首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. We previously found high-grade lymphoma after 13 months' H. pylori infection in C57BL/6 mice. In this study we followed H. pylori infection by three different isolates in C57BL/6 and Balb/cA mice for 23 months. Six-week-old C57BL/6 and Balb/cA mice were infected with H. pylori strains 119p (CagA+, VacA+), SS1 (CagA+, VacA+) and G50 (CagA-, VacA-). Mice were followed at 2 weeks, 10 weeks and 23 months post-inoculation (p.i.) by culture, histopathology and serology. Strain G50 was only reisolated from mice 2 weeks p.i. There was no difference in colonization between strain 119p and SS1 at 10 weeks p.i., whereas SS1 gave 100% colonization versus 119p gave 50% 23 months p.i. Interestingly, the inflammation score was higher in mice infected with strain 119p than with SS1 10-week p.i., and there were lymphoepithelial lesions in mice infected with strain 119p and G50 but not with SS1 at 23 months post-infection. Eight mice infected with strains 119p and G50 developed gastric lymphoma (grade 5 and 4). One C57BL/6 mouse infected with strain 119p developed hepatocellular carcinoma after 23 months. Immunoblot showed specific bands of 26-33 kDa against H. pylori in infected mice, and two mice infected with strain SSI reacted with antibodies to the 120 kDa CagA toxin. Conclusion: A reproducible animal model for H. pylori-induced lymphoma and possibly hepatocellular carcinoma is described. Strain diversity may lead to different outcomes of H. pylori infection.  相似文献   

2.
Vaccination suppresses Helicobacter pylori colonization but does not cure infection. Furthermore, postvaccination gastritis, likely induced by enhanced host response to residual colonization, may exacerbate disease. The goal of this study was to determine if adoptive transfer of C57BL/6 splenocytes to C57BL/6scid/scid (severe combined immunodeficient [SCID]) mice cures infection without exacerbating gastritis. H. pylori-infected and uninfected C57BL/6 mice and SCID recipients of normal splenocytes were killed at intervals between 5 and 51 weeks after infection. Colonization and gastritis were quantified, humoral immune responses were determined by enzyme-linked immunosorbent assay, and cellular immune responses were determined by delayed-type hypersensitivity response and by a proliferative response of cultured splenocytes to H. pylori sonicate. In infected C57BL/6 mice, gastritis developed gradually and bacterial colonization diminished but persisted throughout the experiment. In contrast, gastritis in infected recipient SCID mice developed rapidly and bacterial colonization decreased precipitously. Gastritis in those mice peaked 9 weeks after adoptive transfer, however, and began to resolve. By 45 weeks after transfer, gastritis had returned to background levels and bacteria were no longer detectable. Resolution of gastritis and elimination of infection were associated with a cellular but not humoral immune response to H. pylori antigens. These results demonstrate that although the host response fails to clear bacterial colonization in normal mice, enhanced cellular immune responses in recipient SCID mice are capable of clearing H. pylori infection and allowing resolution of gastritis. Thus, immune mechanisms of cure exist, and effective and safe vaccination protocols may be feasible.  相似文献   

3.
4.
Helicobacter pylori is the etiological agent of human chronic gastritis, a condition seen as a precursor to the development of gastrointestinal ulcers or gastric cancer. This study utilized the murine model of chronic H. pylori infection to characterize the role of macrophages in the induction of specific immune responses and gastritis and in the control of the bacterial burden following H. pylori infection and vaccination. Drug-loaded liposomes were injected intravenously to deplete macrophages from C57BL/6 mice, and effective removal of CD11b+ cells from the spleens and stomachs of mice was confirmed by immunofluorescence microscopy. Transient elimination of macrophages from C57BL/6 mice during the early period of infection reduced the gastric pathology induced by H. pylori SS1 but did not affect the bacterial load in the stomach. These data suggest that macrophages are important to the severity of gastric inflammation during H. pylori infection.  相似文献   

5.
Recent evidence suggests that immune-mediated gastric epithelial cell apoptosis through Fas-Fas ligand interactions participates in Helicobacter pylori disease pathogenesis. To define the role of Fas signaling in vivo, H. pylori strain SS1 infection in C57BL/6 mice was compared to that in mice deficient in the Fas ligand (gld). gld mice had a degree of gastritis similar to that of C57BL/6 mice after 6 weeks (gastritis score, 5.2 +/- 0.6 [mean +/- standard error] versus 3.5 +/- 0.8) and 12 weeks (4.0 +/- 0.7 versus 3.4 +/- 0.5) of infection. Bacterial colonization was comparable in each group of mice at 12 weeks of infection (2.1 +/- 0.3 versus 1.6 +/- 0.3 for gld and C57BL/6, respectively; the difference is not significant). Sixty-seven percent of H. pylori-infected gld mice displayed atrophic changes in the gastric mucosa, compared with 37% of infected C57BL/6 mice, at 12 weeks. In addition, atrophic changes were more severe in H. pylori-infected gld mice (P < 0.05). Splenocytes isolated from H. pylori-infected C57BL/6 mice had a twofold increase in production of the Th1 cytokine gamma interferon (IFN-gamma) in response to H. pylori antigens at both 6 and 12 weeks compared to controls (143 +/- 65 versus 69 +/-26 pg/ml and 336 +/- 73 versus 172 +/- 60, respectively). In contrast, there was a lack of detectable IFN-gamma in gld mice infected with the bacterium. H. pylori-infected C57BL/6 mice had increased epithelial cell apoptosis compared with sham-infected C57BL/6 mice (35.0 +/- 8.9 versus 12.3 +/- 6.9; P < 0.05). Epithelial cell apoptosis did not differ between H. pylori-infected and control gld mice (5.2 +/- 1.6 versus 6.5 +/- 2.9 [not significant]). These data demonstrate that mice with mutations in the Fas ligand develop more severe premalignant mucosal changes in response to infection with H. pylori in association with both an impaired gastric epithelial cell apoptotic response and IFN-gamma production. The Fas death pathway modulates disease pathophysiology following murine infection with H. pylori. Deregulation of the Fas pathway could be involved in the transition from gastritis to gastric cancers during H. pylori infection.  相似文献   

6.
The goal of this study was to evaluate the role of host immunity in gastritis and epithelial damage due to Helicobacter pylori. Splenocytes from H. pylori-infected and uninfected C57BL/6 mice were adoptively transferred to H. pylori-infected and uninfected severe combined immunodeficient (SCID) mice. Transfer was verified by flow cytometry, and all mice were evaluated for the presence of delayed-type hypersensitivity (DTH) by footpad inoculation with sterile H. pylori sonicate and for humoral immunity by enzyme-linked immunosorbent assay. The severity of gastritis and gastric epithelial damage was quantified histologically, epithelial proliferation was determined by proliferating cell nuclear antigen staining, and colonization was quantified by culture. C57BL/6 mice, but not nonrecipient SCID mice, developed moderate gastritis in response to H. pylori. In contrast, recipient SCID mice developed severe gastritis involving 50 to 100% of the gastric mucosa and strong DTH responses not present in C57BL/6 mice. DTH, but not serum anti-H. pylori immunoglobulin G, correlated with adoptive transfer, gastritis, and bacterial clearance. Severe gastritis, but not bacterial colonization, was associated with epithelial metaplasia, erosions, and an elevated labeling index. This study demonstrates that (i) adaptive immunity is essential for development of gastritis due to H. pylori in mice, (ii) T-cell-enriched lymphocytes in SCID mice induce DTH and gastritis, which is more severe than donor gastritis, and (iii) the host inflammatory response, not direct bacterial contact, causes epithelial damage. The greater severity of gastritis in recipient SCID mice than in donor C57BL/6 mice suggests that gastritis is due to specific T-cell subsets and/or the absence of regulatory cell subsets in the transferred splenocytes.  相似文献   

7.
Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. Some reports also suggest that it causes extragastric disease, including hepatitis. In this study, the pathological changes in the liver and gall bladder in H. pylori -colonized C57BL/6 mice were investigated. Twenty mice were inoculated orally with H. pylori strain SS1, and ten controls were injected with phosphate-buffered saline. Gastric colonization with H. pylori was assessed at 2 months after inoculation. Mice were examined at 8 months by histopathology, culture for H. pylori , and PCR for specific H. pylori genes. All C57BL/6 mice infected with H. pylori for 8 months developed severe gastric mucosal inflammation. Three mice showed mild-to-moderate mutifocal hepatitis. The gall bladder mucosa of one H.  pylori -infected mouse showed thickening of the mucous membrane with mild submucosal lymphocytic infiltration. H. pylori was observed morphologically in four liver specimens and six gall bladders from infected mice by immunohistochemistry. Specific H. pylori genes were also detected in six liver samples from infected mice, six samples of bile, and two blood samples by nested PCR. Thus, H. pylori inoculated orally may reach the hepatobiliary system and cause inflammation as an independent aetiological factor. The pathway to the liver may be via the blood or the biliary system.  相似文献   

8.
The protective effect of therapeutic oral immunization with homologous and heterologous formalin-inactivated Helicobacter pylori cells given together with cholera toxin as an adjuvant was evaluated with C57BL/6 mice infected with H. pylori Sydney strain 1 (SS1). The bacteria used for immunization were strains that were either homologous or heterologous with regard to the O antigen (i.e., the Lewis antigen [Le antigen]) expressed by the lipopolysaccharide of the infecting H. pylori SS1 strain. We found that repeated oral immunization with inactivated H. pylori SS1 cells can significantly inhibit an existing infection (P < 0.001) and that the protection induced by such therapeutic immunization extends to protection against reinfection (P < 0.001). A similar level of protection was also achieved by immunization with another inactivated H. pylori strain having the same O antigen (Le antigen) as the infecting H. pylori SS1 strain. In contrast, immunization with inactivated strains expressing a heterologous O antigen, Le(x), provided less protection or no protection. Immunization with H. pylori lysate preparations, on the other hand, resulted in significant comparable protection whether the lysates were prepared from an Le(x) strain or an Le(y) strain. Postimmunization gastritis was seen in mice that were protected after vaccination but not in unimmunized or unprotected mice. In conclusion, therapeutic immunization with inactivated H. pylori whole-cell vaccines may provide strong protection both against experimental H. pylori infection and against later reinfection.  相似文献   

9.
The vacA and cagA geno- and phenotypes of two mouse-adapted strains of Helicobacter pylori, SS1 and SPM326, were determined. The SS1 strain, which had the cagA+ and vacA s2-m2 genotype, induced neither vacuole formation in HeLa cells nor interleukin-8 (IL-8) production in KATO III cells. In contrast, H. pylori SPM326, with the cagA+ and vacA s1b-m1 genotype, induced vacuoles as well as IL-8 production in vitro. Furthermore, a spontaneous mutant of SPM326, which produced a vacuolating cytotoxin but was not able to induce IL-8 production (SPM326/IL-8(-)), was detected. C57Bl/6 and BALB/c mice were infected with these three strains to investigate the colonization pattern and the effect on the immune response in vivo. The SS1 strain colonized the stomachs of all mice in large numbers which remained constant over time. Colonization with the SPM326/IL-8(+) and SPM326/IL-8(-) strains was lesser, or even absent, and decreased over time. At 5 weeks postinoculation all three H. pylori strains induced a mild increase of neutrophil count in the gastric corpus of C57Bl/6 mice, which disappeared by 12 weeks. At both 5 and 12 weeks postinoculation C57Bl/6 mice colonized with SPM326/IL-8(+) showed an increased expression of major histocompatibility complex (MHC) class II antigen in the cardia which was accompanied by an increased number of T cells. C57Bl/6 mice that were infected with SS1 and SPM326/IL-8(-) did not show chronic inflammation. BALB/c mice colonized with SS1 and SPM326/IL-8(-) also showed an increase in neutrophil count at 5 weeks, which normalized again by 12 weeks postinoculation. At this time point SS1-infected mice showed inflammation in the corpus and antrum. At these sites an increased expression of MHC class II antigens and an increased number of T cells were observed. Although small lymphoid follicles were already observed 5 weeks after inoculation with SS1, their incidence as well as their number was increased at 12 weeks. These results show that inflammation induced by H. pylori depends both on the bacterial strain and the host.  相似文献   

10.
11.
Helicobacter pylori induces symptomatic chronic gastritis in a subpopulation of infected individuals. The mechanism(s) determining the development and severity of pathology leading to symptoms are not fully understood. In a mouse model of H. pylori infection we analysed the influence of immunoregulatory CD4+CD25+ T cells on H. pylori colonization and gastritis. Athymic C57BL/6 nu/nu mice were reconstituted with (a) lymph node (LN) cells (b) LN cells depleted of CD25+ T cells (CD25(-) LN) or (c) not reconstituted at all. Mice were then infected orally with 3 x 10(8)H. pylori SS1 bacteria. At 2 and 6 weeks after the inoculation there was a significant (P < 0.001) reduction in H. pylori colonization in athymic mice transferred with CD25(-) LN cells compared to mice transferred with LN cells. Colonization was still reduced at 12 weeks after inoculation. Mice transferred with CD25(-) LN cells showed an earlier onset and increased severity of gastritis as compared to mice receiving LN cells. Splenic cells isolated from mice receiving CD25(-) LN cells produced the highest level of IFN-gamma on stimulation with H. pylori antigens in vitro, had a higher H. pylori-specific DTH response and increased infiltration of CD4+ T cells and macrophages in the gastric mucosa. Athymic mice not transferred with T cells had persistent high H. pylori colonization and displayed a normal gastric epithelium without inflammatory cells. In conclusion, CD4+CD25+ cells reduce immunopathology in H. pylori infection, possibly by reducing the activation of IFN-gamma producing CD4+ T cells, even at the expense of a higher H. pylori load in the gastric mucosa.  相似文献   

12.
Helicobacter pylori is a spiral, gram-negative bacterium that specifically and persistently infects the human stomach. In some individuals, H. pylori-induced chronic gastritis may progress to gastroduodenal ulcers and gastric cancer. Currently, the host-microbe interactions that determine the clinical outcome of infection are not well defined. H. pylori strains capable of disrupting the gastric epithelial barrier may increase the likelihood of developing serious disease. In this study, H. pylori strain SS1 increased gastric, but not small intestinal, permeability in C57BL/6 mice. H. pylori strain SS1 was able to directly increase paracellular permeability, in the absence of host inflammatory cells, by disrupting the tight-junctional proteins occludin, claudin-4, and claudin-5 in confluent nontransformed epithelial cells. H. pylori SS1 also reduced claudin-4 protein levels in human gastric AGS cells. The ability of H. pylori SS1 to increase permeability appeared to be independent of the well-characterized virulence factors vacuolating cytotoxin and CagA protein. H. pylori activated myosin light-chain kinase in epithelial cells to phosphorylate myosin light chain and increase permeability by disrupting claudin-4 and claudin-5. The bacterial factor responsible for increasing epithelial permeability was heat sensitive, membrane bound, and required apical contact with monolayers. In conclusion, disruptions of the tight junctions observed in this study implicate host cell signaling pathways, including the phosphorylation of myosin light chain and the regulation of tight-junctional proteins claudin-4 and claudin-5, in the pathogenesis of H. pylori infection.  相似文献   

13.
The gram-negative bacterial pathogen Helicobacter pylori is a major cause of peptic ulcer disease and a risk factor for gastric cancer in humans. Adapted H. pylori strains, such as strain SS1, are able to infect mice and are a useful model for gastric colonization and vaccination studies. In this study we used a streptomycin-resistant derivative of H. pylori SS1 to analyze the colonization behavior and the success of vaccination in wild-type (wt) and various knockout mice of the BALB/c and C57BL/6J genetic backgrounds. We here report that BALB/c interleukin-4 knockout (IL-4(-/-)) mice are weakly overcolonized compared to the wt strain but that the IL-12(-/-) knockout results in a strong overcolonization (500%). Unexpectedly, in the C57BL/6J background the same knockouts behaved in diametrically opposed manners. The IL-4(-/-) mutation caused a 50% reduction and the IL-12(-/-) knockout caused a 95% reduction compared to the wt colonization rate. For C57BL/6J mice we further analyzed the IL-18(-/-) and Toll-like receptor 2 knockout mutations, which showed reductions to 66 and 57%, respectively, whereas mice with the IL-10(-/-) phenotype were hardly infected at all (5%). In contrast, the tumor necrosis factor receptor knockout (p55(-/-) and p55/75(-/-)) mice showed an overcolonization compared to the C57BL/6J wt strain. With exception of the low-level infected C57BL/6J IL-10(-/-) and IL-12(-/-) knockout mice, all knockout mutants were accessible to a prophylactic vaccination and their vaccination behavior was comparable to that of the wt strains.  相似文献   

14.
The identification of genes associated with colonization and persistence of Helicobacter pylori in the gastric mucosa has been limited by the lack of robust animal models that support infection by strains whose genomes have been completely sequenced. Here we report that an interleukin-12 (IL-12)-deficient mouse (IL-12(-/-) p40 subunit knockout in C57BL/6 mouse) is permissive for infection by a motile variant (KE88-3887) of The Institute For Genomic Research-sequenced strain (KE26695) of H. pylori. The IL-12-deficient mouse was also more permissive for colonization by the mouse-colonizing Sydney 1 strain of H. pylori than were wild-type C57BL/6 mice. Differences in colonization efficiency were demonstrated by mouse challenge with SS1 strains containing loss-of-function mutations in two genes (hspR and hrcA), whose products negatively regulate several heat shock genes. At 5 weeks postinfection, double-knockout mutants (SS1 hspR hrcA) efficiently colonized IL-12-deficient mice (5 of 5 animals compared to 4 of 10 for C57BL6 mice) and bacterial counts were higher in stomachs of IL-12-deficient mice (10(6) versus 10(5) CFU/g of stomach, respectively). IL-12-deficient mice were efficiently colonized by KE88-3887 (29 of 30), but not by nonmotile KE26695, and bacterial numbers (10(4) to 10(5) CFU/g of stomach) were unchanged over an 8-week period postinfection. In contrast, C57BL/6 mice were inefficiently colonized by KE88-3887 (8 of 20 animals with bacterial loads at the limit of detection, approximately 10(3) CFU/g), and infection did not persist much beyond 5 weeks. Cytokine responses (tumor necrosis factor alpha and gamma interferon), pathology, and antral-predominant infection were indistinguishable between IL-12-deficient and C57BL/6 mice. The increased permissiveness of the IL-12-deficient mouse for infection with H. pylori should facilitate whole-genome-based strategies to study genes associated with virulence and immune modulation.  相似文献   

15.
To investigate how different enterohepatic Helicobacter species (EHS) influence Helicobacter pylori gastric pathology, C57BL/6 mice were infected with Helicobacter hepaticus or Helicobacter muridarum, followed by H. pylori infection 2 weeks later. Compared to H. pylori-infected mice, mice infected with H. muridarum and H. pylori (HmHp mice) developed significantly lower histopathologic activity index (HAI) scores (P < 0.0001) at 6 and 11 months postinoculation (MPI). However, mice infected with H. hepaticus and H. pylori (HhHp mice) developed more severe gastric pathology at 6 MPI (P = 0.01), with a HAI at 11 MPI (P = 0.8) similar to that of H. pylori-infected mice. H. muridarum-mediated attenuation of gastritis in coinfected mice was associated with significant downregulation of proinflammatory Th1 (interlukin-1beta [Il-1β], gamma interferon [Ifn-γ], and tumor necrosis factor-alpha [Tnf-α]) cytokines at both time points and Th17 (Il-17A) cytokine mRNA levels at 6 MPI in murine stomachs compared to those of H. pylori-infected mice (P < 0.01). Coinfection with H. hepaticus also suppressed H. pylori-induced elevation of gastric Th1 cytokines Ifn-γ and Tnf-α (P < 0.0001) but increased Th17 cytokine mRNA levels (P = 0.028) at 6 MPI. Furthermore, mRNA levels of Il-17A were positively correlated with the severity of helicobacter-induced gastric pathology (HhHp>H. pylori>HmHp) (at 6 MPI, r2 = 0.92, P < 0.0001; at 11 MPI, r2 = 0.82, P < 0.002). Despite disparate effects on gastritis, colonization levels of gastric H. pylori were increased in HhHp mice (at 6 MPI) and HmHp mice (at both time points) compared to those in mono-H. pylori-infected mice. These data suggest that despite consistent downregulation of Th1 responses, EHS coinfection either attenuated or promoted the severity of H. pylori-induced gastric pathology in C57BL/6 mice. This modulation was related to the variable effects of EHS on gastric interleukin 17 (IL-17) responses to H. pylori infection.  相似文献   

16.
Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. Mice with H. pylori infection develop severe gastritis and atrophic changes in their stomachs after 6 months. We followed H. pylori-infected animals for 13 months to find out whether dysplasia, carcinoma or lymphoma developed. Six-week-old C57BL/6 mice were infected with the CagA-positive and VacA-positive H. pylori mouse-passaged strain 119/95, fed a low antioxidant diet, and kept in microisolated cages. Histopathological changes were examined after 13 months' infection. All H. pylori-inoculated mice (n = 5) developed a gastric squamous papilloma with nagging of the lamina muscularis after 13 months. Three out of five animals developed high-grade B-cell lymphoma derived from a MALT lymphoma at the squamous-corpus border with manifestations also in the liver, spleen and kidney. There was a suspicion of local gastric lymphoma in the two remaining mice but with no significant changes in the liver, spleen or kidney. The normal control mice showed no pathological changes in any of these organs. It is concluded that this mouse model with infection by the CagA-positive, vac-toxin-producing H. pylori strain 119/95 is suitable for use in the study of lymphoma development and also development of squamous cell papilloma with proliferative features.  相似文献   

17.
Increased gastric production of interleukin 8 and tumor necrosis factor alpha (TNF-alpha) has been implicated in the pathogenesis of Helicobacter pylori-associated gastroduodenal disease. In the present study we used a mouse model to demonstrate whether loss of the tumor necrosis factor receptor 1 (TNF-R1) function leads to differences in gastric inflammation or the systemic immune response in H. pylori infection. Six different clinical isolates of H. pylori (three cytotoxin-positive and three cytotoxin-negative strains) were adapted to C57BL/6 mice. TNF-R1-deficient (TNF-R1(-/-)) mice (n = 19) and isogenetic controls (n = 24) were infected and sacrificed after 4 weeks of infection. Inflammation of the stomach and the humoral immune response to H. pylori were evaluated by histological, immunohistochemical, and serological methods. There was no detectable difference in the grade or activity of gastritis in TNF-R1(-/-) mice when they were compared with wild-type mice, but the number of lymphoid aggregates was slightly reduced in the gastric mucosa of TNF-R1(-/-) mice. Interestingly, total immunoglobulin G (IgG), as well as IgG1, IgG2b, and IgG3, H. pylori-specific antibody titers were significantly higher in wild-type mice. As revealed by immunoblot analysis, the difference in reactivity against H. pylori antigens was not based on a failure to recognize single H. pylori antigens in TNF-R1(-/-) mice. We therefore suggest that TNF-R1-mediated TNF-alpha signals might support a systemic humoral immune response against H. pylori and that the gastric inflammatory response to H. pylori infection seems to be independent of TNF-R1-mediated signals.  相似文献   

18.
Helicobacter pylori induces severe neutrophilic infiltration in the lamina propria of the stomach, which leads to gastritis in humans. The possible involvement of a paracellular route for bacterial nutrients and etiologic agents that may play an important role in colonization of the bacteria and cause gastritis has been suggested. To study the functions of the paracellular barrier of gastric surface epithelium, SS1, a strain of H. pylori adapted to the murine stomach, was inoculated into the stomachs of C57BL/6 mice. At 4 months after inoculation, SS1 had achieved a high level of colonization (10(6)-10(7) colony-forming units/g tissue) associated with neutrophilic infiltration in the lamina propria of the junctional zone. Disruption of the paracellular barrier was observed in the SS1-infected stomachs, as revealed by the invasion of a lanthanum tracer into the paracellular space of the surface epithelium. Only 2% of junctions were permeable in control stomachs, whereas 72% of the paracellular barrier was disrupted in the SS1-infected gastric epithelia. Furthermore, distribution of tight junction-related molecules such as 7H6 antigen, occludin, and cortical actin was affected in the surface epithelium by SS1 infection. The linear expression pattern of occludin was disrupted and became irregular or punctuated. The 7H6 antigen accumulated as aggregates in the apical portion of the surface epithelium and cortical actin became irregular and punctuated. Taken together, these results indicate that infection by SS1 directly or indirectly caused an increase in paracellular permeability and altered the localization of tight junction-related molecules of the gastric surface epithelium. This observation suggests that the paracellular pathway may play a significant role in establishing H. pylori-induced gastritis in the clinical setting.  相似文献   

19.
The mouse model of Helicobacter pylori-induced disease using Sydney strain 1 (SS1) has been used extensively in Helicobacter research. Herein we describe the isolation and characterization of a new mouse-colonizing strain for use in comparative studies. One strain capable of persistent mouse colonization was isolated from a total of 110 clinical isolates and is named here SS2000 (Sydney strain 2000). Genome typing revealed a number of differences between SS1 and SS2000 as well as between them and the respective original clinical isolates. In particular, SS2000 lacked the entire cag pathogenicity island, while SS1 contained all 27 genes of the island. C57BL/6 and BALB/c mice were infected with SS1 or SS2000 or were treated with broth medium (controls). After 6 months host-specific effects were evident, including lower colonization levels in the BALB/c animals. Few pathological differences were observed between SS1- and SS2000-infected animals. However, by 15 months postinfection, SS1-infected C57BL/6 mice had developed more severe gastritis than the SS2000-infected animals. In contrast SS2000-infected BALB/c mice showed increased accumulation of mucosa-associated lymphoid tissue compared to those infected with SS1. This improved comparative model of H. pylori-induced disease allowed dissection of both host and strain effects and thus will prove useful in further studies.  相似文献   

20.
Helicobacter pylori mutants devoid of urease activity fail to colonize the gastric mucosa of mice; however, the effect of decreased levels of urease on colonization has not been examined. The nixA gene, required for full urease activity, encodes a cytoplasmic membrane nickel transporter that imports nickel ions and leads to incorporation of nickel ions into apourease. A nixA mutant of the Sydney strain of H. pylori (SS1) was constructed by disruption of the nixA gene with a kanamycin resistance cassette. This mutant retained only half the urease activity of the wild-type (wild-type) SS1 strain. C57BL/6j (n = 75) and BALB/c (n = 75) mice were inoculated independently with the wild-type or the nixA strain. The level and distribution of colonization were assessed by bacterial colony counts and histological grading at 4, 12, and 24 weeks postinfection. Colonization levels of the nixA strain in BALB/c mice were significantly lower compared with SS1 (P = 0.005), while colonization in C57BL/6j mice was similar for both the wild-type and mutant strains. Subtle differences in colonization of the different regions of the stomach, determined by microscopic grading, were observed between wild-type SS1 and the nixA strain in BALB/c mice. On the contrary, when C57BL/6j (n = 35) and BALB/c (n = 35) mice were coinfected with the wild-type and nixA strains simultaneously, the nixA mutant failed to colonize and was outcompeted by the wild-type SS1 strain, which established normal levels of colonization. These results demonstrate the importance of the nixA gene for increasing the fitness of H. pylori for gastric colonization. Since nixA is required for full urease activity, the decreased fitness of the nixA mutant is likely due to reduced urease activity; however, pleiotropic effects of the mutation cannot be completely ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号