首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ryanodine, a blocker for Ca2+-release channels of the sarcoplasmic reticulum (SR Ca2+-release channels), induces depression of myocardial contraction in isolated intact muscle, which is consistent with depression of the caffeine-induced tension transient in skinned muscle fibers. In isolated SR, ryanodine binds to a specific receptor with high affinity, and this binding is enhanced by caffeine and increasing Ca2+ and decreased by increasing Mg2+. The aim of this study was to test the hypothesis that depression of myocardial contraction is mediated by changes in ryanodine-receptor binding properties. Accordingly, factors (caffeine, Ca2+, and Mg2+) affecting ryanodine-receptor binding properties in the isolated SR membrane were studied in skinned myocardial fibers from adult rabbits. The depression of the caffeine-induced tension transient by ryanodine (ryanodine depression) influenced by these three factors was measured. In a dose-dependent manner, increasing caffeine or Ca2+ concentrations enhanced the ryanodine depression. The concentrations for 50% ryanodine depression (IC50) approximated 7mM for caffeine, and pCa 5.25 for Ca2+. When 1 M ryanodine and 25 mM caffeine were combined, ryanodine depression was independent of Ca2+ at low Ca2+ concentrations (20%–30% at pCa>8 and 7.5) and was a direct function of Ca2+ at higher concentrations (pCa 7.5–6.0 with IC50 approx. pCa 6.75). In contrast, increasing Mg2+ reduced the ryanodine depression with IC50 approximately equal to pMg 3.3. In conclusion, the caffeineor Ca2+-enhanced, and Mg2+-reduced ryanodine depression observed in this study is consistent with known ryanodinereceptor binding properties.  相似文献   

2.
 The effect of intracellular Cl on Ca2+ release in mechanically skinned fibres of rat extensor digitorum longus (EDL) and toad iliofibularis muscles was examined under physiological conditions of myoplasmic [Mg2+] and [ATP] and sarcoplasmic reticulum (SR) Ca2+ loading. Both in rat and toad fibres, the presence of 20 mM Clin the myoplasm increased Ca2+ leakage from the SR at pCa (i.e. –log10 [Ca2+]) 6.7, but not at pCa 8. Ca2+ uptake was not significantly affected by the presence of Cl. This Ca2+-dependent effect of Cl on Ca2+ leakage was most likely due to a direct action on the ryanodine receptor/Ca2+ release channel, and could influence channel sensitivity and the resting [Ca2+] in muscle fibres in vivo. In contrast to this effect, acute addition of 20 mM Cl to the myoplasm caused a 40–50% reduction in Ca2+ release in response to a low caffeine concentration both in toad and rat fibres. One possible explanation for this latter effect is that the addition of Cl induces a potential across the SR (lumen negative) which might reduce Ca2+ release via several different mechanisms. Received: 20 October 1997 / Received after revision: 1 December 1997 / Accepted: 2 December 1997  相似文献   

3.
 Ruthenium red inhibits mitochondrial Ca2+ uptake and is widely used as an inhibitor of ryanodine-sensitive Ca2+ channels that function to release Ca2+ from the sarcoplasmic reticulum (SR) of muscle cells. It also has effects on other Ca2+ channels and ion transporters. To study the effects of ruthenium red on Ca2+ transport into the SR of cardiac muscle cells, fluorescence measurements of Ca2+ uptake into cardiac SR vesicles were made. Ruthenium red significantly decreased the Ca2+ sensitivity of SR uptake in a dose-dependent manner at concentrations ranging from 5 μM to 20 μM. There were no significant effects of ruthenium red on the maximum velocity or the Hill coefficient of SR Ca2+ uptake. Received: 14 January 1998 / Received after revision: 12 March 1998 / Accepted: 16 March 1998  相似文献   

4.
Ca2+-dependent modulation via calmodulin (CaM) has been documented for most high-voltage-activated Ca2+ channels, but whether the skeletal muscle L-type channel (Cav1.1) exhibits this property has been unknown. In this paper, whole-cell current and fluorescent resonance energy transfer (FRET) recordings were obtained from cultured mouse myotubes to test for potential involvement of CaM in function of Cav1.1. When prolonged depolarization (800 ms) was used to evoke Cav1.1 currents in normal myotubes, the fraction of current remaining at the end of the pulse displayed classic signs of Ca2+-dependent inactivation (CDI), including U-shaped voltage dependence, maximal inactivation (~30%) at potentials eliciting maximal inward current, and virtual elimination of inactivation when Ba2+ replaced external Ca2+ or when 10 mM BAPTA was included in the pipette solution. Furthermore, CDI was virtually eliminated (from 30 to 8%) in normal myotubes overexpressing mutant CaM (CaM1234) that does not bind Ca2+, whereas CDI was unaltered in myotubes overexpressing wild-type CaM (CaMwt). In addition, a significant FRET signal (E = 4.06%) was detected between fluorescently tagged Cav1.1 and CaMwt coexpressed in dysgenic myotubes, demonstrating for the first time that these two proteins associate in vivo. These findings show that CaM associates with and modulates Cav1.1. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.  相似文献   

5.
The present study was carried out to investigate the contribution of the Ca2+-transport ATPase of the sarcoplasmic reticulum (SR) to caffeine-induced Ca2+ release in skinned skeletal muscle fibres. Chemically skinned fibres of balb-C-mouse EDL (extensor digitorum longus) were exposed for 1 min to a free Ca2+ concentration of 0.36 μM to load the SR with Ca2+. Release of Ca2+ from the SR was induced by 30 mM caffeine and recorded as an isometric force transient. For every preparation a pCa/force relationship was constructed, where pCa = −log10 [Ca2+]. In a new experimental approach, we used the pCa/force relationship to transform each force transient directly into a Ca2+ transient. The calculated Ca2+ transients were fitted by a double exponential function: Y 0 + A 1⋅exp (−t/t 1) + A 2⋅exp(t/t 2), with A 1 < 0 < A 2, t 1 < t 2 and Y 0, A 1, A 2 in micromolar. Ca2+ transients in the presence of the SR Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) were compared to those obtained in the absence of the drug. We found that inhibition of the SR Ca2+-ATPase during caffeine-induced Ca2+ release causes an increase in the peak Ca2+ concentration in comparison to the control transients. Increasing CPA concentrations prolonged the time-to-peak in a dose-dependent manner, following a Hill curve with a half-maximal value of 6.5 ± 3 μM CPA and a Hill slope of 1.1 ± 0.2, saturating at 100 μM. The effects of CPA could be simulated by an extended three-compartment model representing the SR, the myofilament space and the external bathing solution. In terms of this model, the SR Ca2+-ATPase influences the Ca2+ gradient across the SR membrane in particular during the early stages of the Ca2+ transient, whereas the subsequent relaxation is governed by diffusional loss of Ca2+ into the bathing solution. Received: 2 February 1996/Accepted: 1 April 1996  相似文献   

6.
The hypothesis that calmodulin (CaM) may act as a positive modulator of junctional SR Ca2+-release channel/ryanodine receptor (RyR1) rests largerly on the demonstrated capacity of CaM to interact structurally and functionally with RyR1 at pCa > 8 (Tripathy et al., 1995). The goal of the present [3H]-ryanodine binding study was to produce, in isolated terminal cisternae (TC) and in purified junctional face membrane (JFM), CaM-mediated activation of RyR1 at less extreme pCa values, i.e. closer to resting myoplasmic pCa, and to analyze more accurately the corresponding changes in binding affinity for ryanodine of the receptor. We were able to monitor these changes at an optimum pCa of 6.5, following pre-activation of native RyR1 by mM concentrations of caffeine or M concentrations of antraquinone compound doxorubicin, and at various doses of these triggers. CaM increased the affinity of ryanodine binding to isolated TC in the presence of 1 mM AMP–PCP as an activator of RyR1; the K d for ryanodine binding was reduced from 21.8 nM to 13.2 nM by 1 M CaM. Similar effects of CaM were seen when AMP–PCP was replaced by either caffeine or doxorubicin. In order to discount the involvement of SR extra-junctional proteins in this effect, the experiments were repeated on purified JFM. Again, CaM increased the affinity of ryanodine binding; the K d was reduced from 11.1 nM to 7.0 nM by 1 M CaM (in the presence of doxorubicin). Pharmacological triggers of CaM-activatory action on native RyR1, like caffeine and doxorubicin, have long been characterized for their ability to activate RyR1 by increasing the Ca2+-sensitivity of the receptor. We speculate that the triggering effect of these agents on the CaM-mediated mechanism in vitro might mimick one of the early effects of the activation of RyR1 in skeletal muscle, during E–C coupling.  相似文献   

7.
Summary The local anaesthetics, tetracaine and procaine have previously been found to block, induce or potentiate Ca2+ release from the sarcoplasmic reticulum (SR) of skeletal muscle depending on the preparation, experimental conditions and design. We now show that low concentrations of tetracaine and procaine block SR Ca2+ release whereas high concentrations induce release from the SR of amphibian and mammalian skinned fibres. Both actions depend on pCa, such that a shift in pCa can alter their effect from blocking to releasing Ca2+. In skinned fibres with Ca2+-loaded SR, tetracaine (1mm) produced a tonic contraction with a time to half-peak of 15–20 s and a magnitude reaching 80% of maximum force. Ca2+ release by tetracaine or procaine occured at pCa 6.5 and was not blocked by Ruthenium Red (RR) (25 m). This action of tetracaine was attributed to SR Ca2+ release rather than to a displacement of bound Ca2+ because fibres lacking a functional SR due to pre-treatment with quercetin (100 m), A 23187 (100 g ml–1) or Triton X-100 (1%) did not contract after additions of tetracaine. Lower concentrations of tetracaine (0.5mm) and procaine (10mm) blocked contractions due to caffeine (at pCa 6.73), sulphydryl oxidizing agents, or Ca2+-induced Ca2+ release (CICR). The inhibition of CICR as a function of pCa was difficult to measure quantitatively since lowering pCa to elicit CICR twitches was sufficient to initiate tetracaine-induced tonic contractions.Experiments with isolated SR vesicles showed that 1mm tetracaine inhibited CICR, over a wide range of pCa but 3–5mm tetracaine induced rapid Ca2+ release. The opposite effects of tetracaine and procaine depend mostly on their concentration in SR vesicles and/or pCa in skinned fibres. Blockade of release seems to occur via the CICR pathway, and induction of release through an increase in SR membrane permeability.Abbreviations SR sarcoplasmic reticulum - HEPES N-2-hydroxy-ethylpiperazine-N1-2-ethanesulphonic acid - EGTA ethylene glycol bis (-aminoethyl ether)-N,N,N1,-N1-tetraacetic acid - CICR Ca2+-induced Ca2+ release - MOPS morpholinopropane sulphonic acid - RR Ruthenium Red  相似文献   

8.
The role of inositol 1,4,5-trisphosphate [Ins(1,4,5)P 3] in excitation-contraction coupling in cardiac muscle is still unclear, although many laboratories are beginning to assume a critical role for this putative second messenger. Earlier studies from this laboratory [Nosek et al. (1986) Am J Physiol 250:C807] found that Ins(1,4,5)P 3 enhanced spontaneous Ca2+ release and the caffeine sensitivity of Ca2+ release from myocardial sarcoplasmic reticulum (SR) and proposed an increase in the Ca2+ sensitivity of the release as a possible mechanism. In order to clarify the phyisological relevance of these actions of Ins(1,4,5)P 3 and specifically to test the effect of Ins(1,4,5)P 3 on the Ca2+ sensitivity of Ca2+ release, we compared the effects of Ins(1,4,5)P 3 on Ca2+ oscillations and on Ca2+-induced Ca2+ release (CICR) from the SR in saponin-skinned rat papillary muscle. We found that: (a) 30 M Ins(1,4,5)P 3 enhanced the Ca2+ oscillations (measured by tension oscillations) from the rat cardiac SR, consistent with the previous report on guinea pig tissue; (b) both GTP and GTP[S] enhanced Ca2+ oscillations. The effect was not additive to that of Ins(1,4,5)P 3 indicating that two different Ca2+-release pools do not exist in cardiac SR; (c) 30 M Ins(1,4,5)P 3 had no effect on the Ca2+ sensitivity of CICR; (d) Ins(1,4,5)P 3 (up to 30 M) had no effect on SR Ca2+ loading. The studies were performed in the presence of Cd2+ or 2,3-bisphosphoglycerate, agents that inhibit Ins(1,4,5)P 3 hydrolysis. These results suggest that: (a) two different mechanisms underlie Ca2+ oscillations and CICR, Ins(1,4,5)P 3 influencing Ca2+ oscillations but not CICR; (b) Ins(1,4,5)P 3 does not increase the Ca2+ sensitivity of Ca2+ release from the SR; (c) cardiac muscle is different from smooth muscle where Ca2+ release from the SR is dependent upon GTP; (d) the physiological role of Ins(1,4,5)P 3 in excitation-contraction coupling in cardiac muscle is minimal. In contrast, Ins(1,4,5)P 3 may play a pathological role in cardiac arrhythmogenesis by enhancing spontaneous Ca2+ ocsillations.  相似文献   

9.
In skeletal muscle, there is bidirectional signalling between the L-type Ca2+ channel (1,4-dihydropyridine receptor; DHPR) and the type 1 ryanodine-sensitive Ca2+ release channel (RyR1) of the sarcoplasmic reticulum (SR). In the case of “orthograde signalling” (i.e., excitation-contraction coupling), the conformation of RyR1 is controlled by depolarization-induced conformational changes of the DHPR resulting in Ca2+ release from the SR. “Retrograde coupling” is manifested as enhanced L-type current. The nature of this retrograde signal, and its dependence on RyR1 conformation, are poorly understood. Here, we have examined L-type currents in normal myotubes after an exposure to ryanodine (200 μM, 1 h at 37°C) sufficient to lock RyR1 in a non-conducting, inactivated, conformational state. This treatment caused an increase in L-type current at less depolarized test potentials in comparison to myotubes similarly exposed to vehicle as a result of a ~5 mV hyperpolarizing shift in the voltage-dependence of activation. Charge movements of ryanodine-treated myotubes were also shifted to more hyperpolarizing potentials (~13 mV) relative to vehicle-treated myotubes. Enhancement of the L-type current by ryanodine was absent in dyspedic (RyR1 null) myotubes, indicating that ryanodine does not act directly on the DHPR. Our findings indicate that in retrograde signaling, the functional state of RyR1 influences conformational changes of the DHPR involved in activation of L-type current. This raises the possibility that physiological regulators of the conformational state of RyR1 (e.g., Ca2+, CaM, CaMK, redox potential) may also affect DHPR gating.  相似文献   

10.
Thapsigargin (TG) and cyclopiazonic acid (CPA) have been reported to be potent inhibitors of the sarcoplasmic reticulum (SR) Ca2+ uptake in isolated SR vesicles and cells. We have examined the effect of TG and CPA on (1) the Ca2+ uptake by the SR in saponin-skinned rat ventricular trabeculae, using the amplitude of the caffeine-induced contraction to estimate the Ca2+ content loaded into the SR, (2) the spontaneous Ca2+ oscillations at pCa 6.6 using force oscillation as the indicator, and (3) the myofilament Ca2+ sensitivity in Triton X-100-treated preparations. Inhibition of Ca2+ loading by TG and CPA increased with time of exposure to the inhibitor over 18–24 min. TG and CPA produced half inhibition of Ca2+ loading at 34.9 and 35.7 μM respectively, when 18–24 min were allowed for diffusion. The spontaneous force oscillations were more sensitive to the inhibitors: 10 μM TG and 30 μM CPA both abolished the oscillations in this time. The myofilament Ca2+ sensitivity was not affected by 10 and 300 μM TG or CPA. The results show that the concentrations of TG and CPA necessary to inhibit the SR Ca2+ uptake of skinned ventricular trabeculae are much higher than the reported values for single intact myocytes. One reason for this may be slow diffusion of the inhibitors into the multicellular trabecula preparation. Received: 28 July 1995/Received after revision: 11 December 1995/Accepted: 18 December 1995  相似文献   

11.
In single bovine aortic endothelial (BAE) cells pre-loaded with Fura-2, Ca2+ transients in a Ca2+-free medium have been revealed, which evidently reflects Ca2+ release from intracellular stores. In cells with different levels of resting basal cytoplasmic Ca2+ ([Ca2+]i) from about 50 to 110 nM, a biphasic dependence of the Ca2+ transients on resting [Ca2+]i was shown and spontaneous Ca2+ oscillations were observed. At a [Ca2+]i level over 110 nM, a pronounced rise in Ca2+ transients occurred and only single transients were observed. Ryanodine (10 μM) produced a transient [Ca2+]i elevation, suggesting the presence of ryanodine receptors in intracellular store membranes. The results imply that both inositol 1,4,5-trisphosphate-sensitive Ca2+ release (IICR) and Ca2+-sensitive Ca2+ release (CICR) take place in BAE cells. Only IICR seems to be sufficient for generating baseline Ca2+ oscillations in BAE cells, whereas the ATP-induced (5–100 μM) Ca2+ response involves the CICR set in motion by an oscillatory IICR of high frequency. The completion of both the spontaneous and ATP-induced Ca2+ transients was associated with a [Ca2+]i decrease to a level below the initial resting [Ca2+]i (undershoot). Its depth biphasically depended on the resting [Ca2+]i from 50 to 110 nM, suggesting that the lack of a Ca2+ leak from inositol 1,4,5-trisphosphate-sensitive stores is responsible for the undershoot in this range. The Ca2+ leak is concluded to play a key role in the initiation and termination of regenerative IICR both in spontaneous oscillations and in ATP-induced transients. Received: 13 November 1995/Received after revision and accepted 27 March 1996  相似文献   

12.
 Sustained Ca2+ elevation (”Ca2+ response”), caused by subsequent readdition of Ca2+ to the medium after application of adenosine 5’-triphosphate (ATP, 15 μM) in a Ca2+-free medium, was studied using single bovine aortic endothelial (BAE) cells. In cells in which the resting intracellular Ca2+ concentration ([Ca2+]i) was between about 50 and 110 nM, a massive Ca2+ response occurred and consisted of phasic and sustained components, whereas cells with a resting [Ca2+]i of over 110 nM displayed small plateau-like Ca2+ responses. An increase of internal store depletion resulted in loss of the phasic component. When the store was partly depleted, the dependence of the Ca2+ response amplitude on resting [Ca2+]i was biphasic over the range of 50 to 110 nM. The greatest degree of store depletion was associated with small monophasic Ca2+ responses, the amplitudes of which were almost constant and in the same range as resting [Ca2+]i. Ni2+, known to partly block Ca2+ entry, caused no change in the half-decay time of [Ca2+]i down to the level of the sustained phase [57 ± 4 s in control and 54 ± 3 s (n = 13) in the presence of 10 mM Ni2+] when added at the peak of the phasic component of the Ca2+ response. However, it lowered the sustained phase of the Ca2+ response by 42%. When applied at the start of the readdition of Ca2+, Ni2+ blocked the phasic component of the Ca2+ response, there being a threefold decrease in the initial rate of [Ca2+]i rise. In cells with a resting [Ca2+]i of 75–80 nM, pre-treatment with ryanodine (10 μM) did not affect the peak amplitude of the Ca2+ response, but it did increase the level of the sustained component. In some cells, ryanodine caused an oscillatory Ca2+ response. In conclusion, partial depletion of the inositol 1,4,5-trisphosphate-(IP 3-) sensitive store by a submaximal concentration of agonist (in Ca2+-free medium) was followed, on readdition of Ca2+, by Ca2+ entry, which appeared to trigger IP 3-sensitive Ca2+ release (IICR) which, in turn, initiated Ca2+-sensitive Ca2+ release (CICR), thus resulting in a massive elevation of [Ca2+]i. Received: 3 July 1996 / Received after revision and accepted: 9 September 1996  相似文献   

13.
There are many mutations in the ryanodine receptor (RyR) Ca2+ release channel that are implicated in skeletal muscle disorders and cardiac arrhythmias. More than 80 mutations in the skeletal RyR1 have been identified and linked to malignant hyperthermia, central core disease or multi-minicore disease, while more than 40 mutations in the cardiac RyR2 lead to ventricular arrhythmias and sudden cardiac death in patients with structurally normal hearts. These RyR mutations cause diverse changes in RyR activity which either excessively activate or block the channel in a manner that disrupts Ca2+ signalling in the muscle fibres. In a different myopathy, myotonic dystrophy (DM), a juvenile isoform of the skeletal RyR is preferentially expressed in adults. There are two regions of RyR1 that are variably spiced and developmentally regulated (ASI and ASII). The juvenile isoform (ASI (−)) is less active than the adult isoform (ASI(+)) and its over-expression in adults with DM may contribute to functional changes. Finally, mutations in an important regulator of the RyR, the Ca2+ binding protein calsequestrin (CSQ), have been linked to a disruption of Ca2+ homeostasis in cardiac myocytes that results in arrhythmias. We discuss evidence supporting the hypothesis that mutations in each of these situations alter protein/protein interactions within the RyR complex or between the RyR and its associated proteins. The disruption of these protein–protein interactions can lead either to excess Ca2+ release or reduced Ca2+ release and thus to abnormal Ca2+ homeostasis. Much of the evidence for disruption of protein–protein interactions has been provided by the actions of a group of novel RyR regulators, domain peptides with sequences that correspond to sequences within the RyR and which compete with the endogenous residues for their interaction sites.  相似文献   

14.
Smooth muscle thin filaments are made up of actin, tropomyosin, the inhibitory protein caldesmon and a Ca2+-binding protein. Thin filament activation of myosin MgATPase is Ca2+-regulated but thin filaments assembled from smooth muscle actin, tropomyosin and caldesmon plus brain or aorta calmodulin are not Ca2+-regulated at 25°C/50 mM KCl. We isolated the Ca2+-binding protein (CaBP) from smooth muscle thin filaments by DEAE fast-flow chromatography in 6 M urea and phenyl sepharose chromatography using sheep aorta as our starting material. CaBP combines with smooth muscle actin, tropomyosin and caldesmon to reconstitute a normally regulated thin filament at 25°C/50 mM KCl. It reverses caldesmon inhibition at pCa5 under conditions where CaM is largely inactive, it binds to caldesmon when complexed with actin and tropomyosin rather than displacing it and it binds to caldesmon independently of [Ca2+]. Amino acid sequencing, and electrospray mass spectrometry show the CaBP is identical to CaM. Structural probes indicate it is different: calmodulin increases caldesmon tryptophan fluorescence but CaBP does not. The distribution of charged species in electrospray mass spectrometry and nozzle skimmer fragmentation patterns are different indicating a less stable N-terminal lobe for CaBP. Brief heating abolishes these special properties of the CaBP. Mass spectrometry in aqueous buffer showed no evidence for the presence of any covalent or non-covalently bound adduct. The only remaining conclusion is that CaBP is calmodulin locked in a metastable altered state.  相似文献   

15.
Ca2+ sparks are the fundamental units that comprise Ca2+-induced Ca2+ release (CICR) in striated muscle cells. In cardiac muscle, spontaneous Ca2+ sparks underlie the rhythmic CICR activity during heart contraction. In skeletal muscle, Ca2+ sparks remain quiescent during the resting state and are activated in a plastic fashion to accommodate various levels of stress. With aging, the plastic Ca2+ spark signal becomes static in skeletal muscle, whereas loss of CICR control leads to leaky Ca2+ spark activity in aged cardiomyocytes. Ca2+ spark responses reflect the integrated function of the intracellular Ca2+ regulatory machinery centered around the triad or dyad junctional complexes of striated muscles, which harbor the principal molecular players of excitation-contraction coupling. This review highlights the contribution of age-related modification of the Ca2+ release machinery and the effect of membrane structure and membrane cross-talk on the altered Ca2+ spark signaling during aging of striated muscles.  相似文献   

16.
This study examined the bindings of calmodulin (CaM) and its mutants with the C- and N-terminal tails of the voltage-gated Ca2+ channel CaV1.2 at different CaM and Ca2+ concentrations ([Ca2+]) by using the pull-down assay method to obtain basic information on the binding mode, including its concentration- and Ca2+-dependencies. Our data show that more than one CaM molecule could bind to the CaV1.2 C-terminal tail at high [Ca2+]. Additionally, the C-lobe of CaM is highly critical in sensing the change of [Ca2+] in its binding to the C-terminal tail of CaV1.2, and the binding between CaM and the N-terminal tail of CaV1.2 requires high [Ca2+]. Our data provide new details on the interactions between CaM and the CaV1.2 channel.  相似文献   

17.
ATP-induced Ca2+ signals in bronchial epithelial cells   总被引:2,自引:0,他引:2  
 Ca2+-dependent Cl secretion in the respiratory tract occurs physiologically or under pathophysiological conditions when inflammatory mediators are released. The mechanism of intracellular Ca2+ release was investigated in the immortalized bronchial epithelial cell line 16HBE14o-. Experiments on both intact and permeabilized cells revealed that only inositol 1,4,5-trisphosphate (InsP 3) receptors and not ryanodine receptors are involved in intracellular Ca2+ release. The expression pattern of the three InsP 3 receptor isoforms was assessed both at the mRNA and at the protein level. The level of expression at the mRNA level was type 3 (92.5%) >> type 2 (5.4%) > type 1 (2.1%) and this rank order was also observed at the protein level. The ATP-induced Ca2+ signals in the intact cell, consisting of abortive Ca2+ spikes or fully developed [Ca2+] rises and intracellular Ca2+ waves, were indicative of positive feedback of Ca2+ on the InsP 3 receptors. Low Ca2+ concentrations stimulated and high Ca2+ concentrations inhibited InsP 3-induced Ca2+ release in permeabilized 16HBE14o- cells. We localized a cytosolic Ca2+-binding site between amino acid residues 2077 and 2101 in the type-2 InsP 3 receptor and between amino acids 2030 and 2050 in the type-3 InsP 3 receptor by expressing the respective parts of these receptors as glutathione S-transferase fusion proteins in bacteria. We conclude that the InsP 3 receptor isoforms expressed in 16HBE14o- cells (mainly type-3 and type-2) are stimulated by Ca2+ and that this phenomenon contributes to the ATP-induced Ca2+ signals in intact 16HBE14o- cells. Recieved: 11 September 1997 / Received after revision: 2 January 1998 / Accepted: 21 January 1998  相似文献   

18.
 The role of ATP in both the activation of store-operated Ca2+ current I CRAC and in Ca2+-dependent vesicular fusion was examined in a study of rat basophilic leukaemia (RBL) cells using the whole-cell patch-clamp technique. Fusion was monitored via changes in plasma membrane capacitance. Following a decrease in the levels of intracellular ATP, achieved using the mitochondrial poison antimycin and the ATP synthase inhibitor oligomycin, as well as a reduction of glycolysis by removal of external glucose, I CRAC activated in a manner similar to control cells when stores are depleted by dialysis with a pipette solution containing either inositol 1,4,5-trisphosphate (InsP 3) or ionomycin together with a high concentration of EGTA. Dialysis of cells for 150 s with the non-hydrolysable ATP analogue 5′-adenylylimidodiphosphate (AMP-PNP) (2 mM) in addition to the mitochondrial inhibitors also failed to prevent activation of I CRAC following external application of ionomycin and thapsigargin, when compared with control recordings obtained with 2 mM ATP instead. Ca2+-dependent vesicular fusion was triggered by dialysing cells with 10 μM Ca2+ and guanosine-5′-O-(3-thiotriphosphate (GTP[γ-S]). The capacitance increase was unaffected by inhibition of glycolysis, mitochondrial inhibitors or dialysis with either AMP-PNP or adenosine 5′-O-(3-thiotriphosphate) (ATP[γ-S]) instead of ATP. We conclude that ATP hydrolysis does not seem to be necessary for the activation of I CRAC or for the capacitance increases elicited by high concentrations of intracellular Ca2+. Received: 1 May 1998 / Received after revision: 16 July 1998 / Accepted: 16 July 1998  相似文献   

19.
 Ca2+-dependent vesicular fusion was studied in single whole-cell patch-clamped rat basophilic leukemia (RBL) cells using the capacitance technique. Dialysis of the cells with 10 μM free Ca2+ and 300 μM guanosine 5′-O-(3-thiotriphosphate) (GTP[γ-S]) resulted in prominent capacitance increases. However, dialysis with either Ca2+ (225 nM to 10 μM) or GTP[γ-S] alone failed to induce a capacitance change. Under conditions of weak Ca2+ buffering (0.1 mM EGTA), activation of Ca2+-release-activated Ca2+ (CRAC) channels by dialysis with inositol 1,4,5-trisphosphate (InsP 3) failed to induce a capacitance increase even in the presence of GTP[γ-S]. However, when Ca2+ATPases were inhibited by thapsigargin, InsP 3 and GTP[γ-S] led to a pronounced elevation in membrane capacitance. This increase was dependent on a rise in intracellular Ca2+ because it was abolished when cells were dialysed with a high level of EGTA (10 mM) in the recording pipette. The increase was also dependent on Ca2+ influx because it was effectively suppressed when external Ca2+ was removed. Our results demonstrate that I CRAC represents an important source of Ca2+ for triggering a secretory response. Received: 1 May 1998 / Received after revision: 15 June 1998 / Accepted: 2 July 1998  相似文献   

20.
 This study was designed to measure the Ca2+ content of rat cardiac sarcoplasmic reticulum (SR) after equilibration with normal diastolic levels of Ca2+ (100 nM), in the absence and presence of caffeine. Measurements of [Ca2+] based on Fura-2 fluorescence were made from a limited bath volume (230 nl) containing individual saponin-permeabilised rat cardiac trabeculae. Injection of caffeine (5–40 mM) into this volume caused an initial release of Ca2+ from the SR, but within 30 s the SR was able to re-accumulate a significant proportion of the Ca2+. Ca2+ re-accumulation into the SR could be prevented by removal of ATP to inhibit the SR Ca2+ pump. Incubation of the preparation in an ATP-containing solution containing caffeine (5–40 mM) and 100 nM Ca2+ indicated that the SR’s ability to retain Ca2+ depends inversely on the dose of caffeine. The relative Ca2+ content of the SR after preincubation with caffeine was 86.7±3.5% at a caffeine concentration of 5 mM, 62.5±5.1% at 10 mM caffeine, 37.8±8.1% at 20 mM caffeine and 7.1±1.9% at 40 mM caffeine. Measurement of the SR Ca2+ release in the presence of different BAPTA concentrations was used to calculate (1) the Ca2+-binding capacity of the preparation (equivalent to 245±10 μM BAPTA) and (2) the Ca2+ content of the SR accessed by caffeine after equilibration with 100 nM Ca2+ (186±11 μmol/l cell volume or 5.6 mmol/l SR volume). Received: 9 June 1998 / Received after revision: 29 July 1998 / Accepted: 31 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号