首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Adenosine agonists cause a marked stimulation in cyclic AMP accumulation in whole human retinal pigment epithelial (RPE) cells in the presence of adenosine deaminase and papaverine, a phosphodiesterase inhibitor. N-Ethylcarboxamidoadenosine (NECA) stimulates cyclic AMP accumulation 16.1-fold above basal with an EC50 of 2.5 x 10(-7) M. It is also an effective (1.9-fold) stimulator of adenylate cyclase activity in RPE membrane preparations and a modest (1.22-fold) stimulator in the presence of forskolin in RPE cell membranes prepared from freshly isolated porcine RPE. N6-Cyclopentyladenosine (CPA) and N6-phenylisopropyladenosine (PIA) also increase cyclic AMP levels with EC50s of 4.9 x 10(6) M (8.9-fold above basal) and 3.5 x 10(-6) M (8.0-fold above basal) respectively. This potency order (NECA greater than PIA greater than CPA) is typical of A2-adenosine receptors. The relatively A1-selective agonists 10(-7) M indicating that RPE cells do not have A1-receptors which inhibit adenylate cyclase. Three adenosine receptor antagonists, BW-A1433U, 8-cyclopentyltheophylline and 8-sulfophenyltheophylline, blocked the NECA-induced stimulation of cyclic AMP accumulation with IC50s of 0.36 microM, 1.5 microM, and 75 microM respectively. Since alteration of cAMP levels has been demonstrated to affect several RPE functions, including cell migration, resorption of subretinal fluid, and phagocytosis, adenosine may play a significant regulatory role in RPE.  相似文献   

2.
The effects of chronic lithium treatment on adenylate cyclase activity in intact rat brain were examined using in vivo microdialysis. Basal extracellular cyclic adenosine monophosphate (AMP) increased in a dose-dependent manner after norepinephrine was added to the perfusate. Chronic lithium treatment increased basal brain extracellular fluid cyclic AMP levels, while decreasing the magnitude of the cyclic AMP response to stimulation with 100 microM norepinephrine.  相似文献   

3.
We have studied the interaction between P1 and P2 purinoceptors in purified type-1 astrocyte cultures from postnatal days 7-8 rat cerebella using single cell microfluorimetry with fura-2. The stimulation of astrocytes with ATP elicits rapid [Ca2+]i transients showing an EC50 value of 7.9 +/- 0.3 microM. Costimulation of type-1 astrocytes with adenosine and ineffective ATP concentrations (0.1 or 1 microM) evoked [Ca2+]i transients that correspond to 60% of the maximal ATP response. NECA (5'-N-ethylcarboxamidoadenosine) was the only agonist that mimicked the adenosine effect and showed an EC50 value of 0.17 +/- 0.01 microM. This value was identical to that obtained for the cAMP production stimulation, indicating that A2B receptors coupled to adenylate cyclase activation were involved. The presence of A2B adenosine receptors was also confirmed by immocytochemistry experiments. When astrocytes were costimulated with isoproterenol and ineffective ATP concentrations similar [Ca2+]i transients were observed. The treatment of astrocytes with cholera toxin potentiated ATP calcium signals, lowering the EC50 value for ATP to 1.5 +/- 0.2 microM. However, the pretreatment of cells with forskolin or a permeable cAMP analogue had no effect on ATP calcium responses. These results indicated that the potentiation mechanism was elicited before the adenylate cyclase activation. We could conclude that in type-1 astrocytes, the activation of A2B adenosine receptors or other signals positively coupled to adenylate cyclase stimulation strongly potentiate metabotropic calcium responses to ATP. The potentiation was parallel but independent on cAMP accumulation suggesting the involvement of beta gamma subunits released after Gs stimulation.  相似文献   

4.
The effects of cyclic AMP on the rise in cytosolic free calcium concentration, [Ca2+]i, after stimulation with 15 mM K+ in rat brain synaptosomes were investigated. The fluorescent chelating agent Quin-2 was employed to monitor alterations of K+-evoked [Ca2+]i. Under normoxic conditions, clonidine (1, 10 microM), an alpha 2-adrenoceptor agonist, decreased the 15 mM K+-evoked [Ca2+]i. Although yohimbine (1, 10 microM), an alpha 2-adrenoceptor antagonist, had little or no effect on K+-evoked [Ca2+]i, the inhibitory effects of clonidine were blocked by yohimbine. 8-Bromo cyclic AMP, a cyclic AMP analogue, (50-500 microM), increased K+-evoked [Ca2+]i in a dose-dependent manner. The addition of cyclic AMP analogues subsequent to clonidine treatment reversed the clonidine-induced suppression of K+-evoked [Ca2+]i. On the other hand, under hypoxic conditions, K+-evoked [Ca2+]i was reduced by about 50-60%. 8-Bromo cyclic AMP and the adenylate cyclase activators, yohimbine (1-10 microM) and isoproterenol, a beta-adrenoceptor agonist, (0.1-10 microM), transiently reversed the reduction of the K+-evoked [Ca2+]i caused by hypoxia. These results indicate that the activation of alpha 2-adrenoceptor produces a rapid, sustained decrease in [Ca2+]i which may be due to a decrease in the levels of intracellular cyclic AMP. In addition, the increase in cellular levels of cyclic AMP reversed the reduction of the Ca2+ response to high K+ stimulation caused by hypoxia. If this is so, there is the possibility that increased cyclic AMP might improve the hypoxic damage.  相似文献   

5.
[3H]SCH 23390 bound with high affinity (Kd = 0.6 nM) and in a saturable manner (Bmax = 130 fmol/mg protein) to membrane preparations of the chick optic lobe. Pharmacological experiments, using several dopaminergic ligands, revealed that [3H]SCH 23390 bound stereospecifically to dopaminergic receptors of the D1 type in this tissue. Other experiments revealed that dopamine was able to induce cyclic AMP accumulation in the optic lobe (ED50 = 3 microM), an effect that was blocked by fluphenazine, a potent D1 antagonist (IC50 = 1.8 microM). The developmental profile of tissue dopamine-dependent cyclic AMP accumulation, however, was quite different from the differentiation pattern of [3H]SCH 23390 specific binding sites. While [3H]SCH 23390 binding sites increased 4-fold after the 12th embryonic day (E12), dopamine-dependent cyclic AMP accumulation was maximal in earlier stages, decreasing progressively after E10. In tissues from embryos at E16 or older, no difference was observed between basal and dopamine-stimulated levels of cyclic AMP. These data suggest that D1 receptors are coupled to adenylate cyclase in a limited period of the development of the optic lobe and that D1 receptors not coupled to the enzyme can be a common feature in the CNS.  相似文献   

6.
Catecholamines, such as norepinephrine (NE), cause a field potential suppression through alpha-2 adrenergic receptors in thin sections of the bed nucleus of the stria terminalis. Phosphodiesterase inhibitors or cyclic AMP (cAMP) analogues attenuate the NE-induced suppression. These results suggest that the NE-induced suppression is mediated by adenylate cyclase inhibition and a resultant decrease of intracellular cAMP content.  相似文献   

7.
The molluscan neuropeptide FMRF-amide (10 to 50 microM) decreases the duration of the Ca2+-dependent action potential recorded in the cell body of identified neurons of the snail Helix aspersa (cells D3 and E2). In these neurons, FMRF-amide evokes a decrease of the Ca2+ current resulting from a decrease in Ca2+ conductance. In another single neuron, cell E11, FMRF-amide, besides evoking a decrease of the Ca2+ conductance, induces a decrease of the S-current (Klein, M., J. S. Camardo, and E. R. Kandel (1982) Proc. Natl. Acad Sci. U. S. A. 79: 5713-5717), a K+ current controlled by cyclic AMP. However, in this E11 cell, FMRF-amide also evokes a decrease of the amplitude of the Ca2+ spike plateau. As discussed in the preceding paper (Paupardin-Tritsch, D., L. Colombaioni, P. Deterre, and H. M. Gerschenfeld (1985) J. Neurosci. 5: 2522-2532), it is suggested that these FRMF-amide-induced modulations of ionic conductances involved in the Ca2+-dependent spike recorded in these neuronal somata may intervene in processes of presynaptic inhibition and facilitation.  相似文献   

8.
The developmental changes in the beta-adrenergic receptor/cyclic AMP generating system were examined using mouse cerebral cortical neurons in primary culture. During neuronal growth in vitro, the number of binding sites for [3H]dihydroalprenolol (DHA) showed a tendency to increase (Bmax), while the affinity (Kd) for [3H]DHA did not show any noticeable changes. Basal and isoproterenol-stimulated adenylate cyclase activities as well as the activation of adenylate cyclase by 5'-guanylylimidodiphosphate (GppNHp), NaF and forskolin showed progressive and parallel increases during neuronal growth on a polylysine-coated surface. The treatment of primary cultured neurons with islet-activating protein (IAP), one of the pertussis toxins, attenuated the inhibitory effect of carbachol, a muscarinic agonist, on isoproterenol-induced activation of adenylate cyclase activity. These results indicate that primary cultured neurons possess a cyclic AMP generating system coupled with beta-adrenergic and muscarinic receptors, which is regulated via stimulatory and inhibitory GTP-binding proteins, respectively. The results described above also suggest that the beta-adrenergic receptor, stimulatory and inhibitory types of GTP-binding proteins and adenylate cyclase may develop in a parallel fashion during neuronal growth on a polylysine-coated surface.  相似文献   

9.
Responsiveness of norepinephrine-sensitive cyclic AMP-generating systems was examined in slices of different cortical areas of rats showing electrographic spike and wave complexes after unilateral injection of ferrous chloride solution into the sensorimotor cortex. Accumulation of cyclic AMP elicited by norepinephrine was greater on the injection side of the cortex than on the other. Similar lateral differences were detected in cyclic AMP levels antagonized by phentolamine or propranolol, in which 8-phenyltheophylline almost completely inhibited the elicitation of cyclic AMP accumulation by a norepinephrine-propranolol combination but not by a norepinephrine-phentolamine combination. These results suggest that alterations in cyclic AMP generation through the beta-adrenoceptor-coupled adenylate cyclase system and through alpha-adrenergic activation of the adenosine receptor-coupled adenylate cyclase system are closely related to the electrographic activity of iron-induced epilepsy.  相似文献   

10.
The effects of drugs known to enhance intracellular cyclic AMP levels on depolarization-induced [3H]norepinephrine release from superfused rat neocortical slices and synaptosomes were investigated. The adenylate cyclase activator forskolin, the membrane-permeating cyclic AMP analogues 8-bromo-cyclic AMP and dibutyryl cyclic AMP, as well as the phosphodiesterase inhibitors isobutylmethylxanthine and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrolidone (ZK 62771) enhanced the electrically evoked release of [3H]norepinephrine from superfused rat brain neocortex slices. 8-Bromo-cyclic GMP was without effect on the electrically evoked release. When [3H]norepinephrine release was enhanced by prolonging the electrical pulse duration from 2 msec to 10 msec, the relative inhibitory effect of the Ca2+ channel blocker Cd2+ and the relative facilitatory effect of the K+ channel blocker 4-aminopyridine remained unaffected. In striking contrast, the relative facilitatory effects of forskolin and 8-bromo-cyclic AMP were strongly reduced, whereas the effect of ZK 62771 was almost doubled. When veratrine-induced release of [3H]norepinephrine from cortex synaptosomes was examined, the facilitatory effects of forskolin, 8-bromo-cyclic AMP, and ZK 62771 were even more pronounced than in brain slices. The data strongly support the hypothesis that a presynaptic adenylate cyclase system plays a facilitatory role in the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

11.
X Wang  C Han  R R Fiscus 《Neuropeptides》1991,20(2):115-124
Calcitonin gene-related peptide (CGRP), a neuropeptide found in nerves surrounding most blood vessels, is a potent hypotensive agent in both humans and rats. In isolated strips of rat thoracic aorta, CGRP has been reported to cause endothelium-dependent relaxation. To study the cellular and molecular mechanisms involved in CGRP-induced vasodilation, we investigated the roles of two second messengers, cyclic AMP and cyclic GMP, as potential mediators of the signal transduction mechanism leading to vasodilation in response to CGRP in rat aorta. In the present study, the abdominal aorta, rather than thoracic aorta, was used because of its higher content of endogenous CGRP and, therefore, the greater likelihood of regulation by CGRP in vivo. Each abdominal aortic ring was precontracted with norepinephrine (NE) at its EC50 concentration (10-20 nM). CGRP (3-300 nM) caused concentration-dependent relaxations (reducing the NE-induced contractions by 34%) that were completely dependent on endothelium. The relaxations in response to CGRP were correlated in a time- and concentration-dependent manner with increases in aortic levels of both cyclic AMP and cyclic GMP. CGRP (100 nM) caused significant elevations of cyclic AMP levels (1.4 to 3.2 pmol/mg protein, at 1 min) and cyclic GMP levels (1.6 to 3.6 pmol/mg protein, at 30 s). Like the vasorelaxant responses, both cyclic AMP and cyclic GMP responses to CGRP were totally dependent on the endothelium. Pre-incubation with indomethacin (3 microM, 15 min) did not alter cyclic AMP responses to CGRP (100 nM), suggesting that prostaglandins are not involved. Therefore, CGRP-induced vasodilations of abdominal aorta involve an endothelium-dependent mechanism associated with cyclic GMP elevations, similar to the mechanisms of vasodilation in response to acetylcholine and other endothelium-dependent vasodilators. However, CGRP-induced relaxations of aorta involve an additional mechanism (i.e., endothelium-dependent cyclic AMP elevations), which may also contribute to the intracellular mechanism of aortic vasodilation in response to CGRP.  相似文献   

12.
Drugs of abuse produce long-term changes in dopamine neurotransmission and receptor-effected intracellular signaling. Similar changes in neuronal activity are mediated by motivated behaviors. To explore cellular mechanisms underlying these neuroadaptations following sexual experience, cyclic AMP accumulation following stimulation of D1 dopamine receptors, G-proteins, and adenylate cyclase was compared in the nucleus accumbens and caudate nucleus of sexually naive and experienced female hamsters following sexual behavior. Direct stimulation of adenylate cyclase with forskolin or indirectly by activation of G-proteins with Gpp(NH)p produced dose-dependent increases in the formation of cyclic AMP in the nucleus accumbens and caudate nucleus, with no effects of sexual experience on these measures. Specific D1 receptor stimulation increased Gpp(NH)p-induced adenylate cyclase activity in the nucleus accumbens and caudate nucleus of all animals. Interestingly, this stimulation was further enhanced only in membranes from the nucleus accumbens, but not from the caudate nucleus, of sexually experienced hamsters compared to the response of naive females. These results demonstrate that sexual behavior experience can sensitize mesolimbic dopamine pathways and that this sensitization occurs through an increase in D1 receptor-mediated signaling.  相似文献   

13.
1. In view of previously demonstrated modulatory effects of CCK8 on DA-sensitive adenylate cyclase activity in the nucleus accumbens, we examined the effects of this neuropeptide in the striatum. 2. Adenylate cyclase activity was measured by conversion of alpha-[32P]ATP into [32P]cAMP. 3. CCK8, when added to the adenylate cyclase assay in concentrations up to 100 microM, failed to significantly alter, either positively or negatively, basal or DA-stimulated (30 or 100 microM) adenylate cyclase activity. Similar results were obtained in the presence of various peptidase inhibitors. 4. Under the assay conditions employed in these experiments, it would appear that there is no effect of CCK8 on DA-sensitive adenylate cyclase in the striatum.  相似文献   

14.
In SK-N-SH human neuroblastoma cells, the muscarinic agonist carbachol promotes polyphosphoinositide (PPI) hydrolysis via M3 receptors and increases cyclic AMP levels through an unidentified mechanism. Activation of PPI hydrolysis by carbachol elicits a robust translocation of CaM from membranes into cytosol which was previously shown to be mimicked by the addition of the calcium ionophore ionomycin and the phorbol ester TPA28. The effect of agonist-stimulated second messenger production on CaM localization was determined by activating receptors that increase and decrease adenylyl cyclase activity on SK-N-SH cells. VIP (10 microM), prostaglandin E1 (30 microM) and forskolin (10 microM) all increased adenylyl cyclase activity 8- to 10-fold above the activity with 1 microM GTP. Carbachol (100 microM) did not stimulate adenylyl cyclase activity. The alpha 2-adrenergic agonist UK 14,304 (0.1 microM) and the delta and mu opioid DPDPE (10 microM) and DAMGO (10 microM) inhibited forskolin-stimulated cyclic AMP formation by 27-32%. CaM did not stimulate adenylyl cyclase activity. Incubation of cells with vasoactive intestinal polypeptide (VIP), dibutyryl cyclic AMP and forskolin, resulted in 30% decrease in membrane CaM and an increase in cytosolic CaM of 40-50%. The CaM translocation with the combination of an agent that elevates cyclic AMP levels and a low dose of carbachol was not different from that observed with either agent alone. UK 14,304, DPDPE and DAMGO potentiated carbachol-stimulated increases in cytosolic CaM. Upon the addition of carbachol, a 5-fold increase in intracellular calcium concentration measured with fura-2 fluorescence was observed. VIP and UK 14,304 elevated intracellular calcium concentrations 2 to 3 fold, while forskolin (10 microM) had no effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Somatostatin-14 (SRIF) inhibits both hormone- and forskolin-stimulated cyclic adenosine 3':5'-monophosphate (cyclic AMP) formation in tumor cells of the mouse anterior pituitary (AtT-20/D16-16). However, long-term pretreatment of cells with SRIF modifies the responsiveness of this system in two ways: The response of adenylate cyclase to stimulatory agents is enhanced, whereas the ability of SRIF to inhibit stimulated cyclic AMP formation is reduced. The supersensitive adenylate cyclase response and the SRIF desensitization were dependent on the concentration and duration of SRIF pretreatment. Enhancement of forskolin-stimulated cyclic AMP formation occurred within 4 hr, whereas that of corticotropin-releasing-factor-, (-)-isoproterenol-, and vasoactive intestinal peptide-induced cyclic AMP accumulation required 16 hr of pretreatment. The elevated responses to each of these stimulants were due to increases in their maximal ability to stimulate cyclic AMP formation. Cycloheximide treatment blocked the enhanced cyclic AMP response induced by SRIF pretreatment, suggesting a requirement for protein synthesis. In membrane preparations, SRIF pretreatment facilitated activation of adenylate cyclase by forskolin, sodium fluoride, and guanosine 5'-(beta,tau-imido)-triphosphate without affecting basal activity. These results suggest that desensitization of an inhibitory input to adenylate cyclase is accompanied by a supersensitivity of adenylate cyclase to stimulatory agents through a process requiring protein synthesis.  相似文献   

16.
Although the peptidergic bag cell neurons of Aplysia are ordinarily silent, they respond to brief electrical stimulation by producing an afterdischarge of about 30 min duration. This afterdischarge is followed by a refractory period lasting many hours during which electrical stimulation either fails to initiate afterdischarges or produces discharges of much shorter duration. Previous work has demonstrated that cyclic AMP plays a role in the genesis of afterdischarge, both in intact bag cell clusters and in isolated cultured bag cells. We have now examined the hypothesis that in the refractory period either the synthesis of cyclic AMP or the response to cyclic AMP is attenuated. Direct measurements of cyclic AMP showed that cyclic AMP levels in the bag cell neurons are elevated to a similar extent after stimulation in refractory and nonrefractory clusters of neurons. We have found, however, that the response to cyclic AMP is altered during the refractory period. The electrophysiological responses of bag cell neurons were first examined in intact clusters of cells within the abdominal ganglion. Cyclic AMP levels were elevated using the adenylate cyclase activator, forskolin, in the presence of theophylline (FT). The duration of a first bag cell afterdischarge could be greatly increased if FT was added before stimulation. The duration of a stimulated second bag cell afterdischarge could also be significantly increased if FT was added within a brief period following the end of the first afterdischarge. Furthermore, at these times the addition of FT often resulted in the onset of spontaneous afterdischarges.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Adenosine inhibits cyclic AMP synthesis induced by dopamine in embryonic but not in post-hatched chick retinas. N6-Cyclohexyladenosine (CHA), which preferentially activates A1 receptors as well as 2-chloroadenosine, inhibits cyclic AMP accumulation induced by dopamine in retinas from 10-day-old embryos (E10) with IC50's of 0.1 and 0.5 microM, respectively, but this effect is not detectable after hatching. In order to verify if this developmental change reflects variations in the number or affinity of A1 adenosine receptors, their development during chick retina ontogeny was studied. Binding studies using 3(H)CHA revealed the presence of A1 receptors at all stages of development examined, including the post-hatched retina. The number of binding sites increased between E10 and E17, and then decreased in post-hatched animals. In the latter, 3(H)CHA binding was to a single site with a Bmax of 128.6 +/- 13.4 fmol/mg protein and a Kd of 2.1 + 0.2 nM. Various ligands showed similar hierarchies of affinity for the A1 receptor in embryonic and post-hatched retinas, namely, CHA greater than R-N6-phenylisopropyladenosine (1-PIA) greater than 5'-N-ethylcarboxamideadenosine (NECA) greater than isobuthylemethyl-xanthine (IBMX). Given that CHA inhibited forskolin-induced cyclic AMP production and Gpp(NH)p inhibited 3(H)CHA binding in both embryonic and post-hatched retinas, it appears that receptor coupling to adenylate cyclase is present since early embryonic stages. The results suggest that the A1 receptors may have different functions in the embryonic as compared to the mature chick retina.  相似文献   

18.
The interactions between dopamine receptors and opioid receptors coupled to adenylate cyclase in rat neostriatum were investigated. cAMP efflux from neostriatal slices induced by simultaneous activation of (stimulatory) D-1 and (inhibitory) D-2 dopamine receptors with 30 microM dopamine was inhibited by the preferential delta-opioid receptor agonist [D-Ala2-D-Leu5] enkephalin (DADLE) and the mu-opioid receptor agonist morphine with an EC50 of 100 and 800 nM, respectively. On selective D-1 receptor activation (i.e., with D-2 receptors blocked by 10 microM (-)sulpiride), the EC50 of DADLE was strongly reduced to 3 nM, whereas that of morphine was unaffected. When D-1 and D-2 receptors were activated simultaneously, the inhibitory effects of DADLE (0.3 microM) and morphine (3 microM) on cAMP efflux were antagonized equally well by naloxone, a mu-opioid receptor antagonist. In contrast, on selective D-1 receptor activation, naloxone was about 20 times more potent in antagonizing the inhibitory effect of morphine than DADLE. Moreover, the delta-opioid receptor antagonist ICI 174864 (0.75 microM) did not affect the inhibitory effect of morphine but antagonized that of DADLE, provided that D-2 receptors were blocked. The highly selective delta-opioid receptor agonist [D-Pen2-D-Pen5] enkephalin (DPDPE) inhibited dopamine-stimulated cAMP efflux only when D-2 receptors were blocked. Similar results were obtained when the agonists SKF 38393 and LY 141865 were used to activate D-1 and D-2 receptors, respectively. These data indicate that blockade of D-2 receptors in the neostriatum elicits the coupling of delta-opioid receptors to dopamine-sensitive adenylate cyclase, thereby making it considerably more sensitive to inhibition by the enkephalins.  相似文献   

19.
Corticotropin releasing factor (CRF)-stimulated adenylate cyclase activity and receptor binding were examined in rat brain homogenates using a potent synthetic CRF analog--[D-Tyr3,D-Pro4,Nle18,21,alpha-helical]CRF3-41 (alpha-hel CRF3-41). Binding of alpha-hel CRF3-41 in the rat brain was saturable, reversible, of high affinity and exhibited relevant peptide specificity. This analog also stimulated adenylate cyclase activity of various brain regions; the greatest magnitude of stimulation was in the cerebral cortex followed by the septum, cerebellum and thalamus. Adenylate cyclase stimulation in the cerebral cortex was concentration-dependent with an ED50 of 2.5 +/- 0.4 nM for alpha-hel CRF3-41 and an ED50 of 16 +/- 2 nM for ovine and rat CRF. Maximal stimulation was comparable for all peptides. Agonist-stimulated adenylate cyclase activity was competitively blocked by the CRF antagonists. The inactive CRF analog, ovine CRF1-39, at concentrations less than 1 microM, did not significantly stimulate adenylate cyclase. Adrenalectomy, which has been reported to modulate CRF receptor number and CRF-stimulated adenylate cyclase activity in the anterior pituitary, had no effect on CRF receptor binding or CRF-stimulated adenylate cyclase activity in the cerebral cortex. These results suggest that, as in the anterior pituitary, at least some of the physiological responses mediated by CRF receptors in the brain utilize the cyclic nucleotide regulatory pathway as a post-receptor mechanism.  相似文献   

20.
The cholinergic agonist, carbachol, produces a small increase in cyclic AMP concentration in the isolated rat retina, and markedly potentiates dopamine-stimulated cyclic AMP formation. This effect of carbachol is mediated through a muscarinic receptor, is calcium-independent, and is not due to inhibition of phosphodiesterase activity. Activation of miscarinic receptors may potentiate dopaminergic responses in the retina by enhancing coupling of the dopamine receptor to adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号