首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Identification of the genes that are differentially-expressed between radiosensitive and radioresistant cancer cells is important to the ability to predict the clinical effectiveness of radiotherapy. We established radioresistant human pancreatic cancer cell lines using fractionated irradiation in order to identify genes that are differentially-expressed between parental lines and radioresistant cell sublines. Six pancreatic cancer cell lines (PK-1, PK-8, PK-9, T3M4, MiaPaCa2 and PANC-1) were treated with 10 Gy fractionated irradiation at approximately two-week intervals (total dose 150-180 Gy). Five radioresistant sublines (PK-1, PK-8, PK-9, T3M4, and MiaPaCa2) were successfully established. Using oligonucleotide microarrays containing 17,086 genes, we identified 73 up-regulated genes and 55 down-regulated genes common to radioresistant sublines. Subsequent analysis by quantitative RT-PCR confirmed the reliability of our microarray strategy. Up-regulated genes were associated with growth factor (example, amphiregulin), cell-cycle check point (MAPKAPK2), intracellular signaling pathway (regucalcin), and angiogenesis stimulation (angiopoietin 2). Down-regulated genes were associated with apoptosis (caspase 8), retinoid esterification (lecithin retinol acyltransferase), and electron transport (calcium-activated chloride channel 1). Some of these genes have known association with response to radiation, such as caspase 8 and MAPKAPK2, but others are novel. Global gene analysis of radioresistant sublines may provide new insights into the mechanisms underlying clinical radioresistance and to improving the efficacy of radiotherapy for pancreatic cancer.  相似文献   

3.
Agents that can potentiate the efficacy of standard chemotherapy against pancreatic cancer are of great interest. Because of their low cost and safety, patients commonly use a variety of dietary supplements, although evidence of their efficacy is often lacking. One such commonly used food supplement is Zyflamend, a polyherbal preparation with potent anti-inflammatory activities and preclinical efficacy against prostate and oral cancer. Whether Zyflamend has any efficacy against human pancreatic cancer alone or in combination with gemcitibine, a commonly used agent, was examined in cell cultures and in an orthotopic mouse model. In vitro, Zyflamend inhibited the proliferation of pancreatic cancer cell lines regardless of p53 status and also enhanced gemcitabine-induced apoptosis. This finding correlated with inhibition of NF-κB activation by Zyflamend and suppression of cyclin D1, c-myc, COX-2, Bcl-2, IAP, survivin, VEGF, ICAM-1 and CXCR4. In nude mice, oral administration of Zyflamend alone significantly inhibited the growth of orthotopically transplanted human pancreatic tumors, and when combined with gemcitabine, further enhanced the antitumor effects. Immunohistochemical and Western blot analyses of tumor tissue showed that the suppression of pancreatic cancer growth correlated with inhibition of proliferation index marker (Ki-67), COX-2, MMP-9, NF-κB and VEGF. Overall, these results suggest that the concentrated multiherb product Zyflamend alone can inhibit the growth of human pancreatic tumors and, in addition, can sensitize pancreatic cancers to gemcitabine through the suppression of multiple targets linked to tumorigenesis.  相似文献   

4.
Soy isoflavone genistein exhibits growth inhibitory activity against human pancreatic cancer cell lines. We previously reported the potential of genistein to augment chemotherapeutic response of pancreatic cancer cells in vitro. In the present study, we investigated whether genistein pretreatment could be used as a novel strategy for gemcitabine-induced killing in vitro and enhanced antitumor activity in vivo using an orthotopic tumor model. We conducted our studies using paired isogenic human pancreatic cancer cell line with differences in metastatic behavior (COLO 357 and L3.6pl). In vitro studies were done to measure growth inhibition and degree of apoptotic cell death induced by either genistein alone, gemcitabine alone, or genistein followed by gemcitabine. Our results show that pretreatment of cells with genistein for 24 hours followed by gemcitabine resulted in 60% to 80% growth inhibition compared with 25% to 30% when gemcitabine was used alone. The overall growth inhibition was directly correlated with apoptotic cell death irrespective of the metastatic potential of cells. Several genes that are known to inhibit apoptosis and contribute to chemoresistance such as nuclear factor-kappaB (NF-kappaB) and Akt were assessed to investigate the basis for the observed chemosensitizing effects of genistein. Genistein potentiated the gemcitabine-induced killing by down-regulation of NF-kappaB and Akt. In contrast, Akt and NF-kappaB were found to be up-regulated when pancreatic cancer cells were exposed to gemcitabine alone, suggesting the potential mechanism of acquired chemoresistance. In addition to in vitro results, we show here for the first time, that genistein in combination with gemcitabine is much more effective as an antitumor agent compared with either agent alone in our orthotopic tumor model. But most importantly, our data also showed that a specific target, such as NF-kappaB, was inactivated in genistein-treated animal tumors and that gemcitabine-induced activation of NF-kappaB was completely inhibited in animal tumors treated with genistein and gemcitabine. These results provide strong molecular in vivo evidence in support of our hypothesis that inactivation of NF-kappaB signaling pathway by genistein could also abrogate gemcitabine-induced activation of NF-kappaB resulting in the chemosensitization of pancreatic tumors to gemcitabine, which is likely to be an important and novel strategy for the treatment of pancreatic cancer.  相似文献   

5.
BACKGROUND: Gemcitabine is a pyrimidine nucleoside analog that is clinically active against pancreatic cancer. We have recently demonstrated that p38 MAPK is specifically activated by gemcitabine and that pharmacological blockade of p38 MAPK signaling prevented gemcitabine-induced apoptosis in human pancreatic cancer cells. In this study, we further investigated the implication of p38 MAPK in the cytotoxic action of gemcitabine. MATERIALS AND METHODS: Cells expressing a dominant-negative mutant of p38 MAPK were generated. Clonogenic assays were used to assess the long-term effect on cancer cell viability in the human pancreatic cancer cells, PK1 and PCI43. The p38 MAPK activation level was assessed using an antibody specific to the phosphorylated form. RESULTS: Gemcitabine increased the activation level of p38 MAPK in a dose-dependent manner and induced apoptosis in the two tested human pancreatic cancer cell lines. The selective p38 MAPK inhibitors, SB203580 and SB202190, reduced gemcitabine-induced activation of p38 MAPK, prevented the gemcitabine-induced apoptosis and increased long-term clonogenic survival. Overexpression of a dominant-negative p38 mutant in cells resulted in the reduction of gemcitabine-induced p38 MAPK activation and apoptosis, and increases in clonogenic survival. CONCLUSION: These results strongly suggest that the activation of p38 MAPK signaling is necessary for gemcitabine-induced cell death in human pancreatic cancer cells. Based upon these results, we suggest that molecules of p38 MAPK signaling pathways should be listed as novel targets for gemcitabine-based therapy.  相似文献   

6.
Notch3 is one of the four Notch receptors identified in mammal, but its role in human pancreatic cancer remains poorly characterized. In this study, we sought to determine the effect of suppressing Notch3 expression on the chemosensitivity to gemcitabine in human pancreatic cancer cell lines BxPC-3 and PANC-1. RNA interference was used to suppress Notch3 expression. Gemcitabine-induced cytotoxicity was determined by MTT. Cell apoptosis was measured by flow cytometry. Caspase 3 activity was assayed using a Caspase Fluorescent Assay Kit. The effect of Notch3-specific siRNA on PI3K/Akt activity was also quantified. Notch3-specific siRNA suppressed Notch3 expression, and furthermore increased gemcitabine-induced, caspase-mediated apoptosis. The suppression of Notch3 expression decreased the average IC50 in BxPC-3 and PANC-1 cells treated with gemcitabine. PI3K/Akt activity was decreased by the suppression of Notch3 expression. Taken together, these data demonstrated that Notch3 is a potential therapeutic target for pancreatic cancer, and PI3K/Akt is a key signaling component by which activation of the Notch3 signal transduction pathway protects pancreatic cancer cells from chemotherapy-induced cell death.  相似文献   

7.
Gemcitabine, an antitumor drug, is currently considered to be the standard of care for the treatment of advanced pancreatic cancer, but the clinical outcome is still not satisfactory. Although heat shock protein (HSP) 27 is implicated in the resistance to chemotherapy in several types of cancers, the precise role of phosphorylated HSP27 in cancer cells remains to be clarified. In this study, we investigated the relationship between the effect of gemcitabine and the phosphorylation status of HSP27 in pancreatic cancer cells, Panc1 and KP3. Gemcitabine suppressed pancreatic cancer cell growth and induced apoptosis. Gemcitabine caused activation of p38 mitogen-activated protein kinase (MAPK), MAPK-activated protein kinase 2 (MAPKAPK-2) and subsequently phosphorylation of HSP27 at Ser15, 78 and 82 without affecting total HSP27 levels. The inhibitions of p38 MAPK and MAPKAPK-2 reduced the phosphorylation of HSP27 and apoptosis in gemcitabine-treated cells. To further investigate the role of phosphorylated HSP27, we established Panc1 cell lines which were stably transfected with empty vector (empty cells), wild-type HSP27-encoding vector (WT cells) and 2 mutant HSP27-encoding vectors that mimic non-phosphorylated (3A), and phosphorylated (3D), respectively. In comparison of empty cells with WT cells, there was no difference in cell growth rate and the sensitivity to gemcitabine. Interestingly, cell growth of 3D cells was retarded as compared to that of 3A cells. Taken together, our results strongly suggest that phosphorylation status of HSP27 plays a key role in gemcitabine-induced growth suppression of pancreatic cancer.  相似文献   

8.
S Matsuno  H Hisano  M Kobari  S Akaishi 《Cancer》1990,66(11):2369-2374
Sensitivities to anti-tumor drugs, mitomycin C (MMC), aclarubicin hydrochloride (ACR), doxorubicin hydrochloride (ADR), cisplatin, and 5-fluorouracil (5FU), were examined using PK-1, -8, -9, -12, -14, and -16 cell lines derived from human pancreatic cancer. These cell lines showed different sensitivities to each of the above anti-tumor drugs. The concentrations required for 50% growth-inhibition (IC50) after 2 hours of exposure were 0.096 to 0.35 micrograms/ml for MMC, 0.0074 to 0.0076 micrograms/ml for ACR, 0.033 to 0.23 micrograms/ml for ADR, 0.35 to 1.9 micrograms/ml for cisplatin, and 21 to 42 micrograms/ml for 5FU, IC50 of each anti-tumor drug decreased significantly after 48 hours of exposure. The combination of any two out of MMC, ACR, and 5FU showed synergistic inhibition of the growth of PK-1 and PK-8 cell lines. These results show that MMC, ACR, ADR, cisplatin, and 5FU have sufficient anti-tumor effect against six human pancreatic cancer cell lines even at clinically achievable concentrations and exposure times, and chemotherapy for pancreatic cancers requires naturally effective drug delivery into cancer tissues.  相似文献   

9.
Gemcitabine is a standard chemotherapeutic agent for locally advanced and metastatic pancreatic cancer. However, the chemoresistance of pancreatic cancer is the major barrier to efficient chemotherapy. Here, we reported that BRG1, a chromatin modulator, was exclusively overexpressed in human pancreatic ductal adenocarcinoma tissues. BRG1 knockdown inhibited PANC-1 and MIA PaCa-2 cell growth in vitro and in vivo, reduced the phosphorylation/activation of Akt and p21cip/waf, enhanced intrinsic and gemcitabine induced apoptosis and attenuated gemcitabine-induced downregulation of E-cadherin. Moreover, by establishing acquired chemoresistance of MIA PaCa-2 cells in vitro, we found that BRG1 knockdown effectively reversed the chemoresistance to gemcitabine. Surprisingly, inhibiting Akt phosphorylation resulted in BRG1 suppression in pancreatic cancer cells, indicating BRG1 as a new downstream target of Akt signalling. Taken together, our findings suggest that BRG1 promotes both intrinsic and acquired chemoresistance of pancreatic cancer cells, and BRG1 crosstalks with Akt signalling to form a positive feedback loop to promote pancreatic cancer development.  相似文献   

10.
Gemcitabine is a new standard chemotherapeutic agent used in the treatment of pancreatic cancer, but the mechanisms of gemcitabine sensitivity are still controversial. In our study to determine a mechanism that regulates gemcitabine sensitivity, we carried out molecular analysis on the susceptibility of the pancreatic cancer cells. Using a gemcitabine-sensitive pancreatic cancer cell line KLM1, we established a resistant cell line KLM1-R exhibiting a 20-fold IC50-value (the concentration of gemcitabine causing 50% growth inhibition). Microarray analysis of genes showed specific expression of selenoprotein P, one of the anti-oxidants, in the KLM1-R cell line but not in the KLM1 cell line. Administration of selenoprotein P inhibited the gemcitabine-induced cytotoxicity in the pancreatic cell lines. The levels of intracellular reactive oxygen species (ROS) were increased in the KLM1 cells by gemcitabine, but selenoprotein P suppressed the gemcitabine-induced ROS levels. Furthermore interferon-gamma suppressed the expression of selenoprotein P mRNA and increased intracellular ROS level, leading to the recovery of the gemcitabine sensitivity in KLM1-R. These results suggest a novel mechanism that selenoprotein P reduces the intracellular ROS levels, resulting in the insusceptibility to gemcitabine.  相似文献   

11.
12.
p8 is a new target of gemcitabine in pancreatic cancer cells.   总被引:8,自引:0,他引:8  
Gemcitabine is the only available chemotherapeutic treatment of pancreatic cancers. It is, however, moderately effective, showing a tumor response rate of only 12%. The aim of this work was to identify new pathways involved in the resistance of pancreatic cancer cells to gemcitabine, in the hope of developing new adjuvant strategies to enhance its therapeutic efficacy. Comparison of gene expression patterns of five human pancreatic cancer cell lines showing different degrees of resistance to gemcitabine revealed specific overexpression of several genes in the most resistant. One of them encoded the antiapoptotic p8 protein. We found that (a) knocking down p8 expression in gemcitabine-resistant cells promoted cell death and increased caspase-3 activity; (b) forced overexpression of p8 in gemcitabine-sensitive cells increased their resistance to gemcitabine-induced apoptosis; and (c) gemcitabine down-regulated p8 mRNA expression. These results suggest that, in pancreatic cancer cells, a large part of gemcitabine-induced apoptosis results from the inhibition of the constitutive antiapoptotic activity of p8. Hence, targeting the p8-associated pathway could be a new adjuvant therapy improving the response of patients with pancreatic cancer to gemcitabine treatment.  相似文献   

13.
Palliative chemotherapy with gemcitabine, a common mode of treatment of pancreatic cancer, has little influence on patients' survival. We investigated the impact of anti-apoptotic Bcl-xL protein and its antagonist Bax on gemcitabine-induced apoptosis in human pancreatic carcinoma cells in vitro and in vivo. The level of Bcl-xL and Bax expression was determined in 3 established pancreatic cancer cell lines that differ in their sensitivity to gemcitabine-mediated apoptosis. Bcl-xL and Bax genes were transduced into Colo357 cells by retroviral infection. In addition, cells were transfected with c-FLIP to assess involvement of CD95 and caspase-8. The impact of Bax/Bcl-xL expression on gemcitabine-sensitivity in vivo was evaluated in orthotopic Colo357 tumors in SCID mice. The apoptotic index revealed a strong inverse correlation between Bcl-xL expression and gemcitabine-induced apoptosis in the pancreatic carcinoma cell lines tested. Caspase-8 and Bid were cleaved in Colo357 cells exposed to gemcitabine, and there was no correlation with either Bcl-xL or with Bax expression. In contrast, the lack of mitochondrial transmembrane potential transition, release of cytochrome-c and absence of caspase-9- and PARP-cleavage showed a strong correlation with Bcl-xL expression. Expression of c-FLIP significantly increased the resistance towards gemcitabine. Orthotopically growing Colo357-bcl-xl tumors in SCID mice were refractory to gemcitabine treatment, and in contrast to the in vitro data, Colo357-bax tumors exhibited a 12-fold greater tumor regression than Colo357-wild-type tumors in the control group. Gemcitabine-induced apoptosis involves the mitochondria-mediated signaling pathway. A functional restoration of this pathway appears to be essential to overcome the resistance mechanisms of pancreatic tumor cells and to improve the response to therapy as demonstrated by Bax overexpression in a clinically relevant tumor model.  相似文献   

14.
15.
Interleukin-8 (IL-8) is an angiogenic factor that promotes growth of pancreatic tumors. The purpose of this study was to determine if c-Src, a protein tyrosine kinase frequently overexpressed in pancreatic cancer, regulated IL-8 expression and to elucidate the Src-mediated signaling pathways that contribute to angiogenesis in pancreatic adenocarcinoma cells. In a panel of pancreatic cancer cell lines, expression of total and activated Src correlated with IL-8 production. Furthermore, ectopic expression of activated Src in PANC-1 cells with low endogenous Src activity significantly increased IL-8 production (P < 0.005). In contrast, pharmacologic inhibition of endogenous c-Src kinase activity or small interfering RNA-mediated "knockdown" of c-Src expression in L3.6pl cells with high Src expression and activity caused significant decreases in IL-8 production (P < 0.005). Inhibition of c-Src activity resulted in decreased phosphorylation of Akt, p38, and extracellular signal-regulated kinase (Erk)-1/2. Significant (P < 0.005) dose-dependent decreases were observed in IL-8 expression by inhibiting Src-dependent signaling molecules Erk-1/2 and p38 but not phosphatidylinositol 3-kinase. To assess the relevance of Src inhibition to angiogenesis, in vivo gelfoam assays were done. Robust infiltration of vessels was observed in gelfoam saturated with conditioned medium from pancreatic carcinoma cells. This angiogenesis was nearly abrogated in gelfoams saturated with conditioned medium from cells treated with the Src family kinase inhibitor, PP2 (P < 0.001). Thus, c-Src regulates critical "downstream" signaling pathways that contribute to expression of IL-8 in human pancreatic tumor cells, suggesting c-Src may be a target for therapeutic intervention in pancreatic adenocarcinoma.  相似文献   

16.
Cigarette smoking is strongly correlated with the onset of nonsmall cell lung cancer (NSCLC). Nicotine, an active component of cigarettes, has been found to induce proliferation of lung cancer cell lines. In addition, nicotine can induce angiogenesis and confer resistance to apoptosis. All these events are mediated through the nicotinic acetylcholine receptors (nAChRs) on lung cancer cells. In this study, we demonstrate that nicotine can promote anchorage-independent growth in NSCLCs. In addition, nicotine also induces morphological changes characteristic of a migratory, invasive phenotype in NSCLCs on collagen gel. These morphological changes were similar to those induced by the promigratory growth factor VEGF. The proinvasive effects of nicotine were mediated by alpha7-nAChRs on NSCLCs. RT-PCR analysis showed that the alpha7-nAChRs were also expressed on human breast cancer and pancreatic cancer cell lines. Nicotine was found to promote proliferation and invasion in human breast cancer. The proinvasive effects of nicotine were mediated via a nAChR, Src and calcium-dependent signaling pathway in breast cancer cells. In a similar fashion, nicotine could also induce proliferation and invasion of Aspc1 pancreatic cancer cells. Most importantly, nicotine could induce changes in gene expression consistent with epithelial to mesenchymal transition (EMT), characterized by reduction of epithelial markers like E-cadherin expression, ZO-1 staining and concomitant increase in levels of mesenchymal proteins like vimentin and fibronectin in human breast and lung cancer cells. Therefore, it is probable that the ability of nicotine to induce invasion and EMT may contribute to the progression of breast and lung cancers.  相似文献   

17.
18.
Among the most important signaling pathways operating in pancreatic cancer cells are those resulting from mutations in the Ras oncogene or from overexpression of ErbB-2 and associated Src-family kinases. In this study, we aimed to characterize CHK expression and function in pancreatic cancer. Our data demonstrated CHK expression in human pancreatic cancer tissues, and also showed that CHK associated with ErbB-2 via its SH2 domain in human PANC-1 pancreatic cancer cells. PANC-1 cells were found to express both Src kinase and Lyn kinase, although the expression of Lyn kinase was more abundant. Furthermore, CHK downregulated Lyn kinase activity and significantly inhibited the in vitro growth and invasion of PANC-1 cells upon EGF stimulation. These results indicate that CHK is a negative regulator of ErbB-2 and Lyn kinase signaling in pancreatic cancer cells.  相似文献   

19.
Among the proinflammatory mediators, platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is a major primary and secondary messenger involved in intracellular and extracellular communication. Evidence suggests that PAF plays a significant role in oncogenic transformation, tumor growth, angiogenesis, and metastasis. However, PAF, with its receptor (PAFR) and their downstream signaling targets, has not been thoroughly studied in cancer. Here, we characterized the PAFR expression pattern in 4 normal human ovarian surface epithelial (HOSE) cell lines, 13 ovarian cancer cell lines, paraffin blocks (n = 84), and tissue microarrays (n = 230) from patients with ovarian cancer. Overexpression of PAFR was found in most nonmucinous types of ovarian cancer but not in HOSE and mucinous cancer cells. Correspondingly, PAF significantly induced cell proliferation and invasion only in PAFR-positive cells (i.e., OVCA429 and OVCA432), but not in PAFR-negative ovarian cells (HOSE and mucinous RMUG-L). The dependency of cell proliferation and invasion on PAFR was further confirmed using PAFR-specific small interfering RNA gene silencing probes, antibodies against PAFR and PAFR antagonist, ginkgolide B. Using quantitative multiplex phospho-antibody array technology, we found that tyrosine phosphorylation of EGFR/Src/FAK/paxillin was coordinately activated by PAF treatment, which was correlated with the activation of phosphatidylinositol 3-kinase and cyclin D1 as markers for cell proliferation, as well as matrix metalloproteinase 2 and 9 for invasion. Specific tyrosine Src inhibitor (PP2) reversibly blocked PAF-activated cancer cell proliferation and invasion. We suggest that PAFR is an essential upstream target of Src and other signal pathways to control the PAF-mediated cancer progression.  相似文献   

20.
Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号