首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Fracture resistance of prosthesis is an important clinical concern. This property is directly related to transverse strength. Strengthening of prostheses may result from reinforcement with various fiber types. This study evaluated the effect of fiber type on the transverse strength of a commercially available autopolymerizing resin that is used for repairing prosthesis. The resin was reinforced with woven form, chopped form and longitudinal form, and no reinforcement was used. Uniform samples were made from autopolymerizing resin. In total, twenty-four bar-shaped specimens (60 x 10 x 4 mm) were reinforced with glass fibers. Nine specimens were prepared without fiber. A three-point loading test was used to measure transverse strength, maximal deflection, and modulus of elasticity. The Kruskal-Wallis analysis of variance was used to examine differences between the four groups. Although the results of the analysis between these groups showed no statistical significances, the transverse strength, maximal deflection and modulus of elasticity increased more with fiber than without the fiber group. This finding may be of clinical significance. Because the addition of fiber reinforcement enhanced the physical properties of the processed material, specially woven form glass fiber was superior to the other forms.  相似文献   

2.
This study focused on some mechanical properties such as the transverse strength, maximal deflection and modulus of elasticity of a resin reinforced with untreated, chopped form glass fibers at different concentrations. A Teflon mould was used to prepare four groups of specimens. The specimens were prepared with different concentrations of the glass fiber to the mass of the powder/liquid mix (0.5, 1, 1.5%), and a mix without fiber was used as the control group. All the specimens were subjected to transverse testing with a cross-head speed of 5 mm/min. The load to fracture for each specimen with the maximum deflection at the point of loading in a three-point load test was recorded. The transverse strength of 0.5% fiber concentration was 54.45 MPa. The lowest value was 49.67 MPa for the 1% fiber concentration. The highest mean strength was for the specimens reinforced with 0.5% glass fiber. This mean was higher than for the mean of the control "without fiber" specimens. The specimens demonstrated an insignificant decrease in the transverse strength and the maximum deflection when the fiber concentration was increased. The inclusion of 1% glass fiber reduced the transverse strength, although the result was not statistically significant.  相似文献   

3.
Reinforcement of a self-setting calcium phosphate cement with different fibers   总被引:11,自引:0,他引:11  
A water-based calcium phosphate cement (CPC) has been used in a number of medical and dental procedures due to its excellent osteoconductivity and bone replacement capability. However, the low tensile strength of CPC prohibits its use in many unsupported defects and stress-bearing locations. Little investigation has been carried out on the fiber reinforcement of CPC. The aims of the present study, therefore, were to examine whether fibers would strengthen CPC, and to investigate the effects of fiber type, fiber length, and volume fraction. Four different fibers were used: aramid, carbon, E-glass, and polyglactin. Fiber length ranged from 3-200 mm, and fiber volume fraction ranged from 1.9-9.5%. The fibers were mixed with CPC paste and placed into molds of 3 x 4 x 25 mm. A flexural test was used to fracture the set specimens and to measure the ultimate strength, work-of-fracture, and elastic modulus. Scanning electron microscopy was used to examine specimen fracture surfaces. Fiber type had significant effects on composite properties. The composite ultimate strength in MPa (mean +/- SD; n = 6) was (62+/-16) for aramid, (59+/-11) for carbon, (29+/-8) for E-glass, and (24+/-4) for polyglactin, with 5.7% volume fraction and 75 mm fiber length. In comparison, the strength of unreinforced CPC was (13+/-3). Fiber length also played an important role. For composites containing 5.7% aramid fibers, the ultimate strength was (24+/-3) for 3 mm fibers, (36+/-13) for 8 mm fibers, (48 +/-14) for 25 mm fibers, and (62+/-16) for 75 mm fibers. At 25 mm fiber length, the ultimate strength of CPC composite was found to be linearly proportional to fiber strength. In conclusion, a self-setting calcium phosphate cement was substantially strengthened via fiber reinforcement. Fiber length, fiber volume fraction, and fiber strength were found to be key microstructural parameters that controlled the mechanical properties of CPC composites.  相似文献   

4.
Silica is a commonly used filler in dental materials and as a reinforcing agent in industry. The aim of this study was to further investigate the effect of the addition of untreated and a novel surface treated silica on the transverse bend and impact strength of acrylic resin denture base material. It was hypothesized that the silica/resin composite materials would have an improved flexural and impact strength than the conventional heat-cured acrylic resin. Three types of untreated and two of treated silica powder were used in this study. The range of percentages used were 1%, 0.5%, 0.2%, 0.1%. The treated particles were coated with hexamethyldisilazane or dimethyldichloridesilazane. Conventional heat cured acrylic resin was used as a control. The modulus of rupture for all groups of acrylic resin containing silica was significantly lower than for the control. The modulus of elasticity was not significantly greater than the control group. For the impact strength statistical analysis revealed a significant difference between the groups. There was a nonsignificant increase in the impact strength for specimens compared to the control. In conclusion the addition of silica to poly(methyl methacrylate) denture base materials did not produce a significant improvement in the transverse bend or impact strength compared to conventional heat-cured acrylic resin. The incorporation of untreated and surface treated silica cannot be recommended as a method of reinforcement.  相似文献   

5.
Fracture strength of denture base resins is of great concern, and many approaches have been used to strengthen acrylic resin dentures. Fracture resistance of six commercially available acrylic resin denture base materials were compared, through impact and transverse strength tests. Three rapid heat-polymerised resins (QC 20, Meliodent and Trevalon), two high-impact strength resins (Trevalon Hi and Lucitone 199) and a strengthened injection-moulded acrylic resin (SR Ivocap plus) were included in the study. Twenty acrylic resin test specimens were fabricated from each resin. For impact strength test, ten notched specimens were tested in a Charpy-type impact tester. The other ten specimens were used for transverse strength tests, deflection and modulus of elasticity values were also determined, which were assessed with three-point bending tests using an Universal Testing Machine. Impact test values showed significant differences among acrylic resins (F= 4.817 p = 0.0). SR Ivocap resin showed the highest impact strength values, followed by Trevalon Hi and Lucitone 199. The transverse strength test values were not significant when six acrylic resins were compared (F= 1.705 p = 0.151). High-impact resins can be recommended to increase the impact strength of denture base. If the cause of fracture is mechanical or anatomical, strengthened acrylic resins and conventional acrylic resins have similar fracture resistance.  相似文献   

6.
In this study, bioresorbable phosphate-based glass (PBG) fibers were used to reinforce poly(lactic acid) (PLA). PLA/PBG random mat (RM) and unidirectional (UD) composites were prepared via laminate stacking and compression molding with fiber volume fractions between 14% and 18%, respectively. The percentage of water uptake and mass change for UD composites were higher than the RM composites and unreinforced PLA. The crystallinity of the unreinforced PLA and composites increased during the first few weeks and then a plateau was seen. XRD analysis detected a crystalline peak at 16.6° in the unreinforced PLA sample after 42 days of immersion in phosphate buffer solution (PBS) at 37°C. The initial flexural strength of RM and UD composites was ~106 and ~115?MPa, whilst the modulus was ~6.7 and ~9?GPa, respectively. After 95 days immersion in PBS at 37°C, the strength decreased to 48 and 52?MPa, respectively as a result of fiber-matrix interface degradation. There was no significant change in flexural modulus for the UD composites, whilst the RM composites saw a decrease of ~45%. The molecular weight of PLA alone, RM, and UD composites decreased linearly with time during degradation due to chain scission of the matrix. Short fiber pull-out was seen from SEM micrographs for both RM and UD composites.  相似文献   

7.
Because of its excellent osteoconductivity and bone-replacement capability, self-setting calcium phosphate cement (CPC) has been used in a number of clinical procedures. For more rapid resorption and concomitant osseointegration, methods were desired to build macropores into CPC; however, this decreased its mechanical properties. The aims of this study, therefore, were to use fibers to strengthen macroporous CPC and to investigate the effects of the pore volume fraction on its mechanical properties. Water-soluble mannitol crystals were incorporated into CPC paste; the set CPC was then immersed in water to dissolve mannitol, producing macropores. Mannitol/(mannitol + CPC powder) mass fractions of 0, 10, 20, 30, and 40% were used. An aramid fiber volume fraction of 6% was incorporated into the CPC-mannitol specimens, which were set in 3 mm x 4 mm x 25 mm molds and then fractured in three-point flexure to measure the strength, work of fracture, and modulus. The dissolution of mannitol created well-formed macropores, with CPC at 40% mannitol having a total porosity of a 70.8% volume fraction. Increasing the mannitol content significantly decreased the properties of CPC without fibers (analysis of variance; p < 0.001). The strength (mean +/- standard deviation; n = 6) of CPC at 0% mannitol was 15.0 +/- 1.8 MPa; at 40% mannitol, it decreased to 1.4 +/- 0.4 MPa. Fiber reinforcement improved the properties, with the strength increasing threefold at 0% mannitol, sevenfold at 30% mannitol, and nearly fourfold at 40% mannitol. The work of fracture increased by 2 orders of magnitude, but the modulus was not changed as a result of fiber reinforcement. A scanning electron microscopy examination of specimens indicated crack deflection and bridging by fibers, matrix multiple cracking, and frictional pullout of fibers as the reinforcement mechanisms. Macroporous CPCs were substantially strengthened and toughened via fiber reinforcement. This may help extend the use of CPCs with macropores for bony ingrowth to the repair of larger defects in stress-bearing locations.  相似文献   

8.
The aim of this study was to determine water sorption, solubility and dimensional stability of injection and compression-molded polymethyl methacrylate based denture base polymer that was reinforced with various concentrations and lengths of E-glass fibers. For water sorption and solubility, 20 test groups with different fiber contents and lengths of fibers were prepared. Test specimens without fibers were used as a control. The water sorption and solubility was measured after 90 days water storage. For dimensional stability, rhombic test specimens were prepared and the dimensional changes were measured after processing, drying and storing in water for 4 days and 30 days and were compared with those on the brass model. The water sorption and solubility of injection-molded denture base polymer was lower compared to compression-molded specimens (p < 0.05). The dimensional accuracy of denture base polymer was not affected with fiber reinforcement (p > 0.05).  相似文献   

9.
The use of short glass fibers as a filler for dental restorations or cement resins have not been examined extensively. The mechanical properties and untreated glass fibers (5 microns dia x 25 microns) in Bis-phenol A glycidyl methacrylate (BIS-GMA) diluted with triethylene-glycol dimethacrylate (TEGDMA) resin were investigated for possible use as a restorative dental composite or bone cement. Compression, uniaxial tension and fracture toughness tests were conducted for each filler composite mixtures of 40, 50, 60 and 70%. Set time and maximum temperature of polymerization were determined. The results show that the elastic modulus, tensile strength and compressive strength are dependent on the percent of filler content. Elastic modulus and compressive yield (0.2%) strength of silane treated glass fibers filled composite increased from 2.26 to 4.59 GPa and 43.3 to 66.6 MPa, respectively, wtih increasing the filler content while the tensile strength decreased from 26.7 to 18.6 MPa. The elastic modulus of the untreated composite was less than that of the silane treated fiber composite. The tensile strength and compressive strengths were 20 to 50% lower than those of silane treated composites. The fracture toughness of the silane treated glass fiber additions were not significantly different from the untreated additions. The highest fracture toughness was obtained at 50% filler content with 1.65 MPa m.5. Set time increased from 3.5 to 7.7 minutes with increased filler content and peak temperature dropped from 68.3 to 34 degrees C. The results of this study indicate that the addition of silane coated glass fiber to BIS-GMA resin increased the elastic modulus, tensile and compressive strengths compared with non-treated fibers. The addition of either treated or non-treated fibers increased the set time of the material and decreased the maximum temperature.  相似文献   

10.
This study was designed to evaluate improvements in the mechanical properties of acrylic resin following reinforcement with three types of fiber. Polyester fiber (PE), Kevlar fiber (KF), and glass fiber (GF) were cut into 2, 4, and 6 mm lengths and incorporated at concentrations of 1, 2, and 3% (w/w). The mixtures of resin and fiber were cured at 70 degrees C in a water bath for 13 h, then at 90 degrees C for 1 h, in 70 x 25 x 15 mm stone molds, which were enclosed by dental flasks. The cured resin blocks were cut to an appropriate size and tested for impact strength and bending strength following the methods of ASTM Specification No. 256 and ISO Specification No. 1567, respectively. Specimens used in the impact strength test were reused for the Knoop hardness test. The results showed that the impact strength tended to be enhanced with fiber length and concentration, particularly PE at 3% and 6 mm length, which was significantly stronger than other formulations. Bending strength did not change significantly with the various formulations when compared to a control without fiber. The assessment of Knoop hardness revealed a complex pattern for the various formulations. The Knoop hardness of 3%, 6 mm PE-reinforced resin was comparable to that of the other formulations except for the control without fiber, but for clinical usage this did not adversely affect the merit of acrylic denture base resin. It is concluded that, for improved strength the optimum formulation to reinforce acrylic resin is by incorporation of 3%, 6 mm length PE fibers.  相似文献   

11.
This study evaluated the internal adaptation, porosity, transverse and impact strength of three denture base polymers: (1) conventional heat-polymerized, (2) microwave-polymerized, and (3) injection-molded resins. Internal adaptation was measured by weighing a vinyl polysiloxane film reproducing the gap between the denture base and the metallic master model of an edentulous maxilla. The measurements were performed immediately after finishing and after 30-day storage in water. Porosity was evaluated by weighing each specimen in air and in water using an analytical scale balance. Transverse strength test (three-point bending test) was performed using a universal machine under axial load, at a crosshead speed of 5 mm/min. Impact strength test (Charpy's test) was performed with a 40 kJ/cm load. Data were analyzed by ANOVA and Tukey test (alpha = 0.05). Internal adaptation, porosity, transverse and impact strength varied according to the type of acrylic resin and the processing technique. The injection-molded resin showed better internal adaptation compared with the conventional heat-polymerized and the microwave-polymerized resins, particularly after 30 days, but there was no relevant improvement of porosity, transverse and impact strength.  相似文献   

12.
The use of a provisional restoration is an important phase in the treatment of the dental prosthetic patient. A good provisional restoration should satisfy the following requirements: pulpal protection, positional stability, ease in cleaning, accurate margins, wear resistance, dimensional stability, and serve as a diagnostic aid in treatment assessment and esthetics. There is a tendency for discoloration, occlusal wear, and fracture that eventually leads to unnecessary repair. Heat-processed and reinforced methacrylate-based resins have been used to improve the mechanical and physical properties of provisional restorations. Among various improvements, the interpenetrating network crosslinked PMMA (IPN) has been shown to have superior mechanical properties if manufactured through a dough compression molding process at 130 degrees C. However, there have been no published data that relate with the use of this material for fixed provisional restorations.The objective of this study was to compare four methyl methacrylate-based resins for provisional crowns and bridges with varying processing cycles, including JET [self-cure], ACRALON [heat-cured], titanium dioxide filled PMMA [heat-cured], and IPN [heat-cured denture tooth resin]. Properties studied included transverse strength, toughness, rigidity, and hardness. From the results of this study the following conclusions can be made: the IPN group may have had a lower degree of conversion as demonstrated by decreased strength, toughness, and hardness data as compared with Acralon. Increasing the polymerization cycle of unmodified Acralon resin causes a significant increase in strength.  相似文献   

13.
This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 μm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer’s instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.  相似文献   

14.
Fiber-reinforced composites (FRCs) show great promise as long-term restorative materials in dentistry and medicine. Recent evidence indicates that these materials degrade in vivo, but the mechanisms are unclear. The objective of this study was to investigate mechanisms of deterioration of glass fiber-polymer matrix bond strengths in dental fiber-reinforced composites during hydrothermal and mechanical aging. Conventional three-point bending tests on dental FRCs were used to assess flexural strengths and moduli. Micro push-out tests were used to measure glass fiber-polymer matrix bond strengths, and nanoindentation tests were used to determine the modulus of elasticity of fiber and polymer matrix phases separately. Bar-shaped specimens of FRCs (EverStick, StickTech, and Vectris Pontic, Ivoclar-Vivadent) were either stored at room temperature, in water (37 and 100 degrees C) or subjected to ageing (10(6) cycles, load: 49 N), then tested by three-point bending. Thin slices were prepared for micro push-out and nanoindentation tests. The ultimate flexural strengths of both FRCs were significantly reduced after aging (p < 0.05). Both water storage and mechanical loading reduced the interfacial bond strengths of glass fibers to polymer matrices. Nanoindentation tests revealed a slight reduction in the elastic modulus of the EverStick and Vectris Pontic polymer matrix after water storage. Mechanical properties of FRC materials degrade primarily by a loss of interfacial bond strength between the glass and resin phases. This degradation is detectable by micro push-out and nanoindentation methods.  相似文献   

15.
Acrylic bone cement is significantly weaker and of lower modulus of elasticity than compact bone. It is also weaker in tension than in compression. This limits its use in orthopedics to areas where tensile stresses were minimum. Many authors have shown that addition of small percentages of fiber reinforcement by hand mixing improved the mechanical properties significantly but with variable results. In this investigation we have examined the mechanical properties of machine-mixed, commercially available carbon-fiber-reinforced bone cement. Appropriate samples of normal low-viscosity cement and carbon-fiber-reinforced cement were prepared and tested mechanically. Carbon fiber increased the tensile strength and modulus by 30% and 35.8% respectively. The compression strength and modulus, however, increased by only 10.7%. Similarly, bending and shear strengths improved by 29.5% and 18.5%, respectively. Diametral compression strength, which is an indirect measure of tensile strength, however, showed only 6.2% improvement. The maximum temperature rise during polymerization was also reduced significantly by the fiber reinforcement.  相似文献   

16.
Five types of posts from three different manufacturers (RTD, France, Carbotech, France and Ivoclar-Vivadent, Liechenstein) were subjected to three-point bending tests in order to obtain fatigue results, flexural strength and modulus. Transverse and longitudinal polished sections were examined by scanning electron microscopy and evaluated by computer-assisted image analysis. Physical parameters, including volume % of fibers, their dispersion index and coordination number, were calculated and correlated with mechanical properties. The weaker posts showed more fiber dispersion, higher resin contents, larger numbers of visible defects and reduced fatigue resistance. The flexural strength was inversely correlated with fiber diameter and the flexural modulus was weakly related to coordination number, volume % of fibers and dispersion index. The interfacial adhesion between the silica fibers and the resin matrix was observed to be of paramount importance.  相似文献   

17.
OBJECTIVE: This study examines the shear bond strength of visible light-curing composite resin (VCR) to aged glass fiber-reinforced composite (FRC) substrate with multi-phase polymer matrix. METHODS: Linear polymethyl methacrylate and dimethacrylate monomer preimpregnated unidirectional glass fiber reinforcement was used as an adhesion substrate for low-viscosity diacrylate veneering composite resin and restorative composite resin. A total of 60 test specimens were divided into three groups according to the brand and the use of an intermediate monomer resin (IMR). The used IMRs were either BisGMA-HEMA-resin, BisGMA-TEGDMA resin or the controls were left without the IMR treatment. Dry- and water-stored FRC-substrates were used for adhering the VCR with or without the IMR. The shear bond strength of the VCR to the substrate was measured for dry and thermocycled specimens and the results were analyzed with multi-variate ANOVA. RESULTS: The highest mean shear bond strength (23.9 +/- 4.8 MPa) was achieved with FRC/BisGMA-HEMA/VCR combination when the FRC substrate was water stored and the test specimen was thermocycled. FRC/BisGMA-TEGDMA/VCR combination resulted in 15.7 +/- 6.0 MPa with the water-stored FRC substrate and after thermocycling of the test specimens. The lowest shear bond strength (1.0 +/- 0.5 MPa) was obtained with FRC/VCR combination with water-stored substrate and after thermocycling of the test specimens. Significant differences were found between the mean values of three groups according to the use of IMR (p<0.001). The storage conditions of the FRC substrate were related to brand of the IMR or the composite (p<0.001). High mean values of the shear bond strength after thermocycling fatigue were related to the type of IMR (p<0.001). SIGNIFICANCE: The results suggest that the IMRs used in this study greatly influence the mean shear bond strength values when the test specimens are thermocycled.  相似文献   

18.
CaO-P(2)O(5) glasses with additions of MgO and CaF(2) were used as a sintering aid of hydroxyapatite, and glass-reinforced hydroxyapatite composites obtained. Glasses promoted significant changes in the microstructure of the composites, namely with the formation of tricalcium phosphate secondary phases, beta and alpha-TCP. Quantitative phase analysis was performed by the Rietveld method using General Structure Analysis Software. Grain size measurements were carried out on SEM photomicrographs, using a planimetric procedure according to ASTM E 112-88. Flexural bending strength was determined from concentric ring-on-ring testing. Flexural bending strength (FBS) of glass-reinforced hydroxyapatite composites was found to be about twice or three times higher than that of unreinforced hydroxyapatite and tended to depend more on porosity and beta and alpha-TCP secondary phases, rather than on grain size. Traces of alpha-tricalcium phosphate significantly enhanced the strength of the composites. Using the rule of mixtures to estimate the zero porosity bending strength, the Duckworth-Knudsen model applied to the composites gave a porosity correction factor, b, with a value of 4.02. Weibull statistics were also used to analyze biaxial strength data and the level of reinforcement obtained by comparing failure probability for the composites and for the unreinforced hydroxyapatite. Lower activation energies for grain growth were observed for the composites compared to unreinforced hydroxyapatite, which should be attributed to the presence of a liquid glassy phase that promotes atomic diffusion during the sintering process.  相似文献   

19.
Calcium phosphate cement (CPC) sets to form hydroxyapatite and has been used in medical and dental procedures. However, the brittleness and low strength of CPC prohibit its use in many stress-bearing locations, unsupported defects, or reconstruction of thin bones. Recent studies incorporated fibers into CPC to improve its strength. In the present study, a novel methodology was used to combine the reinforcement with macroporosity: large-diameter resorbable fibers were incorporated into CPC to provide short-term strength, then dissolved to create macropores suitable for bone ingrowth. Two types of resorbable fibers with 322 microm diameters were mixed with CPC to a fiber volume fraction of 25%. The set specimens were immersed in saline at 37 degrees C for 1, 7, 14, 28 and 56d, and were then tested in three-point flexure. SEM was used to examine crack-fiber interactions. CPC composite achieved a flexural strength 3 times, and work-of-fracture (toughness) nearly 100 times, greater than unreinforced CPC. The strength and toughness were maintained for 2-4 weeks of immersion, depending on fiber dissolution rate. Macropores or channels were observed in CPC composite after fiber dissolution. In conclusion, incorporating large-diameter resorbable fibers can achieve the needed short-term strength and fracture resistance for CPC while tissue regeneration is occurring, then create macropores suitable for vascular ingrowth when the fibers are dissolved. The reinforcement mechanisms appeared to be crack bridging and fiber pullout, the mechanical properties of the CPC matrix also affected the composite properties.  相似文献   

20.
The strength and toughness of dental core buildup composites in large stress-bearing restorations need to be improved to reduce the incidence of fracture due to stresses from chewing and clenching. The aims of the present study were to develop novel core buildup composites reinforced with ceramic whiskers, to examine the effect of filler level, and to investigate the reinforcement mechanisms. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whisker surface for improved retention in the matrix. Filler level was varied from 0 to 70%. Flexural strength, compressive strength, and fracture toughness of the composites were measured. A nano-indentation system was used to measure elastic modulus and hardness. Scanning electron microscopy (SEM) was used to examine the fracture surfaces of specimens. Whisker filler level had significant effects on composite properties. The flexural strength in MPa (mean +/- SD; n = 6) increased from (95+/-15) for the unfilled resin to (193+/- 8) for the composite with 50% filler level, then slightly decreased to (176+/-12) at 70% filler level. The compressive strength increased from (149+/-33) for the unfilled resin to (282+/-48) at 10% filler level, and remained equivalent from 10 to 70% filler level. Both the modulus and hardness increased monotonically with filler level. In conclusion, silica particle-fused ceramic single-crystalline whiskers significantly reinforced dental core buildup composites. The reinforcement mechanisms appeared to be crack deflection and bridging by the whiskers. Whisker filler level had significant effects on the flexural strength, compressive strength, elastic modulus, and hardness of composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号