首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mak HH  Peschard P  Lin T  Naujokas MA  Zuo D  Park M 《Oncogene》2007,26(51):7213-7221
Multiple mechanisms of dysregulation of receptor tyrosine kinases (RTKs) are observed in human cancers. In addition to gain-of-function, loss of negative regulation also contributes to oncogenic activation of RTKs. Negative regulation of many RTKs involves their internalization and degradation in the lysosome, a process regulated through ubiquitination. RTK oncoproteins activated following chromosomal translocation, are no longer transmembrane proteins, and are predicted to escape lysosomal degradation. To test this, we used the Tpr-Met oncogene, generated following chromosomal translocation of the hepatocyte growth factor receptor (Met). Unlike Met, Tpr-Met is localized in the cytoplasm and also lacks the binding site for Cbl ubiquitin ligases. We determined whether subcellular localization of Tpr-Met, and/or loss of its Cbl-binding site, is important for oncogenic activity. Presence of a Cbl-binding site and ubiquitination of cytosolic Tpr-Met oncoproteins does not alter their transforming activity. In contrast, plasma membrane targeting allows Tpr-Met to enter the endocytic pathway, and Tpr-Met transforming activity as well as protein stability are decreased in a Cbl-dependent manner. We show that transformation by Tpr-Met is in part dependent on its ability to escape normal downregulatory mechanisms. This provides a paradigm for many RTK oncoproteins activated following chromosomal translocation.  相似文献   

2.
PURPOSE: Met, the tyrosine kinase receptor for hepatocyte growth factor, is frequently deregulated in human cancer. Recent evidence indicates that Met amplification may confer resistance to treatments directed toward other receptor tyrosine kinases. Thus, there is a need to develop Met inhibitors into therapeutic tools, to be used alone or in combination with other molecularly targeted drugs. Preclinical validation of Met inhibitors has thus far been done in nude mice bearing cancer cells xenografts. A far superior model would be a transgenic line developing spontaneous Met-driven tumors with high penetrance and short latency. EXPERIMENTAL DESIGN: To this end, we introduced into the mouse genome TPR-MET, the oncogenic form of MET. The Tpr-Met protein ensures deregulation of Met signaling because dimerization motifs in the Tpr moiety cause ligand-independent activation of the Met kinase. RESULTS: Here, we describe a TPR-MET transgenic line that develops thymic T-cell lymphoma with full penetrance and very short latency. In the tumors, Tpr-Met and its effectors were phosphorylated. Treatment of tumor-derived T lymphocytes with the selective Met inhibitor PHA-665752 at nanomolar concentrations abolished phosphorylation of Met and downstream effectors and led to caspase-mediated apoptosis. I.v. administration of PHA-665752 to transgenic mice bearing lymphomas in exponential growth phase led to a significant decrease in tumor growth and, in some cases, to tumor regression. CONCLUSIONS: Our transgenic line, which within 2 months reliably develops Tpr-Met-driven T-cell lymphoma, represents a valuable tool to explore the efficacy and therapeutic potential of Met kinase inhibitors as anticancer drugs.  相似文献   

3.
4.
Many human cancers have been associated with the deregulation of receptor tyrosine kinases (RTK). However, the individual contribution of receptor-associated signaling proteins in cellular transformation and metastasis is poorly understood. To examine the role of RTK activated signal transduction pathways to processes involved in cell transformation, we have exploited the oncogenic derivative of the Met RTK (Tpr-Met). Unlike other RTKs, twin tyrosine residues in the carboxy-terminal tail of the Met oncoprotein and receptor are required for all biological and transforming activities, and a mutant lacking these tyrosines is catalytically active but non transforming. Using this mutant we have inserted oligonucleotide cassettes, each encoding a binding site for a specific signaling protein derived from other RTKs. We have generated variant forms of the Tpr-Met oncoprotein with the ability to bind individually to the p85 subunit of PI3'K, PLCgamma, or to the Grb2 or Shc adaptor proteins. Variants that recruit the Shc or Grb2 adaptor proteins generated foci of morphologically transformed fibroblast cells and induced anchorage-independent growth, scattering of epithelial cells and experimental metastasis. In contrast, variants that bind and activate PI3'K or PLCgamma failed to generate readily detectable foci. Although cell lines expressing the PI3'K variant grew in soft-agar, these cells were non metastatic. Using this unique RTK oncoprotein model, we have established that Grb2 or Shc dependent signaling pathways are sufficient for cell transformation and metastatic spread.  相似文献   

5.
Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors.   总被引:50,自引:0,他引:50  
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. Gain-of-function mutations in the juxtamembrane domain of the c-kit gene have been found in several GISTs. In this study, we examined the correlation between the presence of c-kit mutation and prognosis in 124 cases of GIST. DNA samples were extracted from paraffin sections. Exon 11 of the c-kit gene encoding the juxtamembrane domain and exon 17 encoding the kinase domain were amplified by PCR and sequenced. Most GISTs (89%) express the KIT protein, and missense mutations of exon 11 were found in 71 of 124 GISTs (57%). No mutations were detectable in exon 17. These 71 mutation-positive GISTs were larger in size and had more frequently invaded adjacent tissues than did the 53 mutation-negative GISTs. Histologically, the mutation-positive GISTs showed higher mitotic figures and more necrosis and hemorrhage. The patients with mutation-positive GISTs showed more frequent recurrences (P = 0.0005) and higher mortality (P = 0.0001) than did those with mutation-negative GISTs. The c-kit mutation was an independent prognostic factor for overall and cause-specific survival of the patients with GISTs. These results suggest that GISTs may be divided into mutation-positive and -negative subtypes. The prognosis was worse in patients with mutation-positive GISTs than in those with mutation-negative GISTs. Thus, mutation of the c-kit gene may be a good prognostic marker of GISTs.  相似文献   

6.
7.
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma, which may originate from impaired differentiation of mesenchymal stem cells (MSC). Expression of MET receptor is elevated in alveolar RMS subtype (ARMS) which is associated with worse prognosis, compared to embryonal RMS (ERMS). Forced differentiation of ARMS cells diminishes MET level and, as shown previously, MET silencing induces differentiation of ARMS. In ERMS cells introduction of TPR-MET oncogene leads to an uncontrolled overstimulation of the MET receptor downstream signaling pathways. In vivo, tumors formed by those cells in NOD-SCID mice display inhibited differentiation, enhanced proliferation, diminished apoptosis and increased infiltration of neutrophils. Consequently, tumors grow significantly faster and they display enhanced ability to metastasize to lungs and to vascularize due to elevated VEGF, MMP9 and miR-378 expression. In vitro, TPR-MET ERMS cells display enhanced migration, chemotaxis and invasion toward HGF and SDF-1. Introduction of TPR-MET into MSC increases survival and may induce expression of early myogenic factors depending on the genetic background, and it blocks terminal differentiation of skeletal myoblasts. To conclude, our results suggest that activation of MET signaling may cause defects in myogenic differentiation leading to rhabdomyosarcoma development and progression.  相似文献   

8.
We have investigated the mechanism by which two oncogenic mutations (M1268T and D1246H/N; Amino-acids are numbered according to Schmidt et al., 1999) affecting conserved residues in the catalytic domain of the Met receptor, activate its transforming potential. Both mutations were previously found in tumorigenic forms of the Ret and Kit receptors, respectively. The mutated residues are located either in the P+1 loop (M) or within the activation loop (A-loop) (D), which in a number of receptor tyrosine kinases harbors a pair of tandem tyrosines (Y1252-1253 in Met). Ligand-induced dimerization promotes their phosphorylation, and locks the A-loop into an open conformation. When unphosphorylated, the tandem tyrosines inhibit enzymatic activity by blocking the active site. Upon Y-->F mutation of Y1252-1253, neither ligand binding nor Tpr-mediated dimerization can release this block. Here we show that the M1268T mutation partially rescues the kinase activity (and the transforming ability) of the Y1252-1253F Tpr-Met mutant, but is completely dependent on dimerization for its effect. In contrast, the two D1246H/N mutants strictly depend on Y1252-1253 for activity. Surprisingly, however, they constitutively activate the isolated cytoplasmic TK domain of Met (Cyto-Met). These data indicate that the two mutations operate via distinct mechanisms.  相似文献   

9.
In patients with medullary thyroid carcinoma (MTC) and type 2A multiple endocrine neoplasia (MEN2A), mutations of cysteine residues in the extracellular juxtamembrane region of the RET receptor tyrosine kinase cause the formation of covalent receptor dimers linked by intermolecular disulfide bonds between unpaired cysteines, followed by oncogenic activation of the RET kinase. The close proximity to the plasma membrane of the affected cysteine residues prompted us to investigate the possible role of the transmembrane (TM) domain of RET (RET-TM) in receptor-receptor interactions underlying dimer formation. Strong self-association of the RET-TM was observed in a biological membrane. Mutagenesis studies indicated the involvement of the evolutionary conserved residues Ser-649 and Ser-653 in RET-TM oligomerization. Unexpectedly, RET-TM interactions were also abrogated in the A639G/A641R double mutant, first identified in a sporadic case of MTC. In agreement with this, no transforming activity could be detected in full-length RET carrying the A639G and A641R mutations, which remained fully responsive to glial cell-line-derived neurotrophic factor (GDNF) stimulation. When introduced in the context of C634R - a cysteine replacement that is prevalent in MEN2A cases - the A639G/A641R mutations significantly reduced dimer formation and transforming activity in this otherwise highly oncogenic RET variant. These data suggest that a strong propensity to self-association in the RET-TM underlies - and may be required for - dimer formation and oncogenic activation of juxtamembrane cysteine mutants of RET, and explains the close proximity to the plasma membrane of cysteine residues implicated in MEN2A and MTC syndromes.  相似文献   

10.
11.
12.
BACKGROUND: Gain-of-function mutations of the c-kit protooncogene, mainly clustered in the juxtamembrane domain, have been reported in a significant fraction of gastrointestinal (GI) stromal tumors (GISTs) that represent the most common mesenchymal tumor of the GI tract. Two families also have been described with a GIST predisposition syndrome with a germline c-kit mutation affecting either the juxtamembrane domain or the tyrosine kinase domain. Here, the authors report on a family in which the dominantly inherited trait of hyperpigmented spots was inherited from an individual who developed multiple GISTs with diffuse hyperplasia of the myenteric plexus by his son, who was affected with urticaria pigmentosa. METHODS: Screening for the c-kit mutation was performed by means of polymerase chain reaction-based denaturing gradient gel electrophoresis/constant denaturing gel electrophoresis followed by direct sequencing of abnormal conformers. Expression of KIT and CD34 was determined by immunohistochemistry. RESULTS: In peripheral blood DNA samples, both affected family members showed a previously undescribed c-kit mutation in the juxtamembrane domain, resulting in the substitution of alanine for valine(559). Mutation and polymorphic marker analyses on DNA samples from three GISTs and two skin biopsy specimens evidenced the same mutation in the heterozygous condition. Immunohistochemical examination showed coexpression of CD117 (c-kit) and CD34 in all independent GISTs and CD117 positivity in mast cells from the skin lesions. CONCLUSIONS: Comparative analysis of clinical presentation and mutation mapping in the families described to date point to the peculiar association of mast cells, melanocytic dysfunction, and GIST predisposition in carriers of c-kit mutations within the juxtamembrane domain.  相似文献   

13.
The MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) have been implicated in transformation of a variety of malignancies. Chronic or dysregulated activation of the MET/HGF pathway may lead to increased cell growth, invasion, angiogenesis, and metastasis, reduced apoptosis, altered cytoskeletal functions and other biological changes. It has been suggested that ligand activated MET stimulation can be sufficient for a transforming phenotype. In addition, amplification and activation mutations (germline and/or somatic) within the tyrosine kinase domain, juxtamembrane domain, or semaphorin domain have been identified for MET. MET gain-of-function mutations lead to either deregulated or prolonged tyrosine kinase activity, which are instrumental to its transforming activity. A number of therapeutic strategies targeting ligand-dependent activation or the kinase domain have been employed to inhibit MET. The different structural requirements for activation of signaling events and biological functions regulated by MET will be summarized. Therapeutic targets and current pre-clinical and clinical approaches will be described. Targeting the HGF/MET pathway, alone or in combination with standard therapies, is likely to improve present therapies in MET-dependent malignancies.  相似文献   

14.
PURPOSE: c-MET is believed to be an attractive receptor target for molecular therapeutic inhibition. TPR-MET, a constitutively active oncogenic variant of MET, serves as excellent model for testing c-MET inhibitors. Here, we characterized a small molecule c-MET inhibitor, PHA665752, and tested its cooperation with the mammalian target of rapamycin inhibitor as potential targeted therapy. EXPERIMENTAL DESIGN: The effect of PHA665752 treatment was determined on cell growth, motility and migration, apoptosis, and cell-cycle arrest of TPR-MET-transformed cells. Moreover, the effect of PHA665752 on the phosphorylation on MET, as well as its downstream effectors, p-AKT and p-S6K, was also determined. Finally, growth of TPR-MET-transformed cells was tested in the presence of PHA665752 and rapamycin. H441 non-small cell lung cancer (NSCLC) cells (with activated c-Met) were also tested against both PHA665752 and rapamycin. RESULTS: PHA665752 specifically inhibited cell growth in BaF3. TPR-MET cells (IC(50) < 0.06 micromol/L), induced apoptosis and cell cycle arrest. Constitutive cell motility and migration of the BaF3. TPR-MET cells was also inhibited. PHA665752 inhibited specific phosphorylation of TPR-MET as well as phosphorylation of downstream targets of the mammalian target of rapamycin pathway. When combined with PHA665752, rapamycin showed cooperative inhibition to reduce growth of BaF3. TPR-MET- and c-MET-expressing H441 NSCLC cells. CONCLUSIONS: PHA665752 is a potent small molecule-selective c-MET inhibitor and is highly active against TPR-MET-transformed cells both biologically and biochemically. PHA665752 is also active against H441 NSCLC cells. The c-MET inhibitor can cooperate with rapamycin in therapeutic inhibition of NSCLC, and in vivo studies of this combination against c-MET expressing cancers would be merited.  相似文献   

15.
Eph receptor tyrosine kinases play key roles in pattern formation during embryonic development, but little is known about the mechanisms by which they elicit specific biological responses in cells. Here, we investigate the role of tyrosines 605 and 611 in the juxtamembrane region of EphB2, because they are conserved Eph receptor autophosphorylation sites and demonstrated binding sites for the SH2 domains of multiple signaling proteins. Mutation of tyrosines 605 and 611 to phenylalanine impaired EphB2 kinase activity, complicating analysis of their function as SH2 domain binding sites and their contribution to EphB2-mediated signaling. In contrast, mutation to the negatively charged glutamic acid disrupted SH2 domain binding without reducing EphB2 kinase activity. By using a panel of EphB2 mutants, we found that kinase activity is required for the changes in cell-matrix and cell - cell adhesion, cytoskeletal organization, and activation of mitogen-activated protein (MAP) kinases elicited by EphB2 in transiently transfected cells. Instead, the two juxtamembrane SH2 domain binding sites were dispensable for these effects. These results suggest that phosphorylation of tyrosines 605 and 611 is critical for EphB2-mediated cellular responses because it regulates EphB2 kinase activity.  相似文献   

16.
G Caruana  A C Cambareri  L K Ashman 《Oncogene》1999,18(40):5573-5581
Alternate splicing of mRNA encoding c-KIT results in isoforms which differ in the presence or absence of four amino acids (GNNK) in the juxtamembrane region of the extracellular domain of the receptor. In this study we show that these isoforms of human c-KIT, expressed at similar levels in NIH3T3 cells, display differential effects on various attributes of transformation. The GNNK- isoform strongly promoted anchorage independent growth (colony formation in semi-solid medium), loss of contact inhibition (focus formation), and led to tumorigenicity in nude mice. In contrast, the GNNK+ isoform elicited colony formation but relatively poor focus formation and no tumorigenicity. Saturation binding analysis indicated that the isoforms do not differ significantly in their affinity for the KIT ligand, Steel Factor (SLF). Negligible ligand-independent receptor phosphorylation was observed in either case but, after ligand stimulation, the GNNK- isoform displayed more rapid and extensive tyrosine autophosphorylation and faster internalization. Both isoforms recruited the p85 subunit of phosphatidylinositol 3-kinase and led to similar phosphorylation of its downstream effector c-Akt, but the GNNK- isoform gave rise to more MAP kinase phosphorylation. Thus the c-KIT isoforms display different signalling characteristics and have different transforming activity in NIH3T3 cells.  相似文献   

17.
Tpr-Met, the oncogenic counterpart of the Met receptor, has been detected in gastric cancers, as well as in precursor lesions and in the adjacent normal gastric mucosa. This has prompted the suggestion that Tpr-Met may predispose to the development of gastric tumors. Given the sequence specificity of RNA interference, oncogenes activated by point mutation or rearrangements can be targeted while spearing the product of the wild-type allele. In this work, we report specific suppression of Tpr-Met expression and inhibition of Tpr-Met-mediated transformation and tumorigenesis by means of a short interfering RNA (siRNA) directed toward the Tpr-Met junction (anti-TM2). When delivered by a lentiviral vector, anti-TM2 siRNA was effective also in mouse embryonal fibroblasts or epithelial cells expressing high levels of Tpr-Met. Our results suggest that lentiviral-mediated delivery of anti-TM2 siRNA may be developed into a powerful tool to treat Tpr-Met-positive cancers.  相似文献   

18.
RET/PTC chimeric oncogenes are generated by the fusion of heterologous genes to the RET tyrosine kinase encoding domain. These rearrangements are typical of papillary thyroid carcinomas. RET/PTC1 is one of the most frequently found RET/PTC version and, in all the cases so far reported, it is invariably generated by the fusion of the first encoding exon of the H4 gene to the RET kinase encoding domain. This results in the generation of an oncogenic protein containing the first 101 residues of the H4 protein at the N-terminus. We report the isolation of a novel subtype of H4-RET fusion, designated RET/PTC1L, from a human papillary carcinoma of the thyroid and lymph node metastasis. At variance with the classic one, this novel rearrangement generates a protein containing the N-terminal 150 residues of H4. RET/PTC1L is able to transform NIH 3T3 cells; its transforming ability, however, is 5-fold lower than that of the classic RET/PTC1 isoform. We propose that RET/PTC1L is a novel chimeric oncogene involved in thyroid tumorigenesis; its low transforming ability may be one of the reasons explaining the low frequency by which it is found in human thyroid carcinomas.  相似文献   

19.
Analysis of seven candidate genes mapping in the 1-Mb region of the mouse pulmonary adenoma resistance 4 (Par4) locus revealed a single amino-acid change, consisting in a nonconservative Arg968Cys variation in the juxtamembrane domain of the Met proto-oncogene-encoded protein. The BALB/c strain (resistant allele) carried the Arg allele, whereas the SWR/J mouse strain (Par4-susceptible allele) carried the Cys variation, recently proven to functionally modulate tumorigenesis. Seven genetic linkage crosses herein analysed and six crosses reported in the literature pointed to the candidacy of the Met gene for Par4. Analysis of genomic DNA of 126 lung adenocarcinoma patients for the Met juxtamembrane domain revealed the same Arg/Cys variation at the mouse homologous position in one patient; two other patients carried additional variants in the same domain, suggesting a potential role for rare MET juxtamembrane variants in human lung cancer.  相似文献   

20.
We have previously shown that two alleles of the MET locus are independently rearranged in the chemically-treated human cell line MNNG-HOS. One allele is the TPR-MET oncogene which was activated by fusion of the MET locus on chromosome 7 with the TPR locus on chromosome 1. The second allele is found on a der(7)t(1;7)(q23;q32) chromosome and is characterized by a deletion of the amino-terminus of the MET extracellular ligand binding domain. Here we present a pulsed field gel electrophoresis analysis which reveals that the two MET allele rearrangements in MNNG-HOS cells are more complex than originally thought. The breakpoint in MET on der(7) has been molecularly cloned and, unexpectedly, we found that rearrangement in this allele involves sequences derived from chromosome 2. Moreover, the rearrangement producing der(7) involves an inversion of the MET locus or a more complex alteration. Analysis of hybrid cells containing TPR-MET demonstrated that both the upstream and downstream portions of MET are conserved in this rearrangement and that oncogene activation occurred by an insertion of TPR sequences into the MET locus. These findings illustrate that when examined at the molecular level some chromosome abnormalities can be extremely complex and, thus, are of limited value in gene mapping studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号