首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melanotrope cell of the amphibian Xenopus laevis is a neuroendocrine transducer that converts neuronal input concerning the color of background into an endocrine output, the release of alpha-melanophore-stimulating hormone (alpha-MSH). The cell displays intracellular Ca(2+) oscillations that are thought to be the driving force for secretion as well as for the expression of genes important to the process of background adaptation. Here we review the functioning of the Xenopus melanotrope cell, with emphasis on the role of Ca(2+) oscillations in signal transduction in this cell. We start by giving a general overview of the evolution of Ca(2+) as an intracellular messenger molecule. This is followed by an examination of the melanotrope as a neuroendocrine integrator cell. Then, the evidence that Ca(2+) oscillations drive the secretion of alpha-MSH is reviewed, followed by a similar analysis of the evidence that the same oscillations regulate the expression of proopiomelanocortin (POMC), the precursor protein for alpha-MSH. Finally, the possible importance of the pattern of Ca(2+) signaling to melanotrope cell function is considered.  相似文献   

2.
L-type Ca(2+) channels have a wide tissue distribution and play essential roles in physiological responses. Recent studies have indicated that regulation of L-type Ca(2+) channels involves the assembly of macromolecular signaling complexes such as the beta(2)-adrenergic receptor signaling complex, the small G-protein kir/Gem and the BK channel. Here, we report the previously unidentified role of another protein in binding to the II-III linker of the alpha(1C) subunit of the L-type Ca(2+) channel. This protein is COP9 signalosome subunit 5 (CSN5)/Jun activation domain-binding protein 1 (Jab1). We have demonstrated that CSN5 interacts specifically with the II-III linker of the alpha(1C) subunit in a yeast two-hybrid system. The alpha(1C) subunit and CSN5 were coimmunoprecipitated in rat heart and both proteins were colocalized in sarcolemmal membranes and transverse tubules of cardiac myocytes. Silencing of CSN5 mRNA using siRNA decreased the endogenous protein level of CSN5 and activated L-type Ca(2+) channels expressed in COS7 cells. These data indicate that CSN5 is a protein that plays a newly defined functional role in association with the cardiac L-type Ca(2+) channel.  相似文献   

3.
In skeletal muscle, Ca(2+)-cycling through the sarcoplasm regulates the excitation-contraction-relaxation cycle. Since uncoupling between sarcolemmal excitation and fibre contraction may play a key role in the functional decline of aged muscle, this study has evaluated the expression levels of key Ca(2+)-handling proteins in senescent preparations using immunoblotting and confocal microscopy. Sarcalumenin, a major luminal Ca(2+)-binding protein that mediates ion shuttling in the longitudinal sarcoplasmic reticulum, was found to be greatly reduced in aged rat tibialis anterior, gastrocnemius and soleus muscle as compared to adult specimens. Minor sarcolemmal components of Ca(2+)-extrusion, such as the surface Ca(2+)-ATPase and the Na(+)-Ca(2+)-exchanger, were also diminished in senescent fibres. No major changes were observed for calsequestrin, sarcoplasmic reticulum Ca(2+)-ATPase and the ryanodine receptor Ca(2+)-release channel. In contrast, the age-dependent reduction in the alpha(1S)-subunit of the dihydropryridine receptor was confirmed. Hence, this report has shown that downstream from the well-established defect in coupling between the t-tubular voltage sensor and the junctional Ca(2+)-release channel complex, additional age-related alterations exist in the expression of essential Ca(2+)-handling proteins. This may trigger abnormal luminal Ca(2+)-buffering and/or decreased plasmalemmal Ca(2+)-removal, which could exacerbate impaired signaling or disturbed intracellular ion balance in aged fibres, thereby causing contractile weakness.  相似文献   

4.
5.
BACKGROUND: We studied the participation of K(+) channels on the adrenergic responses in human saphenous veins as well as the intervention of dihydropyridine-sensitive Ca(2+) channels on modulation of adrenergic responses by K(+) channels blockade. METHODS: Saphenous vein rings were obtained from 40 patients undergoing coronary artery bypass surgery. The vein rings were suspended in organ bath chambers for isometric recording of tension. RESULTS: Iberiotoxin (10(-7) mol/L), an inhibitor of large conductance Ca(2+)-activated K(+) channels, and charybdotoxin (10(-7) mol/L), an inhibitor of both large and intermediate conductance Ca(2+)-activated K(+) channels, enhanced the contractions elicited by electrical field stimulation and produced a leftward shift of the concentration-response curve to norepinephrine. In contrast, the inhibitor of small conductance Ca(2+)-activated K(+) channels apamin (10(-6) mol/L) did not modify the contractile response to electrical field stimulation or norepinephrine. In the presence of the dihydropyridine Ca(2+)-channel blocker nifedipine (10(-6) mol/L), iberiotoxin and charybdotoxin failed to enhance the contractile responses to electrical field stimulation and norepinephrine. CONCLUSIONS: The results suggest that large conductance Ca(2+)-activated K(+) channels are activated by stimulation with norepinephrine to counteract the adrenergic-induced contractions of human saphenous vein. Thus, inhibition of these channels increases significantly the contraction, an effect that appears to be mediated by an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels.  相似文献   

6.
In the present study, we examined the effect of interleukin-2 (IL-2) on cardiomyocyte Ca(2+) handling. The effects of steady-state and transient changes in stimulation frequency on the intracellular Ca(2+) transient were investigated in isolated ventricular myocytes by spectrofluorometry. In the steady state (0.2 Hz) IL-2 (200 U/ml) decreased the amplitude of Ca(2+) transients induced by electrical stimulation and caffeine. At 1.25 mM extracellular Ca(2+) concentration ([Ca(2+)](o)), when the stimulation frequency increased from 0.2 to 1.0 Hz, diastolic Ca(2+) level and peak intracellular Ca(2+) concentration ([Ca(2+)](i)), as well as the amplitude of the transient, increased. The positive frequency relationships of the peak and amplitude of [Ca(2+)](i) transients were blunted in the IL-2-treated myocytes. The effect of IL-2 on the electrically induced [Ca(2+)](i) transient was not normalized by increasing [Ca(2+)](o) to 2.5 mM. IL-2 inhibited the frequency relationship of caffeine-induced Ca(2+) release. Blockade of sarcoplasmic reticulum (SR) Ca(2+)-ATPase with thapsigargin resulted in a significant reduction of the amplitude-frequency relationship of the transient similar to that induced by IL-2. The restitutions were not different between control and IL-2 groups at 1.25 mM [Ca(2+)](o), which was slowed in IL-2-treated myocytes when [Ca(2+)](o) was increased to 2.5 mM. There was no difference in the recirculation fraction (RF) between control and IL-2-treated myocytes at both 1.25 and 2.5 mM [Ca(2+)](o). The effects of IL-2 on frequency relationship, restitution, and RF may be due to depressed SR functions and an increased Na(+)-Ca(2+) exchange activity, but not to any change in L-type Ca(2+) channels.  相似文献   

7.
8.
OBJECTIVE: Activity of single L-type calcium channels (LTCC) is enhanced in human failing myocardium (Circulation 98 (1998) 969.), most likely due to impaired dephosphorylation. Protein phosphatase 2B (calcineurin) has recently been shown to be involved in heart failure pathophysiology. We now focus on the regulation of single LTCC by calcineurin that were prevented by Ca(2+)-free experimental conditions in our previous study. METHODS: Single LTCC currents were recorded in myocytes from human atrium and ventricle. Charge carriers were 70 mM Ba(2+), or a mixture of 30 mM Ca(2+) and 60 mM Ba(2+) to facilitate Ca(2+) permeation through recorded channels. The calcineurin inhibitor cyclosporine (10 microM) was used to reveal a putative role for calcineurin in regulation of LTCC. RESULTS: A mixture of Ca(2+) and Ba(2+) as charge carriers allowed for Ca(2+) permeation through recombinant human embryonic kidney cells and native (atrial and ventricular) human cardiac LTCC. With only Ba(2+) as the charge carrier, activities of both ventricular and atrial LTCC were strongly decreased by cyclosporine. In contrast, channel activity remained constant when Ca(2+) permeation was provided. In the presence of thapsigargin and (S)-BayK 8644, cyclosporine here even increased channel activity. CONCLUSIONS: We propose a dual cyclosporine effect on human cardiac LTCC. A non-specific inhibitory effect prevails with Ba(2+) permeation but can be compensated or overcome by a specific Ca(2+)-dependent stimulation with Ca(2+) permeation. More complete restoration of physiological Ca(2+) movements (e.g., Ca(2+) release from sarcoplasmic reticulum) will help to define even more precisely the involvement of calcineurin in regulation of human cardiac LTCC.  相似文献   

9.
Brain-derived neurotrophic factor (BDNF) and alpha-melanophore-stimulating hormone (alpha-MSH) are co-sequestered in secretory granules in melanotrope cells of the pituitary pars intermedia of the amphibian Xenopus laevis. alpha-MSH is responsible for pigment dispersion in dermal melanophores during the process of black-background adaptation. BDNF-production in melanotrope cells is increased by placing animals on a black background, and BDNF acts as an autocrine stimulatory factor on the melanotrope cells. However, the repertoire of possible neurotrophin receptors of the melanotrope is unknown. In this study we have established the expression of full length TrkB (TrkB.FL), truncated TrkB (TrkB.T) and p75(NTR) receptors in the Xenopus neurointermediate lobe by RT-PCR. In situ hybridization reveals the presence of TrkB.FL mRNA and p75(NTR) mRNA in melanotrope cells. Quantitative RT-PCR shows that in animals on a black background the amounts of TrkB.T and p75(NTR) mRNA are about three times higher than in white background-adapted animals. We suggest that the amount of p75(NTR) sets the sensitivity of the melanotrope cells for the stimulatory action of BDNF during physiological adaptation to background light intensity.  相似文献   

10.
BK-type K(+) channels are activated by voltage and intracellular Ca(2+), which is important in modulating muscle contraction, neural transmission, and circadian pacemaker output. Previous studies suggest that the cytosolic domain of BK channels contains two different Ca(2+) binding sites, but the molecular composition of one of the sites is not completely known. Here we report, by systematic mutagenesis studies, the identification of E535 as part of this Ca(2+) binding site. This site is specific for binding to Ca(2+) but not Cd(2+). Experimental results and molecular modeling based on the X-ray crystallographic structures of the BK channel cytosolic domain suggest that the binding of Ca(2+) by the side chains of E535 and the previously identified D367 changes the conformation around the binding site and turns the side chain of M513 into a hydrophobic core, providing a basis to understand how Ca(2+) binding at this site opens the activation gate of the channel that is remotely located in the membrane.  相似文献   

11.
Using biochemical/pharmacological approaches, we previously showed that type 2 ryanodine receptors (RyR2) become dysfunctional in hearts of streptozotocin-induced type 1 diabetic rats. However, the functional consequence of this observation remains incompletely understood. Here we use laser confocal microscopy to investigate whether RyR2 dysfunction during diabetes alters evoked and spontaneous Ca(2+) release from the sarcoplasmic reticulum (SR). After 7-8 weeks of diabetes, steady-state levels of RyR2 remain unchanged in hearts of male Sprague-Dawley rats, but the number of functional receptors decreased by >37%. Interestingly, residual functional RyR2 from diabetic rat hearts exhibited increased sensitivity to Ca(2+) activation (EC(50activation) decreased from 80 microM to 40 microM, peak Ca(2+) activation decreased from 425 microM to 160 microM). When field stimulated, intracellular Ca(2+) release in diabetic ventricular myocytes was dyssynchronous (non-uniform) and this was independent of L-type Ca(2+) currents. Time to peak Ca(2+) increased 3.7-fold. Diabetic myocytes also exhibited diastolic Ca(2+) release and 2-fold higher frequency of spontaneous Ca(2+) sparks, albeit at a lower amplitude. The amplitude of caffeine-releasable Ca(2+) was also lower in diabetic myocytes. RyR2 from diabetic rat hearts exhibited increased phosphorylation at Ser2809 and contained reduced levels of FKBP12.6 (calstablin2). Collectively, these data suggest that RyR2 becomes leaky during diabetes and this defect may be responsible to the reduced SR Ca(2+) load. Diastolic Ca(2+) release could also serve as a substrate for delayed after-depolarizations, contributing to the increased incidence of arrhythmias and sudden cardiac death in type 1 diabetes.  相似文献   

12.
Cardiac Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in heart has been implicated in Ca(2+) current (I(Ca)) facilitation, enhanced sarcoplasmic reticulum (SR) Ca(2+) release and frequency-dependent acceleration of relaxation (FDAR) via enhanced SR Ca(2+) uptake. However, questions remain about how CaMKII may work in these three processes. Here we tested the role of CaMKII in these processes using transgenic mice (SR-AIP) that express four concatenated repeats of the CaMKII inhibitory peptide AIP selectively in the SR membrane. Wild type mice (WT) and mice expressing AIP exclusively in the nucleus (NLS-AIP) served as controls. Increasing stimulation frequency produced typical FDAR in WT and NLS-AIP, but FDAR was markedly inhibited in SR-AIP. Quantitative analysis of cytosolic Ca(2+) removal during [Ca(2+)](i) decline revealed that FDAR is due to an increased apparent V(max) of SERCA. CaMKII-dependent RyR phosphorylation at Ser2815 and SR Ca(2+) leak was both decreased in SR-AIP vs. WT. This decrease in SR Ca(2+) leak may partly balance the reduced SERCA activity leading to relatively unaltered SR-Ca(2+) load in SR-AIP vs. WT myocytes. Surprisingly, CaMKII regulation of the L-type Ca(2+) channel (I(Ca) facilitation and recovery from inactivation) was abolished by the SR-targeted CaMKII inhibition in SR-AIP mice. Inhibition of CaMKII effects on I(Ca) and RyR function by the SR-localized AIP places physical constraints on the localization of these proteins at the junctional microdomain. Thus SR-targeted CaMKII inhibition can directly inhibit the activation of SR Ca(2+) uptake, SR Ca(2+) release and I(Ca) by CaMKII, effects which have all been implicated in triggered arrhythmias.  相似文献   

13.
The Ca2+-dependent facilitation (CDF) of L-type Ca2+ channels, a major mechanism for force-frequency relationship of cardiac contraction, is mediated by Ca2+/CaM-dependent kinase II (CaMKII). Recently, CaMKII was shown to be activated by methionine oxidation. We investigated whether oxidation-dependent CaMKII activation is involved in the regulation of L-type Ca2+ currents (ICa,L) by H2O2 and whether Ca2+ is required in this process. Using patch clamp, ICa,L was measured in rat ventricular myocytes. H2O2 induced an increase in ICa,L amplitude and slowed inactivation of ICa,L. This oxidation-dependent facilitation (ODF) of ICa,L was abolished by a CaMKII blocker KN-93, but not by its inactive analog KN-92, indicating that CaMKII is involved in ODF. ODF was not affected by replacement of external Ca2+ with Ba2+ or presence of EGTA in the internal solutions. However, ODF was abolished by adding BAPTA to the internal solution or by depleting sarcoplasmic reticulum (SR) Ca2+ stores using caffeine and thapsigargin. Alkaline phosphatase, β-iminoadenosine 5′-triphosphate (AMP-PNP), an autophosphorylation inhibitor autocamtide-2-related inhibitory peptide (AIP), or a catalytic domain blocker (CaM-KIINtide) did not affect ODF. In conclusion, oxidation-dependent facilitation of L-type Ca2+ channels is mediated by oxidation-dependent CaMKII activation, in which local Ca2+ increases induced by SR Ca2+ release is required.  相似文献   

14.
The extracellular Ca(2+)-sensing receptor (CaR) is expressed in many different organs in various species, ranging from mammals to fish. In some of these organs, this G protein-coupled receptor is involved in the control of systemic Ca(2+) homeostasis, whereas in other organs its role is unclear (e.g. in the pituitary gland). We have characterized the CaR in the neuroendocrine melanotrope cell of the intermediate pituitary lobe of the South African clawed toad Xenopus laevis. First, the presence of CaR mRNA was demonstrated by RT-PCR and in situ hybridization. Then it was shown that activation of the CaR by an elevated extracellular Ca(2+) concentration and different CaR-activators, including L-phenylalanine and spermine, stimulates both Ca(2+) oscillations and secretion from the melanotrope. Furthermore, it was revealed that activation of the receptor stimulates Ca(2+) oscillations through opening of voltage-operated Ca(2+) channels in the plasma membrane of the melanotropes. Finally, it was shown that the CaR activator L-phenylalanine could induce the biosynthesis of proopiomelanocortin in the intermediate lobe. Thus, in this study it is demonstrated that the CaR is present and functional in a defined cell type of the pituitary gland, the amphibian melanotrope cell.  相似文献   

15.
16.
Advanced age in rats is accompanied by reduced expression of the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA-2). The amplitudes of intracellular Ca2+ (Ca2+(i)) transients and contractions in ventricular myocytes isolated from old (23-24-months) rats (OR), however, are similar to those of young (4-6-months) rat myocytes (YR). OR myocytes also manifest slowed inactivation of L-type Ca2+ current (I(CaL)) and marked prolongation of action potential (AP) duration. To determine whether and how age-associated AP prolongation preserves the Ca2+(i) transient amplitude in OR myocytes, we employed an AP-clamp technique with simultaneous measurements of I(CaL) (with Na+ current, K+ currents and Ca2+ influx via sarcolemmal Na+-Ca2+ exchanger blocked) and Ca2+(i) transients in OR rat ventricular myocytes dialyzed with the fluorescent Ca2+ probe, indo-1. Myocytes were stimulated with AP-shaped voltage clamp waveforms approximating the configuration of prolonged, i.e. the native, AP of OR cells (AP-L), or with short AP waveforms (AP-S), typical of YR myocytes. Changes in SR Ca2+ load were assessed by rapid, complete SR Ca2+ depletions with caffeine. As expected, during stimulation with AP-S vs AP-L, peak I(CaL) increased, by 21+/-4%, while the I(CaL) integral decreased, by 19+/-3% (P<0.01 for each). Compared to AP-L, stimulation of OR myocytes with AP-S reduced the amplitudes of the Ca2+(i) transient by 31+/-6%, its maximal rate of rise (+dCa2+(i)/dt(max); a sensitive index of SR Ca2+ release flux) by 37+/-4%, and decreased the SR Ca2+ load by 29+/-4% (P<0.01 for each). Intriguingly, AP-S also reduced the maximal rate of the Ca2+(i) transient relaxation and prolonged its time to 50% decline, by 35+/-5% and 33+/-7%, respectively (P<0.01 for each). During stimulation with AP-S, the gain of Ca2+-induced Ca2+ release (CICR), indexed by +dCa2+(i)/dt(max)/I(CaL), was reduced by 46+/-4% vs AP-L (P<0.01). We conclude that the effects of an application of a shorter AP to OR myocytes to reduce +dCa2+(i)/dt(max) and the Ca2+ transient amplitude are attributable to a reduction in SR Ca2+ load, presumably due to a reduced I(CaL) integral and likely also to an increased Ca2+ extrusion via sarcolemmal Na+-Ca2+ exchanger. The decrease in the Ca2+(i) transient relaxation rate in OR cells stimulated with shorter APs may reflect a reduction of Ca2+/calmodulin-kinase II-regulated modulation of Ca2+ uptake via SERCA-2, consequent to a reduced local Ca2+ release in the vicinity of SERCA-2, also attributable to reduced SR Ca2+ load. Thus, the reduction of CICR gain during stimulation with AP-S is the net result of both a diminished SR Ca2+ release and an increased peak I(CaL). These results suggest that ventricular myocytes of old rats utilize AP prolongation to preserve an optimal SR Ca2+ loading, CICR gain and relaxation of Ca2+(i) transients.  相似文献   

17.
In this study, we examined histamine-induced calcium signaling in cultured human valvular myofibroblasts (hVMFs), which are the most prominent interstitial cells in cardiac valves mediating valvular contraction, extracellular matrix secretion, and wound repair. Despite the functional importance of VMFs in cardiac valves, the cellular-signaling pathways, especially those mediated by Ca(2+), are still poorly understood. Using fluorescence imaging microscopy, we measured intracellular Ca(2+) ([Ca(2+)](i)) levels in fura-2-loaded hVMFs. Activation of H(1) receptors released Ca(2+) from one compartment of the endoplasmic reticulum (ER) of hVMFs, but did not induce Ca(2+) entry. This histamine-induced Ca(2+) release was oscillatory and dependent on Ca(2+) re-uptake into the ER by sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Application of the reversible SERCA blocker, cyclopiazonic acid (CPA), after depletion of the histamine-sensitive Ca(2+) store revealed the presence of a second, smaller histamine-insensitive Ca(2+) store in the ER. The Ca(2+) content ratio of the histamine-sensitive and histamine-insensitive Ca(2+) stores in the ER was found to be approximately 1.15:1. Another effect of CPA in hVMFs was the activation of store-operated Ca(2+) channels, as demonstrated by maintained [Ca(2+)](i) elevation as well as accelerated Mn(2+) entry. In conclusion, this study establishes for the first time an agonist-induced Ca(2+)-signaling pathway in hVMFs.  相似文献   

18.
We applied single-molecule photobleaching to investigate the stoichiometry of human Orai1 and Orai3 channels tagged with eGFP and expressed in mammalian cells. Orai1 was detected predominantly as dimers under resting conditions and as tetramers when coexpressed with C-STIM1 to activate Ca(2+) influx. Orai1 was also found to be tetrameric when coexpressed with STIM1 and evaluated following fixation. We show that fixation rapidly causes release of Ca(2+), redistribution of STIM1 to the plasma membrane, and STIM1/Orai1 puncta formation, and may cause the channel to be in the activated state. Consistent with this possibility, Orai1 was found predominantly as a dimer when coexpressed with STIM1 in living cells under resting conditions. We further show that Orai3, like Orai1, is dimeric under resting conditions and is predominantly tetrameric when activated by C-STIM1. Interestingly, a dimeric Orai3 stoichiometry was found both before and during application of 2-aminoethyldiphenyl borate (2-APB) to activate a nonselective cation conductance in its STIM1-independent mode. We conclude that the human Orai1 and Orai3 channels undergo a dimer-to-tetramer transition to form a Ca(2+)-selective pore during store-operated activation and that Orai3 forms a dimeric nonselective cation pore upon activation by 2-APB.  相似文献   

19.
20.
The Na(+)/Ca(2+)-exchanger (NCX) is the main mechanism by which Ca(2+) is transported out of the ventricular myocyte. NCX levels are raised in failing human heart, and the consequences of this for excitation-contraction coupling are still debated. We have increased NCX levels in adult rabbit myocytes by adenovirally-mediated gene transfer and examined the effects on excitation-contraction coupling after 24 and 48 h. Infected myocytes were identified through expression of green fluorescent protein (GFP), transfected under a separate promoter on the same viral construct. Control experiments were done with both non-infected myocytes and those infected with adenovirus expressing GFP only. Contraction amplitude was markedly reduced in NCX-overexpressing myocytes at either time point, and neither increasing frequency nor raising extracellular Ca(2+) could reverse this depression. Resting membrane potential and action potential duration were largely unaffected by NCX overexpression, as was peak Ca(2+) entry via the L-type Ca(2+) channel. Systolic and diastolic Ca(2+) levels were significantly reduced, with peak systolic Ca(2+) in NCX-overexpressing myocytes lower than diastolic levels in control cells at 2 m m extracellular Ca(2+). Both cell relengthening and the decay of the Ca(2+) transient were significantly slowed. Sarcoplasmic reticulum (SR) Ca(2+) stores were completely depleted in a majority of myocytes, and remained so despite increasingly vigorous loading protocols. Depressed contractility following NCX overexpression is therefore related to decreased SR Ca(2+) stores and low diastolic Ca(2+) levels rather than reduced Ca(2+) entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号