首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A bioanalytical method for the determination of dextromethorphan (DEX) and its metabolites dextrorphan (DTX), 3-methoxymorphinan (3MM), and 3-hydroxymorphinan (3HM) in human urine was developed for CYP2D6 phenotyping and CYP3A4 activity measurements in clinical pharmacology studies using dextromethorphan administered in a drinking solution as substrate. The method was evaluated by thorough conventional validation and by a cross-validation of the method with a previously applied method for dextromethorphan and dextrorphan only (CYP2D6 phenotyping). Cross-validation with the former method showed no significant differences in measured concentrations of volunteer samples. This guaranteed the consistency of epidemiologic data in the database collected from two methods. For the CYP2D6 and CYP3A4 evaluations, the clinical parameters are ratios of concentrations. It appeared that severe variance in individual concentrations generally did not influence the variance of ratios significantly, because experimental errors in concentrations of two analytes proved to correlate considerably. For CYP2D6 values around the antimodes, the chance of a misclassification is very small. The chance of classifying an extensive metabolizer as a poor metabolizer or vice versa is negligible. For CYP3A4 activity determinations it was concluded that in general a change in dextromethorphan/3-methoxymorphinan (DEX/3MM) ratios of 10% or more as detected with the current method, is a significant increase or decrease in the activity of CYP3A4. The authors concluded that they had obtained an analytically valid and clinically reliable bioanalytical method for the determination of dextromethorphan and its metabolites dextrorphan, 3-methoxymorphinan, and 3-hydroxymorphinan in human urine for CYP2D6 phenotyping and CYP3A4 activity measurements for clinical pharmacology studies.  相似文献   

2.
A simple, sensitive, and reproducible high-performance liquid chromatrography assay is described for the simultaneous determination of dextromethophan, dextrorphan, 3-hydroxymorphinan, and 3-methoxymorphinan in plasma and urine. A conventional solvent-solvent extraction procedure was used for the isolation of the analytes from plasma and urine samples. The compounds were separated on a cyano column (150 x 4.6 mm, 5-micron particle size) using a mobile phase of acetonitrile/triethylamine/distilled water (17:0.06:82.94, vol/vol), pH 3.0, and then were measured by fluorescence detection. Calibration curves in the range 2-200 ng/ml for plasma and 0.05-10 micrograms/ml for urine were linear and passed through the origin. The precision and accuracy were greater than 90% and the lowest detectable concentrations were 0.5 ng/ml for 3-hydroxymorphinan and 3-methoxymorphinan and 1 ng/ml for dextromethorphan and dextrophan in plasma. The utility of this method is demonstrated in a preliminary study of dextromethorphan metabolism and pharmacokinetics in man.  相似文献   

3.
The present study evaluates the usefulness of dextromethorphan N-demethylation activity indices to reflect cytochrome P450 (CYP) 3A activity in man. Indices of dextromethorphan N-demethylation activity were categorized as N1=3-methoxymorphinan/dextromethorphan, N2=3-hydroxymorphinan/dextrorphan, N3=(3-methoxymorphinan + 3-hydroxymorphinan)/(dextromethorphan + dextrorphan). Two mg of midazolam were administered orally to 22 Japanese male volunteers, and midazolam clearance determined. Thirty mg of dextromethorphan were also orally administered to these volunteers and N1, N2 and N3 indices determined by 12 hr urine collection. Results showed N2 and N3 were highly correlated (r>0.99, P<0.001), and significantly correlated to oral midazolam clearance (r=0.45, P<0.05); suggesting that N2 and N3 are more suitable than N, when using dextromethorphan as an index of individual CYP3A activity.  相似文献   

4.
Cytochromes mediating the biotransformation of dextromethorphan to dextrorphan and 3-methoxymorphinan, its principal metabolites in man, have been studied by use of liver microsomes and microsomes containing individual cytochromes expressed by cDNA-transfected human lymphoblastoid cells. In-vitro formation of dextrorphan from dextromethorphan by liver microsomes was mediated principally by a high-affinity enzyme (Km (substrate concentration producing maximum reaction velocity) 3–13 μM). Formation of dextrorphan from 25 μM dextromethorphan was strongly inhibited by quinidine (IC50 (concentration resulting in 50% inhibition) = 0.37 μm); inhibition by sulphaphenazole was approximately 18% and omeprazole and ketoconazole had minimal effect. Dextrorphan was formed from dextromethorphan by microsomes from cDNA-transfected lymphoblastoid cells expressing CYP2C9, ?2C19, and ?2D6 but not by those expressing CYP1A2, ?2E1 or ?3A4. Despite the low in-vivo abundance of CYP2D6, this cytochrome was identified as the dominant enzyme mediating dextrorphan formation at substrate concentrations below 10 μM. Formation of 3-methoxy-morphinan from dextromethorphan in liver microsomes proceeded with a mean Km of 259 μM. For formation of 3-methoxymorphinan from 25 μM dextromethorphan the IC50 for ketoconazole was 1.15 μM; sulphaphenazole, omeprazole and quinidine had little effect. 3-Methoxymorphinan was formed by microsomes from cDNA-transfected lymphoblastoid cells expressing CYP2C9, ?2C19, ?2D6, and ?3A4, but not by those expressing CYP1A2 or ?2E1. CYP2C19 had the highest affinity (Km = 49 μM) whereas CYP3A4 had the lowest (Km = 1155 μM). Relative abundances of the four cytochromes were determined in liver microsomes by use of the relative activity factor approach. After adjustment for relative abundance, CYP3A4 was identified as the dominant enzyme mediating 3-methoxymorphinan formation from dextromethorphan, although CYP2C9 and ?2C19 were estimated to contribute to 3-methoxymorphinan formation, particularly at low substrate concentrations. Although formation of dextrorphan from dextromethorphan appears to be sufficiently specific to be used as an in-vitro or in-vivo index reaction for profiling of CYP2D6 activity, the findings raise questions about the specificity of 3-methoxymorphinan formation as an index of CYP3A activity.  相似文献   

5.
It is important to estimate the defective metabolism caused by genetic polymorphism of drug metabolizing enzymes before the clinical stage. We evaluated the utility of cryopreserved human hepatocytes of CYP2D6 poor metabolizer (PM) for the estimation of the metabolism in PM using dextromethorphan (DEX) as the probe drug for CYP2D6 substrate. The results of low formations of dextrorphan (DXO) and 3-hydroxymorphinan (3-HM) in CYP2D6 PM hepatocytes incubated with dextromethorphan reflected the clinical data. Formation of 3-methoxymorphinan (3-MEM) normalized by CYP3A4/5 activity in the PM hepatocytes reached about 2.8-fold higher than that in CYP2D6 extensive metabolizer (EM) hepatocytes, which clearly showed the compensatory metabolic pathway of O-demethylation catalyzed by CYP2D6 as seen in clinical study. On the contrary, in the condition of the EM hepatocytes with CYP2D6 inhibitors, the enhancement of 3-MEM formation was not observed. In phase II reaction, the glucuronide formation rate of DXO in the PM hepatocytes was lower than that in the EM hepatocytes, which was consistent with clinical data of DXO-glucuronide (DXO-glu) concentration. These results would suggest that CYP2D6 PM hepatocytes could be a good in vitro tool for estimating CYP2D6 PM pharmacokinetics.  相似文献   

6.
The O-demethylation of dextromethorphan to dextrorphan in humans is catalyzed primarily by cytochrome P450 2D6 (CYP2D6). However, contrary to conventional wisdom, preparations of recombinant cytochrome P450 (P450) expressed from CYP2D6*1 cDNA also appear to produce significant amounts of 3-methoxymorphinan, the N-demethylated metabolite of dextromethorphan, when assayed in vitro. We hypothesized that both pathways were intrinsic to 2D6 and here further examine the kinetics of formation using a highly purified preparation of CYP2D6 in a reconstituted lipid system. Purified CYP2D6 protein with a measured molecular weight of 55772.0 (55769.6 Da predicted) was reconstituted into an active, lipid-vesicle environment with purified rat cytochrome P450 reductase before the addition of substrate and NADPH. Reaction kinetics were followed, and apparent Michaelis-Menten constants were determined for the appearance of each metabolite by high-pressure liquid chromatography, using both UV and fluorescence detection. In a 2-min assay, purified 2D6 catalyzed the formation of dextrorphan with an apparent K(m) value of 1.9 +/- 0.2 microM and a V(max) value of 8.5 +/- 0.2 nmol/nmol of P450/min and measured simultaneously the formation of 3-methoxymorphinan with an apparent K(m) value of 5000 +/- 700 microM and V(max) value of 176 +/- 12 nmol (nmol of P450)(-1) min(-1). These results indicate that at least two distinct binding orientations exist for dextromethorphan within the active site of CYP2D6.  相似文献   

7.
Steady state plasma concentrations of the (L)- and (D)-enantiomers of trimipramine (TRI), desmethyltrimipramine (DTRI), 2-hydroxytrimipramine (TRIOH) and 2-hydroxydesmethyl-trimipramine (DTRIOH) were measured in 27 patients receiving between 300 and 400 mg/day racemic TRI. The patients were phenotyped with dextromethorphan and mephenytoin, and the 8-hour urinary ratios of dextromethorphan/dextrorphan, dextromethorphan/3-methoxymorphinan, and (S)-mephenytoin/(R)mephenytoin were used as markers of cytochrome P-450IID6 (CYP2D6), CYP3A4/5 and CYP2C19 activities, respectively. One patient was a CYP2D6 and one was a CYP2C19 poor metabolizer. A stereoselectivity in the metabolism of TRI has been found, with a preferential N-demethylation of (D)-TRI and a preferential hydroxylation of (L)-TRI. CYP2D6 appears to be involved in the 2-hydroxylation of (L)-TRI, (L)DTRI and (D)-DTRI, but not of (D)-TRI, as significant correlations were measured between the dextromethorphan/dextrorphan ratios and the (L)-TRI/(L)-TRIOH (r = 0.45, p = 0.019), the (L)-DTRI/(L)-DTRIOH (r = 0.47, p = 0.014), and the (D)-DTRI/(D)-DTRIOH (r = 0.51, p = 0.006), but not with the (D)-TRI/(D)-TRIOH ratios (r = 0.29, NS). CYP2C19, but not CYP2D6, appears to be involved in the demethylation pathway, with a stereoselectivity toward the (D)-enantiomer of TRI, as a significant positive correlation was calculated between the mephenytoin (S)/(R) ratios and the concentrations to dose-to-weight ratios of (D)-TRI (r = 0.69, p = 0.00006). CYP3A4/5 appears to be involved in the metabolism of (L)-TRI to a presently not determined metabolite. The CYP2D6 poor metabolizer had the highest (L)-DTRI and (D)-DTRI concentrations to dose-to-weight ratios, and the CYP2C19 poor metabolizer had the highest (L)-TRI and (D)-TRI concentrations to dose-to-weight ratios of the group.  相似文献   

8.
We recently designed the CIME cocktail consisting of 10 drugs to assess the activity of the major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A), a phase II enzyme (UGT1A1/6/9), two drug transporters (P-gp and OATP1B1) and a component of the renal function ( Videau et al. 2010 ). The present work aimed at studying the usefulness of the CIME cocktail in the rat.The CIME cocktail was given per os to three male and three female rats, or incubated with rat liver microsomes. Parent substrates and metabolites were quantified by LC-MS/MS in plasma, urine and hepatic microsomal media, and phenotyping index were subsequently calculated.The CIME cocktail could therefore be used in the rat to phenotype rapidly and simultaneously CYP3A1/2 with omeprazole/omeprazole-sulfone, midazolam/1'-hydroxymidazolam or 4-hydroxymidazolam and/or dextromethorphan/3-methoxymorphinan, CYP2C6/11 with tolbutamide/4-hydroxytolbutamide, CYP2D1/2 with omeprazole/5-hydroxyomeprazole or dextromethorphan/dextrorphan, and UGT1A6/7 with acetaminophen/acetaminophen-glucuronide. Our results confirmed also several known gender differences and brought new information on the urinary excretion of rosuvastatin. However, the major rat CYPs, CYP2C11 and CYP2C12, are not specifically assessed. An optimized version of the CIME cocktail should therefore be designed and would be of major importance to more largely phenotype DMPK enzymes in rats to study DMPK variability factors such as disease, age, or to exposure to inductors or inhibitors.  相似文献   

9.
Honey is a common food supplement but not many studies have studied honey and drug interaction. This study investigates the influence of 7 days of honey administration on the activity of CYP3A4, CYP2D6 and CYP2C19 drug-metabolizing enzymes in healthy volunteers by using appropriate biomarker and probe drugs. A within-group pharmacokinetic study was done in 12 healthy volunteers. Urine samples (0-8 hr) were collected after administration of 30 mg of oral dextromethorphan (probe drug for CYP2D6) for analysis of dextromethorphan and dextrorphan. A plasma sample (4 hr) was collected after administration of 200 mg of oral proguanil (probe drug for CYP2C19) for the analysis of proguanil and cycloguanil. Urine samples (0-24 hr) were collected for the analysis of 6beta-hydroxycortisol (biomarker for CYP3A4). The volunteers were administered honey for 7 days. Subsequently blood and urine samples were collected after drug dosing as before. These samples were analysed for drug and metabolite concentrations in urine and plasma using high performance liquid chromatography method. Seven days of honey administration resulted in statistically significant increase in 24-hr urinary excretion of 6beta-hydroxycortisol. However, the metabolic ratios of dextromethorphan and proguanil were not significantly altered after 7 days of honey administration. Honey obtained from Western Ghats of southern India may induce CYP3A4 enzyme activity but not CYP2D6 and CYP2C19 enzyme activities.  相似文献   

10.
Present study investigated the potential effects of Ferula asafetida resin on metabolic activities of human drug metabolizing enzymes: CYP2D6 and CYP3A4. Dextromethorphan (DEX) was used as a marker to assess metabolic activities of these enzymes, based on its CYP2D6 and CYP3A4 mediated metabolism to dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. In vitro study was conducted by incubating DEX with human liver microsomes and NADPH in the presence or absence of Asafetida alcoholic extract. For clinical study, healthy human volunteers received a single dose of DEX alone (phase-I) and repeated the same dose after a washout period and four-day Asafetida treatment (phase-II). Asafetida showed a concentration dependent inhibition on DOR formation (in vitro) and a 33% increase in DEX/DOR urinary metabolic ratio in clinical study. For CYP3A4, formation of 3-MM in microsomes was increased at low Asafetida concentrations (10, 25 and 50 μg/ml) but slightly inhibited at the concentration of 100 μg/ml. On the other hand, in vivo observations revealed that Asafetida significantly increased DEX/3-MM urinary metabolic ratio. The findings of this study suggest that Asafetida may have a significant effect on CYP3A4 metabolic activity. Therefore, using Ferula asafetida with CYP3A4 drug substrates should be cautioned especially those with narrow therapeutic index such as cyclosporine, tacrolimus and carbamazepine.  相似文献   

11.
Genetic polymorphism of the cytochrome P450 isoenzymes CYP2D6 and CYP2C19 was determined by phenotyping four ethnic groups of the Israeli population. The groups consisted of Ethiopian subjects, Yemenite subjects, and Russian subjects representing first-generation new immigrants and an Israeli Arab group. Dextromethorphan was used as the probe for CYP2D6 activity and mephenytoin was used for CYP2C19 activity. The two drugs were administered simultaneously and urine samples were collected over a period of 8 hours. The CYP2D6 phenotype was determined from the ratio of dextromethorphan conversion to dextrorphan and the CYP2C19 phenotype from the ratio of S-mephenytoin and R-mephenytoin. The used liquid chromatographic method was able to completely separate dextrorphan and dextromethorphan. Fluorescence detection allowed dextromethorphan quantification at 1 ng/mL. Mephenytoin enantiomers were completely separated in high-performance liquid chromatography and the respective fractions were collected and analyzed using a gas chromatography/mass spectrometry system with selective ion monitoring. The prevalence of poor metabolizer phenotype of dextromethorphan (CYP2D6) in the Yemenite (0%) and Ethiopian groups (0%) was significantly different from the prevalence in the Russian (17%) and Israeli Arab (9%) groups. A significant difference was also found in the distribution of the metabolic ratio of the extensive metabolizer phenotype between the Ethiopian group and the Russian and Yemenite groups. No significant difference was found in the prevalence of poor mephenytoin metabolizer phenotype (CYP2C19) between the Yemenite (8%), Ethiopian (6%), Russian (9%), and Israeli Arab (8%) groups. No difference was observed in the distribution of metabolic ratio within the extensive metabolizer phenotype subgroups of the four ethnic groups.  相似文献   

12.
A method for simultaneous phenotyping and genotyping for CYP2D6 and CYP2C19 was tested. Six healthy volunteers were selected (three extensive and three poor metabolisers for CYP2D6). CYP2D6 was probed with dextromethorphan and metoprolol and CYP2C19 was probed with omeprazole. Blood samples were collected and analysed for dextromethorphan, dextrorphan, metoprolol, alpha-hydroxymetoprol, omeprazole and 5-hydroxyomeprazole by HPLC. Genotyping was performed for both CYP2D6 and CYP2C19. Generally, plasma levels could be measured up to 8 h post-dose except for alpha-hydroxymetoprolol in poor metabolizers (PMs) and dextromethorphan in extensive metabolizers (EMs) (35% below quantification limit). The correlation between the metabolic ratio based on timed individual measurements and the metabolic ratio based on the AUC0-12 values was significant at 3 h post-dose for all probes. In conclusion, the following procedure is suggested: administer metoprolol (100 mg) and omeprazole (40 mg); after 3 h, take a blood sample to assess the genotype and the metabolic ratio for CYP2D6 (metoprolol over alpha-hydroxymetoprolol) and CYP2C19 (omeprazole over 5-hydroxyomeprazole) in plasma. With this procedure, all necessary information on the individual CYP2D6 and CYP2C19 metabolising capacity can be obtained in a practical, single-sample approach.  相似文献   

13.
Dextromethorphan is used widely in vivo to phenotype the polymorphically expressed cytochrome P450 (CYP) 2D6. Also dextromethorphan is N-demethylated in vivo to 3-methoxymorphinan by human CYP3A4/5. The metabolic ratio (MR) of dextromethorphan/3-methoxymorphinan in plasma, saliva and urinary were examined as a possible in vivo probe of CYP3A activity. In limited previous studies, 4 h urinary samples were collected for determining the MR. To evaluate the repeatability and validity of previously reported and other potential phenotyping methods, the MR from urine samples (at various intervals), from plasma and from saliva (at varying time points) were determined after repetitive single doses of immediate-release or repetitive multiple doses of controlled-release dextromethorphan preparations. For the single-dose study, each of 12 subjects received 15 mg of immediate-release dextromethorphan in periods II and I, respectively, with a 1 week washout period. For the multiple dose study, each of 16 subjects received 60 mg controlled release dextromethorphan twice daily for 5 days in periods I and II, respectively, with a 2 week washout period. Dextromethorphan and 3-methoxymorphinan are assayed by high-performance liquid chromatography. In the single-dose study, all of the urine MR revealed good repeatabilities for the periods (paired t-test). The urine MR at any time interval of 0-6 h, 0-8 h and 0-12 h correlated significantly with the MR from 0-24 h urine (r>0.8, p<0.05). In the multiple-dose study, all MR revealed good repeatabilities for the two periods (paired t-test). The plasma MR at any time between 0.5 h and 12 h, the saliva MR at 12 h and the urine MR at any interval between 0-2 h, 0-4 h, 0-6 h, 0-8 h, 0-12 h and 0-24 h could predict the MR from AUCtau(ss). In conclusion, the urine sample as 0-6 h, 0-8 h or 0-12 h in the single immediate-release dose (15 mg) or in the multiple controlled-release dose (60 mg) procedure, the saliva sample at 12 h, the urine sample at 0-2 h, 0-4 h, 0-6 h, 0-8 h, 0-12 h, 0-24 h or all plasma-sampling points 0.5-12 h could be used as the dextromethorphan MR for determining the CYP3A activity.  相似文献   

14.
Cytochrome P450 2D6 (CYP2D6) mediated formation of dextrorphan (DOR) from dextromethorphan (DEX) is widely used as a marker to assess the activity of this enzyme both in vitro and in vivo. The sequential metabolism of DOR during in vitro studies, particularly using recombinant systems (rCYPs) expressing human CYP2D6, is assumed to be negligible. The extent of metabolism was investigated for a range of DEX and DOR concentrations in microsomal preparations from three different rCYPs expressing human CYP2D6 (yeast, Supersomes and Bactosomes) containing 10 pmol of the enzyme. Bactosomes and Supersomes, but not yeast rCYP microsomes, were capable of metabolising DOR to 3-hydroxymorphinan (HYM). Two novel CYP2D6 related metabolites were identified in Bactosomes, and assigned as single hydroxylations in the phenyl rings of DOR and HYM using ion-trap mass spectrometry. Therefore, in rCYP systems with high turn over rate (e.g. Bactosomes) DOR may not be considered as an end product particularly at low concentrations of DEX; leading to an underestimation of true metabolic rate. The results also put further emphasis on the necessity of optimising study conditions when switching between rCYP sources.  相似文献   

15.
The effect of the new antidepressant reboxetine on the activity of the cytochrome P450 (CYP) 2D6 isoenzyme was investigated in 10 healthy volunteers using dextromethorphan as a model CYP2D6 substrate. Each volunteer received a single 30 mg oral dose of dextromethorphan on three different occasions separated by an interval of at least 4 weeks: a) in a control session; b) after 1 week of treatment with reboxetine, 8 mg/day; and c) after 1 week of treatment with paroxetine (an inhibitor of CYP2D6 activity) 20 mg/day. Urine was collected over the next 8 hours for the determination of the dextromethorphan/dextrorphan metabolic ratio. All subjects were classified as extensive metabolizers (EM) with a dextromethorphan/dextrorphan ratio < 0.3. There were no notable changes in the urinary dextromethorphan/dextrorphan ratio in the reboxetine phase as compared to the control session. By contrast, there was a statistically significant increase in the metabolic ratio in the paroxetine phase (p < 0.001), with 4 subjects switching to poor metabolizer (PM) phenotype. These results suggest that reboxetine is unlikely to cause clinically significant interactions with substrates of CYP2D6.  相似文献   

16.
A high-performance liquid chromatography (HPLC) assay for the simultaneous quantitation of dextromethorphan and its O-demethylated metabolite dextrorphan from urine is described. A cyano analytical column was used with a mobile phase consisting of MeOH 16%, acetonitrile 3%, and triethylamine 0.06% at pH 2.8 and a flow rate of 1.0 ml/min. Betaxolol was used as the internal standard. Standard curves from 50 ng/ml to 10,000 ng/ml (dextrorphan), and from 50 ng/ml to 8,000 ng/ml (dextromethorphan) were developed. The peaks eluted at 7.8 min (dextrorphan), 12.2 min (betaxolol), and 17.8 min (dextromethorphan). The coefficients of variance ranged from 1.3 to 4.5% at 250 ng/ml and 0.9 to 2.5% at 5,000 ng/ml. This assay was used to determine dextromethorphan/dextrorphan molar ratios in healthy male volunteers for the purpose of determining phenotype status for the P450IID6 isozyme.  相似文献   

17.
Both indinavir and troleandomycin (CYP3A inhibitors) are incapable of completely inhibiting dextromethorphan metabolism to 3-methoxymorphinan in human liver microsomes. It is hypothesized that CYPs in addition to CYP3A4 and 3A5 contribute to this biotransformation. The effect of CYP-selective inhibitors on the residual 3-methoxymorphinan activity in human liver microsomes (i.e. in the presence of 30 microM indinavir, a selective CYP3A4 and 3A5 inhibitor) was measured to identify these enzymes. At this concentration, indinavir completely inhibited the formation of 3-methoxymorphinan by rCYP3A4 and rCYP3A5. In addition, the formation kinetics of 3-methoxymorphinan in rCYPs was measured. Only CYP2B6, 2C8 and 2C18 were considered likely candidates as contributors to residual 3-methoxymorphinan activity. The residual 3-methoxymorphinan activity was highly correlated with CYP2B6 activity as measured by CYP2B6 antibody (r(2)=0.90, p<0.001) and by orphenadrine (r(2)=0.97, p<0.001), but was not correlated (r(2)=0.12, p>0.05) with CYP2C8 activity. Collectively, these findings suggest that CYP2B6 is a major contributor towards residual 3-methoxymorphinan activity, while CYP2C8 and 2C18 are either minor contributors or do not contribute to this metabolic process.  相似文献   

18.
Dextromethorphan, an antitussive, has a complex pharmacologic profile and has not been well studied. Our aim was to evaluate whether dextromethorphan and its metabolites, dextrorphan and 3-methoxymorphinan, have a spinal anaesthetic effect. Using a method of spinal blockade in rats, we evaluated the potencies and durations of the effects of dextromethorphan and its metabolites on spinal blockades of motor function and nociception. Bupivacaine was the active control. We found that dextromethorphan and its metabolites produced a dose-related spinal blockade of motor function and nociception. On an ED(50) basis, the ranks of potencies were bupivacaine>dextrorphan>3-methoxymorphinan>dextromethorphan (p<0.05 for the differences). On an equipotent basis, dextrorphan and bupivacaine produced similarly longer nociceptive blockades than did dextromethorphan and 3-methoxymorphinan (p<0.05 for the differences). Co-administration of dextromethorphan or its metabolites with bupivacaine produced an additive effect. In conclusion, intrathecal injections of dextromethorphan or its metabolites, dextrorphan and 3-methoxymorphinan, produced dose-related spinal blockades of motor function and nociception. The suitability of these drugs as clinical spinal anaesthetics is worth further evaluation.  相似文献   

19.
Inhibition of CYP2D6 activity by bupropion   总被引:4,自引:0,他引:4  
The purpose of this study was to assess the effect of bupropion on cytochrome P450 2D6 (CYP2D6) activity. Twenty-one subjects completed this repeated-measures study in which dextromethorphan (30-mg oral dose) was administered to smokers at baseline and after 17 days of treatment with either bupropion sustained-release (150 mg twice daily) or matching placebo. Subjects quit smoking 3 days before the second dextromethorphan administration. To assess CYP2D6 activity, urinary dextromethorphan/dextrorphan metabolic ratios were calculated after an 8-hour urine collection. Thirteen subjects received bupropion, and 8 received placebo. In those receiving active medication, the dextromethorphan/dextrorphan ratio increased significantly at the second assessment relative to the first (0.012 +/- 0.012 vs. 0.418 +/- 0.302; P < 0.0004). No such change was observed in those randomized to placebo (0.009 +/- 0.010 vs. 0.017 +/- 0.015; P = NS). At baseline, all subjects were phenotypically extensive CYP2D6 metabolizers (metabolic ratio <0.3); after treatment, 6 of 13 subjects receiving bupropion, but none of those receiving placebo, had metabolic ratios consistent with poor CYP2D6 metabolizers. Bupropion is therefore a potent inhibitor of CYP2D6 activity, and care should be exercised when initiating or discontinuing bupropion use in patients taking drugs metabolized by CYP2D6.  相似文献   

20.
Dextromethorphan has been used as an antitussive for more than 40 years and is considered a drug with a good margin of safety. The aim of the study was to evaluate whether dextromethorphan and its metabolites--3-methoxymorphinan and dextrorphan--had local anaesthetic effects. Using a method of sciatic nerve blockade in rats, the potencies and durations of actions of dextromethorphan and its metabolites on sciatic nerve blockades of motor function, proprioception, and nociception were evaluated. Lidocaine was used as control. We found that dextromethorphan and its metabolites produced dose-related local anaesthetic effects on sciatic nerve blockades of motor function, proprioception, and nociception. The ranks of potencies were lidocaine>dextromethorphan>3-methoxymorphinan>dextrorphan (P<0.01 for each comparison). Under an equi-potent basis, dextrorphan and 3-methoxymorphinan had durations of actions longer than that of lidocaine (P<0.05 for each comparison). Co-administration of dextromethorphan or its metabolites with lidocaine produced an additive effect on sciatic nerve blockades. In conclusion, dextromethorphan and its metabolites - 3-methoxymorphinan and dextrorphan- had a local anaesthetic effect on sciatic nerve blockades of motor function, proprioception and nociception with durations of actions longer than that of lidocaine. Co-administration of dextromethorphan and its metabolites produced an additive effect on sciatic nerve blockades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号