine 1 M decreased the overflow at 13, and did not change the overflow at 26 and 52 pulses. The effect of tetraethylammonium (TEA) 100 M was opposite to that of rauwolscine; it increased most markedly the overflow evoked by 13 pulses, increased less that evoked by 26 pulses, and least the overflow at 52 pulses.In the second series of experiments, the frequency of stimulation was kept constant (2 Hz). In the absence of cocaine, 10 pulses elicited an overflow of 3H-noradrenaline of 0.023% of tissue tritium; 20 pulses elicited an overflow of 0.043%, and 40 pulses of 0.089%. Phentolamine 1 M did not change the overflow evoked by 10 pulses, increased that evoked by 20 pulses, and increased most markedly that evoked by 40 pulses. TEA 100 M increased the evoked overflow at all pulse numbers. Similar results were obtained in the presence of cocaine 5 M.The results demonstrate that the enhancement by -adrenoceptor antagonists of the release of noradrenaline depends on the biophase concentration of noradrenaline. Under the present conditions, graded increases in biophase noradrenaline concentration led to graded increases in the effect of the antagonists. A second prerequisite for the release-enhancing effect appears to be a sufficient length of the pulse train. Under the present conditions, graded increases in train length up to about 20s led to graded increases in the effect of the antagonists, even though the average biophase concentration of noradrenaline did not change with the pulse train length. This pattern of effects of the -antagonists is not shared by at least one other release-enhancing drug, namely TEA.  相似文献   

17.
The effects of ATP and analogues on the release of previously incorporated 3H-noradrenaline were studied in cultured sympathetic neurons derived from superior cervical ganglia of neonatal rats. Electrical field stimulation (40 mA at 3 Hz) of the neurons for 10 s markedly enhanced the outflow of tritium. ATP applied for 5 s to 2 min at concentrations of 0.01 to 1 mmol/l caused a time- and concentration-dependent overflow with half maximal effects at about 10 s and 100 mol/l, respectively. 2-Methylthio-ATP was equipotent to ATP in inducing 3H-overflow. ADP (100 mol/l), when applied for 2 min, also caused a small 3H-overflow, but , -methylene-ATP (100 mol/l), AMP (100 mol/l), R(–)N6-(2-phenylsiopropyl)-adenosine (R(–)-PIA; 10 mol/l) and 5-N-ethylcarboxamidoadenosine (NECA; 1 mol/l) did not. The 3H-overflow induced by 10 s applications of 100 mol/l ATP was abolished by suramin (100 mol/l) and reduced by about 70% by reactive blue 2 (3 mol/l). Electrically evoked overflow, in contrast, was slightly enhanced by suramin, but not modified by reactive blue 2. Xanthine amine congener (10 mol/l) and hexamethonium (10 mol/l) did not alter ATP-evoked release. Removal of extracellular Ca2+ from the medium reduced ATP- and electrically induced overflow by about 95%. Tetrodotoxin (1 mol/l) abolished electrically evoked 3H-overflow but inhibited ATP-induced overflow by only 70%. The 2-adrenoceptor agonist UK 14,304 at a concentration of 1 mol/l diminished both electrically and ATP-evoked tritium overflow by approximately 70%. These results indicate that activation of P2-purinoceptors stimulates noradrenaline release from rat sympathetic neurons. The release resembles electrically induced transmitter release, but additional mechanisms may contribute. Correspondence to: S. Boehm at the above address  相似文献   

18.
Summary Possible antagonist effects of phentolamine at presynaptic serotonin autoreceptors were studied in slices of the occipito-parietal cortices of the rabbit and the rat. The slices were preincubated with 3H-serotonin and then superfused and stimulated electrically with single pulses or pulse trains. Nitroquipazine 1 mol/l, a compound that inhibits the high affinity neuronal uptake of serotonin, was present in the superfusion medium in all one pulse-experiments as well as in experiments in which the effect of unlabelled serotonin was examined.In rabbit cortical slices, unlabelled serotonin reduced the single pulse-evoked overflow of tritium. Its concentrationresponse curve was not changed by the selective 2-adrenoceptor antagonist idazoxan 1 mol/l but was shifted to the right by phentolamine 1 and 10 mol/l. Phentolamine 10 mol/l also shifted to the right the concentration-inhibition curve of the selective 5-HT1-receptor agonist 5-carboxamidotryptamine. When the slices were stimulated by trains of 30 pulses at 3 Hz, phentolamine 1 and 10 mol/l but not 0.1 mol/l increased the evoked overflow of tritium, the maximal increase amounting to 178%; its effect was enhanced in the presence of nitroquipazine 1 mol/l plus idazoxan 10 mol/l (a drug combination that, when given alone, slightly increased the evoked overflow of tritium). The serotonin receptor antagonist metitepin at concentrations of 0.01–1 mol/l also increased the overflow of tritium elicited by 30 pulses/3 Hz, the maximal increase amounting to 280%; its effect was potentiated in the presence of nitroquipazine 1 mol/l plus idazoxan 10 mol/l but was abolished or almost abolished in the presence of nitroquipazine 1 mol/l plus phentolamine 10 mol/l (a drug combination that, given alone, greatly increased the evoked overflow of tritium). When slices were stimulated by trains of 360 pulses at 3 Hz, there was no apparent antagonism of phentolamine 10 mol/l against the inhibitory effect of unlabelled serotonin. In rat brain cortex slices, unlabelled serotonin reduced the overflow of tritium elicited by 4 pulses delivered at 100 Hz. Again, phentolamine 10 mol/l shifted the concentration-response curve to the right.It is concluded that phentolamine blocks presynaptic serotonin autoreceptors in rabbit and rat brain cortex with pA2 values of 6.44 and 5.95, respectively. Previous failures to detect the antagonistic effect against exogenous agonists were probably due to stimulation conditions that led to marked endogenous autoinhibition of serotonin release. At least the major part of the increase by phentolamine of the release of serotonin is due to autoreceptor blockade rather than blockade of the presynaptic a2-adrenoceptors at the cortical serotoninergic axons.Send offprint requests to N. Limberger at the above address  相似文献   

19.
Summary Rat brain cortex slices and synaptosomes preincubated with [3H]noradrenaline were used to investigate whether the NMDA-evoked noradrenaline release is modulated by agonists or antagonists at presynaptic 2-adrenoceptors.In experiments on slices, noradrenaline and the preferential 2-adrenoceptor agonists talipexole (former B-HT 920) and clonidine inhibited the NMDA evoked tritium overflow whereas the selective 1-adrenoceptor agonists cirazoline and methoxamine were ineffective. The 2-adrenoceptor antagonists rauwolscine and idazoxan facilitated the NMDA-evoked tritium overflow whereas the preferential 1-adrenoceptor antagonist prazosin was ineffective. The concentration-response curve of talipexole for its inhibitory effect on NMDA-evoked overflow was shifted to the right by idazoxan (apparent pA2 = 7.5). The EC50 of NMDA (97 mol/l) for its stimulating effect on tritium overflow was not substantially changed by blockade of 2-autoreceptors with 1 mol/l rauwolscine (EC50 of NMDA in the presence of the 2-adrenoceptor antagonist, 155 mol/l), but the maximal overflow of tritium was increased 2.5 fold by this rauwolscine concentration. In experiments on synaptosomes, talipexole and noradrenaline inhibited the NMDA-evoked tritium overflow. The inhibitory effect of talipexole was abolished by idazoxan which, given alone, was ineffective, as was prazosin. Talipexole did also not produce an inhibition when tritium overflow was evoked by NMDA in the presence of -conotoxin GVIA 0.1 mol/l; the latter, by itself, decreased the response to NMDA by about 55%. It is concluded that the NMDA-evoked noradrenaline release in the cerebral cortex is modulated via presynaptic 2-adrenoceptors on the noradrenergic neurones. Stimulation of these autoreceptors in slices by endogenous noradrenaline does not result in a decreased potency of NMDA, but in a decreased maximum effect, in stimulating noradrenaline release. The inhibitory effect of 2-adrenoceptor agonists on the NMDA-evoked release is at least partially due to a functional interaction between the NMDA receptors and 2-autoreceptors at the level of the same varicosities. The results obtained with -conotoxin GVIA suggest that Ca2+ influx via the N-type voltage-sensitive calcium channel (VSCC) occurs in response to NMDA receptor stimulation and contributes substantially to the induction of NMDA-evoked noradrenaline release. The inhibitory effect of 2-adrenoceptor stimulation on this release appears to be ultimately due to an inhibition of the influx of Ca2+ via the N-type VSCC. Correspondence to: M. Göthert at the above address  相似文献   

20.
Summary The effects of three different opioid agonists on contractions and [3H]-acetylcholine (ACh) release evoked by 5-hydroxytryptamine3 (5-HT3) and neurokinin-3 (NK-3) receptor activation were examined in the guinea-pig ileum longitudinal muscle-myenteric plexus strip (LMMP) preparation. The selective mu ()-opioid receptor agonist (d-Ala2,NMe-Phe4,Gly-ol]-enkephalin) (DAMGO; 1 nM–100 nM) and the selective kappa ()-opioid receptor agonist U50488 (10 nM -1 M) inhibited contractile responses to 5-HT and to the selective NK-3 receptor agonist senktide, producing a concentration-related progressive flattening of their concentration-response curves. IC50 estimates for DAMGO and U50488 were somewhat higher for inhibition of 5-HT-evoked as compared to senktide-evoked contractions, and overall lay in the range 6 nM – 51 nM. The selective delta ()-opioid receptor agonist [d-Pen2,5]-enkephalin (DPDPE) inhibited contractile responses only at the highest concentration used (1 M). 3H-overflow from LMMP preparations preincubated with [3H]-choline was measured as an indicator of [3H]-ACh release. DAMGO (1 nM –100 nM) and U50488 (10 nM -1 M) inhibited the increases in release of [3H]-ACh evoked by 5-HT (10 M) and by senktide (10 nM) in a concentration-dependant manner. IC50 estimates for DAMGO and U50488 were not significantly different for inhibition of 5-HT as compared to senktide-evoked increases in [3H]-ACh release and lay in the range 6 nM –23 nM. DPDPE again only inhibited these responses at the maximum concentration used (1 M). The inhibitory effects of DAMGO, U50488 and DPDPE on contractions and [3H]-ACh release evoked by 5-HT and senktide were completely reversed by naloxone (10 M).These results show that ACh release in the guinea-pig ileum evoked by 5-HT and senktide can be modulated to a similar extent by the opioid agonists DAMGO and U50488, but not by DPDPE. This suggests that the pathways of excitation for 5-HT3 and NK-3 receptors converge at some level susceptible to opioid inhibition, which may be mediated by - and -, but not -, opioid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号