首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The objective of this study was to evaluate the validity of radiographic evaluations of bone formation in a critical-size rat calvaria osteotomy defect model. METHODS: Bilateral, critical-size ( [symbol in text] 6 mm) calvaria osteotomy defects in 30 adult Sprague-Dawley rats treated with a rat platelet-rich plasma preparation or control treatments were evaluated by radiographic and histometric measures following a 4- or 8-week healing interval. Standardized radiographic images of the rat calvaria gross specimens were used to assess bone formation within the defect sites by visual evaluation of the grey scale by three masked examiners. The most central portion of each defect site was subject to histometric analysis using a PC-based image analysis system. Kappa statistics and percentage agreement between the radiographic and histometric analysis were estimated. RESULTS: Radiographic evaluations of bone formation are associated with significant weaknesses poorly representing actual healing events; kappa statistics (0.17) denoting slight agreement beyond chance. Perfect agreement between the histologic and radiographic analysis for defect sites showing complete and partial histologic bone fill was achieved 63% and 50% of the time, respectively. Agreement reached only 20% for sites with no/limited bone fill. When no/limited and partial bone fill occurred, the radiographic analysis tended to overestimate bone fill and underestimate bone fill when complete closure of the defect sites was observed in the histologic analysis. CONCLUSION: Low accuracy was observed when radiographic evaluations were employed in identifying and characterizing bone fill in the rat calvaria osteotomy defects. Assessment of bone healing in animal models aiming at treatment recommendations for clinical application must not solely be based on radiographic analysis, but should be confirmed using histologic observations.  相似文献   

2.
BACKGROUND: Bone morphogenetic proteins (BMPs) are being evaluated for periodontal and bone regenerative therapy. The objective of this study was to evaluate the effect of recombinant human bone morphogenetic protein-4 (rhBMP-4) dose on local bone formation in a rat calvaria defect model. METHODS: Calvarial, 8 mm diameter, critical-size osteotomy defects were created in 140 male Sprague-Dawley rats. Seven groups of 20 animals each received either 1) rhBMP-4 (2.5 microg) in an absorbable collagen sponge (ACS) carrier, 2) rhBMP-4 (5 microg)/ACS, 3) rhBMP-4 (2.5 microg) in a beta-tricalcium phosphate (beta-TCP) carrier, 4) rhBMP-4 (5 microg)/beta-TCP, 5) ACS or 6) beta-TCP carrier controls, or 7) a sham-surgery control, and were evaluated by histologic and histometric parameters following a 2- or 8-week healing interval (10 animals/group/healing interval). RESULTS: Surgical implantation of rhBMP-4/ACS and rhBMP-4/beta-TCP resulted in enhanced local bone formation at both 2 and 8 weeks. Within the dose range examined, rhBMP-4 did not exhibit an appreciable dose-dependent response. Defect closure was not significantly different between the rhBMP-4/ACS and rhBMP-4/beta-TCP groups. New bone area of the rhBMP-4/ beta-TCP group was significantly greater than that of the rhBMP-4/ ACS group; however, bone density in the rhBMP-4/ACS group was significantly greater than that in the rhBMP-4/beta-TCP group at 8 weeks (P < 0.05). CONCLUSIONS: rhBMP-4 combined with ACS or beta-TCP has a significant potential to induce bone formation in the rat calvaria defect model. Within the selected rhBMP-4 dose range and observation interval, there appeared to be no meaningful differences in bone formation.  相似文献   

3.
BACKGROUND: Bone morphogenetic proteins (BMPs) have been shown to play an important role in bone formation during development and wound healing. Despite there being good prospects for BMP applications, an ideal carrier system for BMPs has yet to be determined. The purpose of this study was to evaluate the possibility of a fibrin-fibronectin sealing system (FFSS) as a carrier for recombinant human BMP-4 (rhBMP-4) and to evaluate the genuine osteoconductive potential of the FFSS in a rat calvarial defect model. METHODS: An 8-mm, calvarial, critical-size osteotomy defect was created in each of 30 male Sprague-Dawley rats. Three groups of 10 animals each received rhBMP-4 (0.025 mg/ml) in the FFSS, FFSS control, or sham-surgery control. The groups were evaluated using histologic and histometric parameters following 2- and 8-week healing intervals (five animals per group per healing interval). RESULTS: Surgical implantation of rhBMP-4/FFSS resulted in enhanced local bone formation at 2 and 8 weeks. New bone formation was also evident in the FFSS control; however, the amount of defect closure, new bone area, and bone density was significantly greater in the rhBMP-4/FFSS group (P < 0.05). At 8 weeks, the quantity of the new bone was greater than that observed at 2 weeks, and the specimens showed a more advanced stage of remodeling and consolidation in both groups (P < 0.05). Only very limited bone formation was observed in the sham-surgery control. CONCLUSION: The results of the present study indicated that the FFSS has osteoconductive potential and may be employed as a carrier for BMPs.  相似文献   

4.
Background and Objective:  The purpose of this study was to analyze histologically the influence of autologous platelet-rich plasma on bone healing in surgically created critical-size defects in rat calvaria.
Material and Methods:  Thirty-two rats were divided into two groups: the control group (group C) and the platelet-rich plasma group. An 8-mm-diameter critical-size defect was created in the calvarium of each animal. In group C the defect was filled by a blood clot only. In the platelet-rich plasma group, 0.35 mL of platelet-rich plasma was placed in the defect and covered by 0.35 mL of platelet-poor plasma. Both groups were divided into subgroups ( n  = 8) and killed at either 4 or 12 wk postoperatively. Histometric (using image-analysis software) and histologic analyses were performed. The amount of new bone formed was calculated as a percentage of the total area of the original defect. Percentage data were transformed into arccosine for statistical analysis (analysis of variance, Tukey, p  < 0.05).
Results:  No defect completely regenerated with bone. The platelet-rich plasma group had a statistically greater amount of bone formation than group C at both 4 wk (17.68% vs. 7.20%, respectively) and 12 wk (24.69% vs. 11.65%, respectively) postoperatively.
Conclusion:  Within the limits of this study, it can be concluded that platelet-rich plasma placed in the defects and covered by platelet-poor plasma significantly enhanced bone healing in critical-size defects in rat calvaria.  相似文献   

5.
将珊瑚与具有骨诱导特性的重组形成蛋白-2(rhBMP-2)复合,制成rhBMP-2=coral复合人工骨,将其植入兔颅骨标准大小缺损,并与单纯珊瑚植入作对照。通过X线片、组织学和生物力学方法来评价此复合人工骨的骨修复能力。结果显示:rhBMP-2-coral复合人工骨具有较强的骨修复作用,植入骨缺损后,材料被逐渐降解吸收,新骨不断形成,机械强度不断增大;12周后,植入物完全被成熟的骨组织取代,缺损  相似文献   

6.
BACKGROUND: Embryonic enamel matrix proteins are involved in the formation of acellular cementum during development of the periodontal attachment apparatus, suggesting that these proteins might be used clinically to promote periodontal regeneration. At present, it is unknown if these proteins are osteoinductive, osteoconductive, or osteopromotive. To address this question, we examined the ability of a commercially prepared embryonic porcine enamel matrix derivative to induce new bone formation in nude mouse calf muscle, or to enhance the bone induction ability of a demineralized freeze-dried bone allograft (DFDBA). METHODS: Porcine fetal enamel matrix derivative (EMD) was implanted bilaterally in the calf muscle of 4 male Nu/Nu mice per treatment group (N = 8 implants): 2 mg EMD alone; 4 mg EMD alone; inactive human DFDBA alone; inactive DFDBA + 2 mg EMD; inactive DFDBA + 4 mg EMD; active DFDBA alone; active DFDBA + 2 mg EMD; and active DFDBA + 4 mg EMD. Implants were harvested after 56 days and examined histologically for bone induction using a semi-quantitative score and histomorphometrically for area of new bone, cortical bone, bone marrow, and residual DFDBA. RESULTS: Implants containing inactive DFDBA, 2 mg EMD, 4 mg EMD, and inactive DFDBA + 2 or 4 mg EMD did not induce new bone. Active DFDBA and active DFDBA + 2 mg EMD induced new bone to a similar extent. In contrast, active DFDBA + 4 mg EMD resulted in enhanced bone induction, area of new bone, and cortical bone. Residual DFDBA was also increased in this group. CONCLUSIONS: EMD is not osteoinductive. However, it is osteopromotive, due in part to its osteoconductive properties, but a threshold concentration is required.  相似文献   

7.
BACKGROUND: Bone morphogenetic proteins (BMPs) are being evaluated as candidates for periodontal and bone regenerative therapy. However, the research on recombinant human bone morphogenetic protein-4 (rhBMP-4) has been insufficient to evaluate its capacity to enhance bone formation and its carrier system. The purpose of this study was to evaluate the bone regenerative effect of rhBMP-4 delivered with an absorbable collagen sponge (ACS) or beta-tricalcium phosphate (beta-TCP). We also compared the potential of beta-TCP to that of ACS as a carrier system for rhBMP-4. METHODS: Eight-mm calvarial critical-sized defects were created in 100 male Sprague-Dawley rats. The animals were divided into 5 groups of 20 animals each. The defects were treated with rhBMP-4/ACS (rhBMP-4 at 0.05 mg/ml), rhBMP-4/beta-TCP (rhBMP-4 at 0.05 mg/ml), ACS alone, beta-TCP alone, or left untreated for surgical control. The rats were sacrificed at 2 or 8 weeks postsurgery, and the results were evaluated radiodensitometrically, histologically, and histomorphometrically. RESULTS: The results of radiodensitometric analysis were as follows: the rhBMP-4/ACS and the rhBMP-4/beta-TCP groups were more radiopaque than other groups at both 2 and 8 weeks (P < 0.01). The histologic observations were as follows: in the rhBMP-4/ACS and the rhBMP-4/beta-TCP groups, new bone was evident at the defect sites at 2 weeks and 8 weeks. The results of histomorphometric analysis were as follows: the rhBMP-4/ACS and the rhBMP-4/beta-TCP groups had more bone (%) than other groups at both 2 and 8 weeks (P < 0.01). CONCLUSIONS: Surgical implantation of rhBMP-4/ACS may be used to support bone regeneration in the rat calvarial critical-sized defect, and rhBMP-4/beta-TCP may be able to regenerate bone in the rat calvarial critical-sized defect without complication. In addition, both ACS and beta-TCP may be considered as available carriers for rhBMP-4.  相似文献   

8.
BACKGROUND: Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been shown to induce clinically relevant bone formation for orthopedic, craniofacial, and oral indications. It appears critical, in particular for onlay indications, that the associated carrier technology exhibits structural integrity to offset compressive forces in support of rhBMP-2-induced bone formation. The objective of this study was to evaluate a calcium phosphate (CP) cement, Ceredex, as a candidate carrier for rhBMP-2 in a defect model with limited osteogenic potential. MATERIALS: Bilateral, critical size, 6-mm, supra-alveolar, periodontal defects were created in six, adult, male, Hound Labrador mongrels. Three animals received rhBMP-2/Ceredex (rhBMP-2 at 0.20 and 0.40 mg/ml) in contralateral defect sites (implant volume/defect approximately 1 ml). One defect site in each of the three remaining animals received Ceredex without rhBMP-2 (control). The animals were euthanized at 12 weeks postsurgery for histologic and histometric analysis. RESULTS: Mean induced bone height exceeded 80% of the defect height for supra-alveolar periodontal defects receiving rhBMP-2/Ceredex without major differences between rhBMP-2 concentrations compared with approximately 40% for the control. The newly formed bone, a mixture of lamellar and woven bone in fibrovascular tissue, circumscribed relatively large portions of the residual Ceredex biomaterial. Inflammatory lesions were associated with limited bone formation in some sites. From a periodontal perspective, sites receiving rhBMP-2/Ceredex exhibited increased cementum formation compared with control, but without a functionally oriented periodontal ligament, and increased ankylosis and root resorption. Control sites exhibited early wound failure and exposure, loss of the Ceredex biomaterial, and limited bone formation. CONCLUSIONS: The Ceredex CP cement appears a potentially promising carrier technology for rhBMP-2 onlay indications. However, a slow resorption rate may prevent its wider use. This study does not support use of the rhBMP-2/Ceredex combination for periodontal indications.  相似文献   

9.
OBJECTIVES: To evaluate the effect of guided bone regeneration (GBR) in combination with or without deproteinized bovine bone mineral (DBBM) and/or an enamel matrix derivative (EMD) on the healing of critical-size calvarial defects. MATERIAL AND METHODS: Forty rats were used. In all animals, a standardized critical-size calvarial defect was created surgically. The animals were randomly allocated into 4 groups of 10 animals each. Group A: One calvarial defect was left untreated, while the galeal and the cerebral aspect of the contralateral defect were covered with a bioresorbable membrane (GBR). Group B: One calvarial defect was filled with EMD, while the contralateral defect was treated with GBR and EMD. Group C: One defect was filled with DBBM, while the contralateral defect was treated with combination of GBR and DBBM. Group D: One defect was filled with DBBM combined with EMD, while the contralateral defect was treated with combination of GBR, DBBM and EMD. The healing period was 4 months. Five specimens from each group were macerated and the length, the width and the vertical dimension (thickness) of the remaining defect were evaluated by a stereomicroscope. The remaining specimens in each group were analyzed histologically. RESULTS: The defects of the macerated specimens that were left untreated or were treated only by EMD, DBBM and combination of EMD and DBBM did not present predictably complete healing of the defects. All the defects where GBR was applied alone or combined with DBBM and/or EMD presented always complete healing (P<0.05). The combined use of GBR with EMD and/or DBBM did not offer any significant advantage above GBR alone in terms of healing of the length and the width of the defect. However, the vertical dimension of the defect was significantly higher (P<0.05) in the GBR-treated specimens of Groups C and D. The histological analysis supported these findings. CONCLUSION: The predictability of bone formation in critical-size defects depends mainly on the presence or absence of barrier membranes (GBR). The combined use with deproteinized bovine bone mineral and/or enamel matrix proteins did not significantly enhance the potential for complete healing provided by the GBR procedure.  相似文献   

10.
BACKGROUND: Beta tricalcium phosphate (beta-TCP) has been developed as one of the carriers of recombinant human bone morphogenetic protein (rhBMP). However, it is not known whether the particle size of beta-TCP is related to its resorption rate and the degree of bone formation. The purpose of this study was to evaluate the effect of using beta-TCP with different particle sizes on the ability of rhBMP-4 to enhance bone formation in the rat calvarial defect model. METHODS: Calvarial, 8-mm-diameter, critical-size defects were created in 100 male Sprague-Dawley rats. Five groups of 20 animals each received either rhBMP-4 (2.5 microg) using beta-TCP with a particle size of 50 to 150 microm, rhBMP-4 (2.5 microg) using beta-TCP with a particle size of 150 to 500 microm, a beta-TCP control with a particle size of 50 to 150 microm, a beta-TCP control with a particle size of 150 to 500 microm, or a sham-surgery control, respectively, and were evaluated by measuring their histologic and histometric parameters following a 2- and 8-week healing interval. RESULTS: There were no significant differences in the defect closure, new bone area, or augmented area between either the two rhBMP-4/beta-TCP groups or between the two beta-TCP control groups at 2 and 8 weeks. CONCLUSIONS: rhBMP-4 combined with either small- or large-particle beta-TCP had a significant effect on the induction of bone formation compared to either a small- or large-particle beta-TCP control or a sham-surgery control. Within the parameters of this study, varying the particle size of beta-TCP did not seem to have a significant effect on bone formation.  相似文献   

11.
BACKGROUND: Bone defects and irregularities are major problems for dental implant and periodontal therapies. METHODS: We investigated whether the application of recombinant human bone morphogenetic protein-2 (rhBMP-2) induces bone formation in through-and-through bone defects in the rat mandible. A round through-and-through bone defect (5 mm in diameter) was created in the angle of the mandible on both sides of the jaw using a steel round bur in each of 8 Long-Evans rats. In the experimental group, polylactic acid-polyglycolic acid copolymer/gelatin sponge (PGS) containing rhBMP-2 (6 microg/60 microl) was inserted in the bone defect. In the control group, the same carrier without rhBMP-2 was applied in the bone defect on the opposite side. Four weeks after application, the rats were sacrificed. Step serial sections stained with hematoxylin and eosin at intervals of 200 microm were prepared in a bucco-lingual direction. The size of the bone defects and new bone formation were evaluated histometrically. RESULTS: In all cases in the experimental group, a large quantity of newly formed bone was observed. The bone defects were completely filled with new bone in 4 of 8 rats in the experimental group. In the control group, small amounts of new bone formation were observed along the border of the original mandibular bone. Histometrical analysis revealed that the amount of new bone was significantly larger in the rhBMP-2 treated sites than in the control sites (P <0.0001; paired t-test). CONCLUSIONS: These results indicate that the rhBMP-2/PGS system induced effective bone regeneration on mandibular defects in rats. This procedure may be suitable as an experimental model for bone regeneration using various growth factors and effective for alveolar ridge augmentation followed by dental implant surgery.  相似文献   

12.
BACKGROUND: A recent study suggests that the addition of enamel matrix derivative to demineralized freeze-dried bone allograft may enhance osseoinduction. The purpose of this study was to evaluate the use of demineralized freeze-dried bone allograft (DFDBA) in combination with enamel matrix derivative (EMD + DFDBA) compared to enamel matrix derivative (EMD) alone in the treatment of human intrabony periodontal defects. METHODS: Forty patients with a total of 67 sites (intrabony defect > or = 3 mm deep) were selected to participate in this single-masked, parallel design, randomized, controlled clinical trial. Each subject received either EMD alone (34 sites) or in combination with DFDBA (33 sites). Soft tissue measurements included probing depth (PD), clinical attachment level (CAL), and recession. Hard tissue measurements included defect depth, alveolar crestal resorption, and defect morphology. Following 6 months of healing, all soft tissue measurements were repeated. Forty-nine sites (EMD + DFDBA = 26 sites, EMD alone = 23 sites) were surgically reentered. Statistical analyses were performed using unpaired and paired Student t tests. RESULTS: Analyses showed a significant improvement in soft tissue parameters for both treatment groups (P < 0.001) as compared to preoperative measurements. There were no statistical differences between treatment groups. The probing depth reduction (PDR) for the EMD + DFDBA was 3.6 +/- 0.2 mm, while the EMD alone had a PDR of 4.0 +/- 0.3 mm. The CAL gain for the EMD + DFDBA group was 3.0 +/- 0.3 mm and 3.2 +/- 0.3 mm for the EMD alone group. The mean value for bone fill in the EMD + DFDBA group was 3.7 +/- 0.2 mm (74.9%), while the EMD alone group demonstrated a mean bone fill of 2.6 +/- 0.4 mm (55.3%). While there were no significant differences between the two treatments with regards to soft tissue measurements, the combination of EMD + DFDBA therapy yielded statistically significant improvements in bone fill, crestal resorption, and percentage of sites gaining greater than 50% and 90% bone fill when compared to EMD alone (P < 0.001). CONCLUSION: The results of this study indicate that there may be an enhancement of hard tissue parameters when enamel matrix derivative is added to demineralized freeze-dried bone allograft.  相似文献   

13.
Objectives: The aim of the present study was to assess the influence of either recombinant human growth and differentiation factor 5 (rhGDF-5)- or recombinant human bone morphogenetic protein 2 (rhBMP-2)-coated natural bone mineral (NBM) on guided bone regeneration in a rat calvarial defect model.
Material and methods: Two monocortical critical-size calvarial defects (diameter 6 mm, depth 1.5 mm) were prepared in a total of 90 rats each ( n =180 defects) and randomly allocated to the following groups: (1) NBM+collagen membrane (BG), (2) rhBMP-2+NBM+BG, (3) rhGDF-5+NBM+BG, (4) autogenous bone (AB)+BG, or (5) untreated control (C). At 1, 2, 4, 8, 16, and 24 weeks, dissected blocks were processed for histological [e.g. area (mm2) of mineralized tissue (MT)] and immunohistochemical (osteocalcin – OC, angiogenesis – TG) analysis.
Results: At 2 weeks, both coated NBM groups exhibited the formation of a thin hard tissue bridge underneath the BG. All test groups revealed significantly higher mean MT values than the C group at 24 weeks. rhBMP-2+NBM+BG-treated defects revealed significantly higher mean MT values in comparison with the AB+BG (8 and 24 weeks), NBM+BG (2 and 4 weeks), and rhGDF-5+NBM+BG (2, 16, and 24 weeks) groups, respectively. Immunoreactions to either OC or TG were comparable in all test groups.
Conclusion: It was concluded that (i) all treatment procedures investigated supported bone regeneration at 24 weeks and (ii) rhBMP-2 might have the potential to improve the outcome of healing, particularly during the early stages of healing.  相似文献   

14.
The objective of this study was to evaluate the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) concentration on regeneration of alveolar bone and cementum, and on associated root resorption and ankylosis. Contralateral, critical size, supra-alveolar, periodontal defects were surgically produced and immediately implanted with rhBMP-2 in an absorbable collagen sponge (ACS) carrier in 8, young adult, male, beagle dogs. 6 animals received rhBMP-2/ACS (rhBMP-2 at 0.05, 0.10, or 0.20 mg/mL; total construct volume/defect approximately 4.0 mL) in contralateral defects following an incomplete block design. 2 animals received rhBMP-2/ACS (rhBMP-2 at 0 and 0.10 mg/mL) in contralateral defects (controls). The animals were euthanised at 8 weeks post-surgery and block sections of the defects were collected for histologic and histometric analysis. Supra-alveolar periodontal defects receiving rhBMP-2 at 0.05, 0.10, or 0.20 mg/ml exhibited extensive alveolar regeneration comprising 86%, 96%, and 88% of the defect height, respectively. Cementum regeneration encompassed 8%, 6%, and 8% of the defect height, respectively. Root resorption was observed for all rhBMP-2 concentrations. Ankylosis was observed in almost all teeth receiving rhBMP-2. Control defects without rhBMP-2 exhibited limited, if any, evidence of alveolar bone and cementum regeneration, root resorption, or ankylosis. Within the selected rhBMP-2 concentration and observation interval, there appear to be no meaningful differences in regeneration of alveolar bone and cementum. There also appear to be no significant differences in the incidence and extent of root resorption and ankylosis, though there may be a positive correlation with rhBMP-2 concentration.  相似文献   

15.
BACKGROUND: Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been shown to support the regeneration of alveolar bone and periodontal attachment in surgically created periodontal defects and in defects with a history of dental plaque and calculus exposure. Periodontal regeneration has also been shown following guided tissue regeneration using space-providing expanded polytetrafluoroethylene (ePTFE) devices. The objective of this study was to evaluate the influence of rhBMP-2 on regeneration of alveolar bone and periodontal attachment used in conjunction with a space-providing ePTFE device. METHODS: Routine, critical-size, 5-6 mm, supra-alveolar, periodontal defects were created around the third and fourth mandibular premolar teeth in four young adult Hound Labrador mongrel dogs. rhBMP-2 (0.2 mg/ml) in an absorbable collagen sponge (rhBMP-2/ACS) or buffer/ACS (control) implants were randomly assigned to be placed around the premolar teeth in the left and right jaw quadrants in subsequent animals. Space-providing ePTFE devices with 300-microm laser-drilled pores, 0.8 mm apart, were used to cover the rhBMP-2 and control implants. The gingival flaps were advanced for primary wound closure. The animals were euthanized at 8 weeks postsurgery for histologic and histometric analyses. RESULTS: Bone regeneration and ankylosis were significantly increased in jaw quadrants receiving rhBMP-2/ACS compared to control (bone height 4.8+/-0.3 versus 2.0+/-0.2 mm, p=0.001; bone area 10.9+/-1.3 versus 1.4+/-0.1 mm2; p=0.009, and ankylosis 2.2+/-0.2 versus 0.04+/-0.7 mm; p=0.01). No differences between groups were found for cementum regeneration and root resorption. CONCLUSIONS: rhBMP-2 significantly enhances regeneration of alveolar bone in conjunction with a space-providing, macroporous ePTFE device for GTR.  相似文献   

16.
BACKGROUND: Alveolar ridge aberrations commonly require bone augmentation procedures for optimal placement of endosseous dental implants. The objective of this study was to evaluate local bone formation following implantation of recombinant human bone morphogenetic protein-2 (rhBMP-2) in an absorbable collagen sponge (ACS) carrier with or without provisions for guided bone regeneration (GBR) as potential treatment modalities for alveolar augmentation. METHODS: Surgically induced, large, mandibular alveolar ridge saddle-type defects (2 defects/jaw quadrant) in seven young adult Hound dogs were assigned to receive rhBMP-2/ACS, rhBMP-2/ACS combined with GBR (rhBMP-2/GBR), GBR, and surgery controls. The animals were euthanized at 12 weeks post-surgery when block sections of the defect sites were collected for histologic analysis. RESULTS: Clinical complications included swelling for sites receiving rhBMP-2 and wound failure with exposure of the barrier device for sites receiving GBR (4/6) or rhBMP-2/GBR (3/7). The radiographic evaluation showed substantial bone fill for sites receiving rhBMP-2/ACS, rhBMP-2/GBR, and GBR. In particular, sites receiving rhBMP-2/GBR presented with seroma-like radiolucencies. The surgery control exhibited moderate bone fill. To evaluate the biologic potential of the specific protocols, sites exhibiting wound failure were excluded from the histometric analysis. Sites receiving rhBMP-2/ACS or rhBMP-2/GBR exhibited bone fill averaging 101%. Bone fill averaged 92% and 60%, respectively, for sites receiving GBR and surgery controls. Bone density ranged from 50% to 57% for sites receiving rhBMP-2/ACS, GBR, or surgery controls. Bone density for sites receiving rhBMP-2/GBR averaged 34% largely due to seroma formation encompassing 13% to 97% of the sites. CONCLUSION: rhBMP-2/ACS appears to be an effective alternative to GBR in the reconstruction of advanced alveolar ridge defects. Combining rhBMP-2/ACS with GBR appears to be of limited value due to the potential for wound failure or persistent seromas.  相似文献   

17.
OBJECTIVES: To provide the histological background to a new method of local bone augmentation, we examined the events occurring beneath a barrier membrane applied with recombinant human bone morphogenetic protein-2 (rhBMP-2). MATERIALS AND METHODS: The effects on bone augmentation of rhBMP-2, applied with a membrane mold (BMP-Memb), over surgically-induced bone defects in rat calvaria were examined histologically, and the results compared with those from application of rhBMP-2 (BMP) alone, or of a molded membrane (Memb) alone. RESULTS: At postoperative week 2, the BMP group showed the most marked bone formation. However, the bone diminished in size by week 8. The Memb group showed slow but continuous bone formation by week 8. In the BMP-Memb group, bone filled the space in the mold at week 2, and this was maintained until week 8. Moreover, the soft tissue that had intervened between newly formed bone and the membrane in the Memb group was not evident in the BMP-Memb group, in which bone had formed directly on the membrane. CONCLUSIONS: The results suggest that the combination of rhBMP-2 and barrier membrane has advantages in producing and maintaining bone in the intended shape by inducing osteoblasts directly on the inner surface of the membrane.  相似文献   

18.
Aim: This study histologically analysed the effect of autogenous platelet-rich plasma (PRP), prepared according to a new semiautomatic system, on healing of autogenous bone (AB) grafts placed in surgically created critical-size defects (CSD) in rabbit calvaria.
Material and Methods: Sixty rabbits were divided into three groups: C, AB and AB/PRP. A CSD was created in the calvarium of each animal. In Group C (control), the defect was filled by blood clot only. In Group AB (autogenous bone graft), the defect was filled with particulate autogenous bone. In Group AB/PRP (autogenous bone graft with platelet-rich plasma), it was filled with particulate autogenous bone combined with PRP. All groups were divided into subgroups ( n =10) and euthanized at 4 or 12 weeks post-operatively. Histometric and histologic analyses were performed. Data were statistically analysed ( anova , t -test, p <0.05).
Results: Group C presented significantly less bone formation compared with Group AB and AB/PRP in both periods of analysis ( p <0.001). At 4 weeks, Group AB/PRP showed a statistically greater amount of bone formation than Group AB (64.44 ± 15.0% versus 46.88 ± 14.15%; p =0.0181). At 12 weeks, no statistically significant differences were observed between Groups AB and AB/PRP (75.0 ± 8.11% versus 77.90 ± 8.13%; p >0.05). It is notable that the amount of new bone formation in Group AB/PRP at 4 weeks was similar to that of Group AB at 12 weeks ( p >0.05).
Conclusion: Within its limitation, the present study has indicated that (i) AB and AB/PRP significantly improved bone formation and (ii) a beneficial effect of PRP was limited to an initial healing period of 4 weeks.  相似文献   

19.
BACKGROUND: Currently, more than 20 bone morphogenetic proteins (BMPs) have been identified, and many trials have been carried out using recombinant human BMPs (rhBMPs) for bone tissue engineering. However, comparative analyses on bone formative activities of rhBMP using a preclinical model have been limited. Therefore, the aim of this study was to evaluate and compare the osteogenic potential of rhBMP-2, -4, and -7 delivered with absorbable collagen sponge (ACS) upon early (2 weeks) and complete (8 weeks) wound healing phases in a critical sized rat calvarial defect model. METHODS: Eight-millimeter critical sized calvarial defects were created in 30 male Sprague-Dawley rats. The animals were divided into three groups of 10 animals each. The defects were treated with 0.025 mg/ml rhBMP-2/ACS, rhBMP-4/ACS, or rhBMP-7/ACS. The rats were sacrificed at either 2 (five rats) or 8 (five rats) weeks after surgery, and the results were evaluated histologically, histomorphometrically, and immunohistometrically. RESULTS: The surgical implantation of rhBMP-2/ACS, rhBMP-4/ACS, or rhBMP-7/ACS resulted in enhanced local bone formation in the rat calvarial defect model at both 2 and 8 weeks. The amount of defect closure, new bone area, and bone density were similar in the three groups at each time point (P > 0.05). In terms of bone density and new bone area, there were statistically significant differences between results obtained at 2 weeks and those obtained at 8 weeks in all groups (P < 0.05). Two-way analysis of variance (ANOVA) revealed that there was no correlation between the time and conditions (P > 0.05), but time was found to have a strong influence on defect closure, new bone area, and bone density (P < 0.05). Irrespective of rhBMP type, positive immunoreactions of osteopontin (OPN) and osteocalcin (OCN) were evident at 2 and 8 weeks. Intense OPN and OCN staining was observed near the newly formed bone as well as in some cells within the new bone. CONCLUSIONS: Within the rhBMP types used, rhBMP concentration, and the observation interval, there appears to be no specific differences in bone regenerative potential. All rhBMPs used in this study may be considered effective factors for inducing bone formation.  相似文献   

20.
BACKGROUND: Previous studies have shown a limited potential for bone augmentation following guided bone regeneration (GBR) in horizontal alveolar defects. Surgical implantation of recombinant human bone morphogenetic protein-2 (rhBMP-2) in an absorbable collagen sponge carrier (ACS) significantly enhances bone regeneration in such defects; however, sufficient quantities of bone for implant dentistry are not routinely obtained. The objective of this study was to evaluate the potential of rhBMP-2/ACS to enhance GBR using a space-providing, macro-porous expanded polytetrafluoroethylene (ePTFE) device. METHODS: Bilateral, critical size, supra-alveolar, peri-implant defects were surgically created in four Hound Labrador mongrel dogs. Two turned and one surface-etched 10-mm titanium dental implant were placed 5 mm into the surgically reduced alveolar ridge creating 5-mm supra-alveolar defects. rhBMP-2/ACS (rhBMP-2 at 0.2 mg/ml) or buffer/ACS was randomly assigned to left and right jaw quadrants in subsequent animals. The space-providing, macro-porous ePTFE device was placed to cover rhBMP-2/ACS and control constructs and dental implants. Gingival flaps were advanced for primary wound closure. The animals were euthanized at 8 weeks postsurgery for histologic and histometric analysis. RESULTS: Bone formation was significantly enhanced in defects receiving rhBMP-2/ACS compared to control. Vertical bone gain averaged (+/- SD) 4.7 +/- 0.3 and 4.8 +/- 0.1 mm, and new bone area 10.3 +/- 2.0 and 8.0 +/- 2.5 mm2 at turned and surface-etched dental implants, respectively. Corresponding values for the control were 1.8 +/- 2.0 and 1.3 +/- 1.3 mm, and 1.8 +/- 1.3 and 1.2 +/- 0.6 mm2. Bone-implant contact in rhBMP-2-induced bone averaged 6.4 +/- 1.4% and 9.6 +/- 7.5% for turned and surface-etched dental implants, respectively (P=0.399). Corresponding values for the control were 14.6 +/- 19.4% and 23.7 +/- 9.7% (P=0.473). Bone-implant contact in resident bone ranged between 43% and 58% without significant differences between dental implant surfaces. CONCLUSIONS: rhBMP-2/ACS significantly enhances GBR at turned and surface-etched dental implants. The dental implant surface technology does not appear to substantially influence bone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号