首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Kim SJ  Chung WH  Rhim H  Eun SY  Jung SJ  Kim J 《Neuroscience》2002,114(4):1139-1148
We used tight-seal, whole-cell recording in juvenile rat spinal slices to investigate the action of somatostatin on substantia gelatinosa neurons. Bath application of somatostatin caused a robust and repeatable hyperpolarization or outward current in substantia gelatinosa neurons. Somatostatin inhibited spontaneous action potentials in subpopulation of substantia gelatinosa neurons. The amplitude of dorsal root-evoked excitatory postsynaptic currents and the frequency of spontaneous excitatory postsynaptic currents were not affected by somatostatin. The current induced by somatostatin developed almost instantaneously and did not show any time-dependent inactivation. The current-voltage relationship exhibited inward rectification. The conductance of somatostatin-sensitive current increased with the concentration of external K(+). The reversal potentials in different external K(+) concentrations were close to the K(+) equilibrium potentials. The effect of somatostatin was dose-dependent, with an EC(50) of 113 nM. The somatostatin-sensitive current was blocked by low concentration of extracellular Ba(2+) but not by glibenclamide, an inhibitor of ATP-sensitive K(+) channels. Hyperpolarization-activated cation current in a subpopulation of substantia gelatinosa neurons was not affected by somatostatin. In neurons recorded with an internal solution containing GTPgammaS, somatostatin induced outward current and hyperpolarization that did not reverse on washing. When the spontaneous induction of outward current with GTPgammaS was greatest, somatostatin did not induce any outward currents. Furthermore, intracellular dialysis of GDPbetaS, a G-protein antagonist, abolished the effect of somatostatin. In addition, SST-sensitive neurons were fewer in slices incubated with pertussis toxin than in adjacent control slices incubated without pertussis toxin.These results suggest that somatostatin decreases the postsynaptic membrane excitability of substantia gelatinosa neurons by a pertussis toxin-sensitive G-protein-mediated activation of an inwardly rectifying K(+) conductance.  相似文献   

2.
Modulation of Aplysia mechanosensory neurons is thought to underlie plasticity of defensive behaviors that are mediated by these neurons. In the past, identification of modulators that act on the sensory neurons and characterization of their actions has been instrumental in providing insight into the functional role of the sensory neurons in the defensive behaviors. Motivated by this precedent and a recent report of the presence of Aplysia Mytilus inhibitory peptide-related (AMRP) neuropeptides in the neuropile and neurons of the pleural ganglia, we sought to determine whether and how pleural sensory neurons respond to the AMRPs. In cultured pleural sensory neurons under voltage clamp, AMRPs elicited a relatively rapidly developing, then partially desensitizing, outward current. The current exhibited outward rectification; in normal 10 mM K(+), it was outward at membrane potentials more positive than -80 mV but disappeared without reversing at more negative potentials. When external K(+) was elevated to 100 mM, the AMRP-elicited current reversed around -25 mV; the shift in reversal potential was as expected for a current carried primarily by K(+). In the high-K(+) solution, the reversed current began to decrease at potentials more negative than -60 mV, creating a region of negative slope resistance in the I-V relationship. The AMRP-elicited K(+) current was blocked by extremely low concentrations of 4-aminopyridine (4-AP; IC(50) = 1.7 x 10(-7) M) but was not very sensitive to TEA. In cell-attached patches, AMRPs applied outside the patch-thus presumably through a diffusible messenger-increased the activity of a K(+) channel that very likely underlies the macroscopic current. The single-channel current exhibited outward rectification, and the open probability of the channel decreased with hyperpolarization; together, these two factors accounted for the outward rectification of the macroscopic current. Submicromolar 4-AP included in the patch pipette blocked the channel by reducing its open probability without altering the single-channel current. Based on the characteristics of the AMRP-modulated K(+) current, we conclude that it is a novel current that has not been previously described in Aplysia mechanosensory neurons. In addition to this current, two other AMRP-elicited currents, a slow, 4-AP-resistant outward current and a Na(+)-dependent inward current, were occasionally observed in the cultured sensory neurons. Responses consistent with all three currents were observed in sensory neurons in situ in intact pleural ganglia.  相似文献   

3.
Properties of the 5-hydroxytryptamine (5-HT)-induced current (I(5-HT)) were examined in neurons of rat dorsolateral septal nucleus (DLSN) by using whole cell patch-clamp techniques. I(5-HT) was associated with an increase in the membrane conductance of DLSN neurons. The reversal potential of I(5-HT) was -93 +/- 6 (SE) mV (n = 7) in the artificial cerebrospinal fluid (ACSF) and was changed by 54 mV per decade change in the external K(+) concentration, indicating that I(5-HT) is carried exclusively by K(+). Voltage dependency of the K(+) conductance underlying I(5-HT) was investigated by using current-voltage relationship. I(5-HT) showed a linear I-V relation in 63%, inward rectification in 21%, and outward rectification in 16% of DLSN neurons. (+/-)-8-Hydroxy-dipropylaminotetralin hydrobromide (30 microM), a selective 5-HT(1A) receptor agonist, also produced outward currents with three types of voltage dependency. Ba(2+) (100 microM) blocked the inward rectifier I(5-HT) but not the outward rectifier I(5-HT). In I(5-HT) with linear I-V relation, blockade of the inward rectifier K(+) current by Ba(2+) (100 microM) unmasked the outward rectifier current in DLSN neurons. These results suggest that I(5-HT) with linear I-V relation is the sum of inward rectifier and outward rectifier K(+) currents in DLSN neurons. Intracellular application of guanosine-5'-O-(3-thiotriphosphate) (300 microM) and guanosine-5'-O-(2-thiodiphosphate) (5 mM), blockers of G protein, irreversibly depressed I(5-HT). Protein kinase C (PKC) 19-36 (20 microM), a specific PKC inhibitor, depressed the outward rectifier I(5-HT) but not the inward rectifier I(5-HT). I(5-HT) was depressed by N-ethylmaleimide, which uncouples the G-protein-coupled receptor from pertussis-toxin-sensitive G proteins. H-89 (10 microM) and adenosine 3',5'-cyclic monophosphothioate Rp-isomer (300 microM), protein kinase A inhibitors, did not depress I(5-HT). Phorbol 12-myristate 13-acetate (10 microM), an activator of PKC, produced an outward rectifying K(+) current. These results suggest that both 5-HT-induced inward and outward rectifying currents are mediated by a G protein and that PKC is probably involved in the transduction pathway of the outward rectifying I(5-HT) in DLSN neurons.  相似文献   

4.
The development of Na(+)- and K(+)-currents in the primary afferent neurons of the cochlear ganglion was studied using the patch-clamp technique. Cells were dissociated between days 6 and 17 of development and membrane currents recorded within the following 24 h. Outward currents were the first to appear between days 6 and 7 of embryonic development and their magnitude increased throughout development from 200 pA on day 7 to 900 pA on days 14-16. Threshold for activation decreased by 20 mV between days 8 and 14. Outward currents were absent when Cs+ replaced K+ in the pipette and were partially blocked by external tetraethylammonium. Outward currents contained at least three components: (i) a non-inactivating outward current, similar to the delayed-rectifier, predominating in mature neurons; (ii) a slowly inactivating current (tau about 200 ms), most evident in early and intermediate stages (days 7-10); and (iii) a rapidly inactivating outward current (tau about 20 ms) similar to the A-current (IA) described in other neurons, which was distinctly expressed in mature neurons. Sodium currents were identified as fast transient inward currents, sensitive to tetrodotoxin and extracellular Na(+)-removal. They appeared later than K(+)-currents and increased in size from about 100 pA between days 9-11 to 600 pA by days 13-16. The development of membrane currents in cochlear ganglion neurons corresponded to defined stages of the innervation pattern of the chick cochlea [Whitehead and Morest (1985) Neuroscience 14, 255-276]. These currents could be functionally related to the establishment of synaptic connections between transducing cells and primary afferent neurons.  相似文献   

5.
Shen KZ  Kozell LB  Johnson SW 《Neuroscience》2007,148(4):996-1003
Firing patterns of subthalamic nucleus (STN) neurons influence normal and abnormal movements. The STN expresses multiple 5-HT receptor subtypes that may regulate neuronal excitability. We used whole-cell patch-clamp recordings to characterize 5-HT receptor-mediated effects on membrane currents in STN neurons in rat brain slices. In 80 STN neurons under voltage-clamp (-70 mV), 5-HT (30 microM) evoked inward currents in 64%, outward currents in 17%, and biphasic currents in 19%. 5-HT-induced outward current was caused by an increased K(+) conductance (1.4+/-0.2 nS) and was blocked by the 5-HT(1A) antagonist WAY 100135. The 5-HT-evoked inward current, which was blocked by antagonists at 5-HT(2C) and/or 5-HT(4) receptors, had two types of current-voltage (I-V) relations. Currents associated with the type 1 I-V relation showed negative slope conductance at potentials <-110 mV and were occluded by Ba(2+). In contrast, the type 2 I-V relation appeared linear and had positive slope conductance (0.64+/-0.11 nS). Type 2 inward currents were Ba(2+)-insensitive, and the reversal potential of -19 mV suggests a mixed cation conductance. In STN neurons in which 5-HT evoked inward currents, 5-HT potentiated burst firing induced by N-methyl-d-aspartate (NMDA). But in neurons in which 5-HT evoked outward current, 5-HT slowed NMDA-dependent burst firing. We conclude that 5-HT receptor subtypes can differentially regulate firing pattern by modulating multiple conductances in STN neurons.  相似文献   

6.
Potassium channels play an important role in controlling neuronal firing and synaptic interactions. Na(+)-activated K(+) (K(Na)) channels have been shown to exist in neurons in different regions of the CNS, but their physiological function has been difficult to assess. In this study, we have examined if neurons in the spinal cord possess K(Na) currents. We used whole cell recordings from isolated spinal cord neurons in lamprey. These neurons display two different K(Na) currents. The first was transient and activated by the Na(+) influx during the action potentials, and it was abolished when Na(+) channels were blocked by tetrodotoxin. The second K(Na) current was sustained and persisted in tetrodotoxin. Both K(Na) currents were abolished when Na(+) was substituted with choline or N-methyl-D-glucamine, indicating that they are indeed dependent on Na(+) influx into neurons. When Na(+) was substituted with Li(+), the amplitude of the inward current was unchanged, whereas the transient K(Na) current was reduced but not abolished. This suggests that the transient K(Na) current is partially activated by Li(+). These two K(Na) currents have different roles in controlling the action potential waveform. The transient K(Na) appears to act as a negative feedback mechanism sensing the Na(+) influx underlying the action potential and may thus be critical for setting the amplitude and duration of the action potential. The sustained K(Na) current has a slow kinetic of activation and may underlie the slow Ca(2+)-independent afterhyperpolarization mediated by repetitive firing in lamprey spinal cord neurons.  相似文献   

7.
An inwardly rectifying K+ current was analysed in isolated toad retinal pigment epithelial (RPE) cells using the perforated-patch clamp technique. The zero-current potential (Vo) of RPE cells averaged -71 mV when the extracellular K+ concentration ([K+]o) was 2 mM. Increasing [K+]o from 0.5 to 5 mM shifted V0 by +43 mV, indicating a relative K+ conductance (TK) of 0.74. At [K+]o greater than 5 mM, TK decreased to 0.53. Currents were larger in response to hyperpolarizing voltage pulses than depolarizing pulses, indicating an inwardly rectifying conductance. Currents were time independent except in response to voltage pulses to potentials positive to 0 mV, where the outward current decayed with an exponential time course. Both the inwardly rectifying current and the transient outward current were eliminated by the addition of 0.5 mM Ba2+, 5 mM Cs+ or 2 mM Rb+ to the extracellular solution. The current blocked by these ions reversed near the K+ equilibrium potential (EK) over a wide range of [K+]o, indicating a highly selective K+ channel. The current-voltage relationship of the isolated K+ current exhibited mild inward rectification at voltages negative to -20 mV and a negative slope conductance at voltages positive to -20 mV. The Cs(+)- and Ba(2+)-induced blocks of the K+ current were concentration dependent but voltage independent. The apparent dissociation constants were 0.8 mM for Cs+ and 40 microM for Ba2+. The K+ conductance decreased when extracellular Na+ was removed. Increasing [K+]o decreased the K+ chord conductance (gK) at negative membrane potentials. In the physiological voltage range, increasing [K+]o from 2 to 5 mM caused gK to decrease by approximately 25%. We conclude that the inwardly rectifying K+ conductance represents the resting K+ conductance of the toad RPE apical membrane. The unusual properties of this conductance may enhance the ability of the RPE to buffer [K+]o changes that take place in the subretinal space at the transition between dark and light.  相似文献   

8.
The effects of serotonin (5-HT) on excitability of two cortical interneuronal subtypes, fast-spiking (FS) and low threshold spike (LTS) cells, and on spontaneous inhibitory postsynaptic currents (sIPSCs) in layer V pyramidal cells were studied in rat visual cortical slices using whole-cell recording techniques. Twenty-two of 28 FS and 26 of 35 LTS interneurons responded to local application of 5-HT. In the group of responsive neurons, 5-HT elicited an inward current in 50% of FS cells and 15% of LTS cells, an outward current was evoked in 41% of FS cells and 81% of LTS cells, and an inward current followed by an outward current in 9% of FS cells and 4% LTS cells. The inward and outward currents were blocked by a 5-HT(3) receptor antagonist, tropisetron, and a 5-HT(1A) receptor antagonist, NAN-190, respectively. The 5-HT-induced inward and outward currents were both associated with an increase in membrane conductance. The estimated reversal potential was more positive than -40 mV for the inward current and close to the calculated K(+) equilibrium potential for the outward current. The 5-HT application caused an increase, a decrease, or an increase followed by a decrease in the frequency of sIPSCs in pyramidal cells. The 5-HT(3) receptor agonist 1-(m-chlorophenyl) biguanide increased the frequency of larger and fast-rising sIPSCs, whereas the 5-HT(1A) receptor agonist (+/-)8-hydroxydipropylaminotetralin hydrobromide elicited opposite effects and decreased the frequency of large events. These data indicate that serotonergic activation imposes complex actions on cortical inhibitory networks, which may lead to changes in cortical information processing.  相似文献   

9.
1. The function and ionic mechanism of a slow outward current were studied in large layer V neurons of cat sensorimotor cortex using an in vitro slice preparation and single microelectrode voltage clamp. 2. With Ca2+ influx blocked, a slow relaxation ("tail") of outward current followed either (1) repetitive firing evoked for 1 s or (2) a small 1-s depolarizing voltage clamp step that activated the persistent Na+ current of neocortical neurons, INaP. When a depolarization that activated INaP was maintained, an outward current gradually developed and increased in amplitude over a period of tens of seconds to several minutes. An outward tail current of similar duration followed repolarization. The slow outward current was abolished by TTX, indicating it depended on Na+ influx. 3. With Ca2+ influx blocked, the onset of the slow Na+-dependent outward current caused spike frequency adaptation during current-evoked repetitive firing. Following the firing, the decay of the Na+-dependent current caused a slow afterhyperpolarization (sAHP) and a long-lasting reduction of excitability. It also was responsible for habituation of the response to repeated identical current pulses. 4. The Na+-dependent tail current had properties expected of a K+ current. Membrane chord conductance increased during the tail, and tail amplitude was reduced or reversed by membrane potential hyperpolarization and raised extracellular K+ concentration [( K+]0). 5. The current tail was reduced reversibly by the K+ channel blockers TEA (5-10 mM), muscarine (5-20 microM), and norepinephrine (100 microM). These agents also resulted in a larger, more sustained inward current during the preceding step depolarization. Comparison of current time course before and after the application of blocking agents suggested that, in spite of its capability for slow buildup and decay, the onset of the Na+-dependent outward current occurs within 100 ms of an adequate step depolarization. 6. With Ca2+ influx blocked, extracellular application of dantrolene sodium (30 microM) had no clear effect on the current tail or the corresponding sAHP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The extracellular application of either quisqualic acid (QA) or Phe-Met-Arg-Phe-NH2 (FMRFamide) induces an outward current in identified neurons of Aplysia ganglion under voltage clamp. The time course of the QA-induced response is significantly slower than that induced by FMRFamide. The reversal potential for both responses was -92 mV and was shifted 17 mV in a positive direction for a twofold increase in the extracellular K(+) concentration. The QA-induced response was markedly depressed in the presence of Ba(2+), a blocker of inward rectifier K(+)-channel, whereas TEA, a Ca(2+)-activated K(+)-channel (BK(Ca)) blocker, or 4-AP, a transient K(+) (A)-channel blocker, had no effect on the response. The QA-induced K(+)-current was significantly suppressed by CNQX and GYKI52466, antagonists of non-NMDA receptors. However, the application of either kainate or AMPA, agonists for non-NMDA receptors, produced no type of response in the same neurons. The QA-induced K(+)-current response was not depressed at all by an intracellular injection of either guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS) or guanosine 5'-O-(3-thiotriphosphate) (GTP-gammaS), but the FMRFamide-induced response was markedly blocked by both GDP-betaS and GTP-gammaS in the same cell. Furthermore, the QA- and FMRFamide-induced K(+)-current responses were both decreased markedly when the temperature was lowered to 15 degrees C, from 23 degrees C. These results suggested that the QA-induced K(+)-current response is produced by an activation of a novel type of QA-receptor and that this response is not produced by an activation of the G protein.  相似文献   

11.
1. Seven to ten days after sectioning their axons, rat sympathetic neurons were studied using intracellular recording techniques in an in vitro preparation of the superior cervical ganglion. 2. In 75% of axotomized cells, an after-depolarization (ADP) was observed following spike firing or depolarization with intracellular current pulses. Discontinuous single-electrode voltage-clamp techniques were employed to study the ADP. When the membrane potential was clamped at the resting level just after an action potential, a slow inward current was recorded in cells that showed an ADP. 3. In the presence of TTX and TEA, inward peaks and outward currents were recorded during depolarizing voltage jumps, followed by slowly decaying inward tail currents accompanied by large increases in membrane conductance. The inward peak and tail currents activated between -10 and -20 mV and reached maximum amplitudes around 0 mV. With depolarizing jumps to between +40 and +50 mV, net outward currents were recorded during the depolarizing jumps but inward tail currents were still activated. 4. In the presence of the Ca2+ channel blocker cadmium, or when Ca2+ was substituted by Mg2+, the ADP disappeared. In voltage-clamped cells, cadmium blocked the inward tail currents. The reversal potential for the inward tail current was approximately -15 mV. Substitution of the extracellular NaCl by sucrose or sodium isethionate increased the amplitude of the inward tail current, and displaced its equilibrium potential to more positive values. Changes in extracellular [K+] did not appreciably affect the inward tail current amplitude or equilibrium potential. Niflumic acid, a blocker of chloride channels activated by Ca2+, almost completely blocked the tail current. 5. No ADPs were observed in non-axotomized neurons, and when depolarizing pulses were applied while in voltage clamp no inward tail currents were evoked in these normal cells. 6. It is concluded that axotomy of sympathetic ganglion cells produces the appearance of a Ca(2+)-dependent chloride current responsible for the ADP observed following spike firing.  相似文献   

12.
Spreading depression (SD) and the related hypoxic SD-like depolarization (HSD) are characterized by rapid and nearly complete depolarization of a sizable population of brain cells with massive redistribution of ions between intracellular and extracellular compartments, that evolves as a regenerative, "all-or-none" type process, and propagates slowly as a wave in brain tissue. This article reviews the characteristics of SD and HSD and the main hypotheses that have been proposed to explain them. Both SD and HSD are composites of concurrent processes. Antagonists of N-methyl-D-aspartate (NMDA) channels or voltage-gated Na(+) or certain types of Ca(2+) channels can postpone or mitigate SD or HSD, but it takes a combination of drugs blocking all known major inward currents to effectively prevent HSD. Recent computer simulation confirmed that SD can be produced by positive feedback achieved by increase of extracellular K(+) concentration that activates persistent inward currents which then activate K(+) channels and release more K(+). Any slowly inactivating voltage and/or K(+)-dependent inward current could generate SD-like depolarization, but ordinarily, it is brought about by the cooperative action of the persistent Na(+) current I(Na,P) plus NMDA receptor-controlled current. SD is ignited when the sum of persistent inward currents exceeds persistent outward currents so that total membrane current turns inward. The degree of depolarization is not determined by the number of channels available, but by the feedback that governs the SD process. Short bouts of SD and HSD are well tolerated, but prolonged depolarization results in lasting loss of neuron function. Irreversible damage can, however, be avoided if Ca(2+) influx into neurons is prevented.  相似文献   

13.
1. The passive and active membrane properties of guinea pig cingulate cortical neurons were studied in vitro using the slice preparation. Results were reported for intracellular recordings made from neurons that were penetrated in layers V/VI of the anterior cingulate cortex areas 1 and 3. 2. The neurons had an average resting potential of -71 mV, an input resistance of 71 M omega, a spike amplitude of 93 mV, and a spike duration of 1.6 ms. The firing occurred regularly at an average rate of 13 spikes/s at the membrane potential of -55 mV, suggesting that they are probably regular spiking pyramidal cells. 3. The voltage decay following a hyperpolarizing current pulse could always be fitted by two exponentials in most cells. The slope of the charging function was analyzed to estimate the two cable theory parameters of the neurons, based on a simple Rall model: the electrotonic length (LN) of the equivalent dendritic cylinder and the conductance ratio (rho) of the dendrites to that of the soma. There were no significant differences in the LN (0.9-1.1) and the rho (2.8-3.0) of neurons in normal media and solutions containing tetrodotoxin (TTX), Cs+ and low Ca2+, indicating that the neurons may be electrically compact. 4. In most cells the steady-state current-voltage (I-V) relationship revealed three distinct types of rectification: an anomalous inward rectification in the hyperpolarizing direction, a subthreshold inward rectification, and a delayed outward rectification in the depolarizing direction. 5. The anomalous rectification was increased in high K+ solutions and was decreased in low K+ solutions. Analysis of the Ba2+ and Cs+ sensitivity confirmed that the anterior cingulate neurons had two distinct types of anomalous rectification, one that was time dependent and Ba2+ insensitive and the other that was fast and Ba2+ sensitive. Ionic analyses indicated that the time-dependent anomalous rectification was due to an increased permeability to both Na+ and K+, whereas the fast, Ba(2+)-sensitive rectification was probably only K+ dependent. 6. The subthreshold inward rectification was depressed by TTX, lidocaine, or Co2+, as well as the reduction of extracellular Na+, whereas it was augmented by extracellular Ba2+. This persistent Na(+)-Ca2+ conductance triggered the generation of Na(+)-dependent action potentials. 7. The delayed outward rectification was recorded in the potential range between -65 and -20 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Rat hippocampal neurons in culture: potassium conductances   总被引:7,自引:0,他引:7  
Two-electrode voltage-clamp methodology was used to analyze voltage-dependent ionic conductances in 81 rat hippocampal neurons grown in culture for 4-6 wk. Pyramidal and multipolar cells with 15- to 20-micron-diameter cell bodies were impaled with two independent KCl electrodes. The cells had resting potentials of -30 to -60 mV and an average input resistance of about 30 M omega. A depolarizing command applied to a cell maintained in normal medium invariably evoked a fast (2-10 ms) inward current that saturated the current-passing capacity of the system. This was blocked in a reversible manner by application of tetrodotoxin (TTX) (0.1-1.0 microM) near the recorded cell. In the presence of TTX, a depolarizing command evoked a rapidly rising (3-5 ms), rapidly decaying (25 ms) transient outward current reminiscent of "IA" reported in molluscan neurons. This was followed by a more slowly activating (approximately 100 ms) outward current response of greater amplitude that decayed with a time constant of about 2-3 s. These properties resemble those associated with the K+ conductance, IK, underlying delayed rectification described in many excitable membranes. IK was blocked by extracellular application of tetraethylammonium (TEA) but was insensitive to 4-aminopyridine (4-AP) at concentrations that effectively eliminated IA. IA, in turn, was only marginally depressed by TEA. Unlike IK, IA was completely inactivated when the membrane was held at potentials positive to -50 mV. Inactivation was completely removed by conditioning hyperpolarization at -90 mV. A brief hyperpolarizing pulse (10 ms) was sufficient to remove 95% of the inactivation. IA activated on commands to potentials more positive than -50 mV. The inversion potential of the ionic conductance underlying IA and IK was in the range of the K+ equilibrium potential, EK, as measured by the inversion of tail currents; and this potential was shifted in a depolarizing direction by elevated [K+]0. Thus, both current species reflect activation of membrane conductance to K+ ions. Hyperpolarizing commands from resting potentials revealed a time- and voltage-dependent slowly developing inward current in the majority of cells studied. This membrane current was observed in cells exhibiting "anomalous rectification" and was therefore labeled IAR. It was activated at potentials negative to -70 mV with a time constant of 100-200 ms and was not inactivated. A return to resting potential revealed a tail current that disappeared at about EK. IAR was blocked by extracellular CS+ and was enhanced by elevating [K+]0. It thus appears to be carried by inward movement of K+ ions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The effects of acute application of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFalpha) on levels of intracellular Ca(2+) ([Ca(2+)]i) and on whole-cell outward and inward K(+) currents were studied in cultured human microglia. TNFalpha elicited a linear increase in [Ca(2+)]i to a plateau level in microglia bathed in either standard physiological saline solution or Ca(2+)-free physiological saline solution. The rate of increase of [Ca(2+)]i or the level of [Ca(2+)]i attained was not significantly altered in the absence of external Ca(2+) indicating that Ca(2+) influx did not contribute appreciably to the cytokine-induced rise in [Ca(2+)]i. This point was directly confirmed using Mn(2+) quenching where no change in signal fluorescence was observed with TNFalpha treatment of microglia in Ca(2+)-free physiological saline solution. The rate of increase of [Ca(2+)]i induced by TNFalpha in Ca(2+)-free physiological saline solution was not altered by prior application of ATP to deplete inositol triphosphate stores indicating that these stores did not contribute to the cytokine response. In whole-cell patch clamp recordings, the acute treatment of human microglia with TNFalpha led to the expression of an outward K(+) current in one-third (14 of 41) of cells. This current was activated at potentials positive to -30 mV, showed rapid kinetics of activation with no evident inactivation and had an I-V relation exhibiting outward rectification. Analysis of tail currents showed reversal of the outward K(+) current near -70 mV and tetraethylammonium (10 mM) inhibited the outward K(+) current to 24% of control level. Acute application of TNFalpha had no effect to alter inward rectifier currents generated from voltage ramps.The signaling pathways involving TNFalpha modulation of [Ca(2+)]i and K(+) channels in human microglia may contribute to functional and pathological actions of the cytokine in the brain.  相似文献   

16.
Potassium currents in octopus cells of the mammalian cochlear nucleus.   总被引:5,自引:0,他引:5  
Octopus cells in the posteroventral cochlear nucleus (PVCN) of mammals are biophysically specialized to detect coincident firing in the population of auditory nerve fibers that provide their synaptic input and to convey its occurrence with temporal precision. The precision in the timing of action potentials depends on the low input resistance (approximately 6 MOmega) of octopus cells at the resting potential that makes voltage changes rapid (tau approximately 200 micros). It is the activation of voltage-dependent conductances that endows octopus cells with low input resistances and prevents repetitive firing in response to depolarization. These conductances have been examined under whole cell voltage clamp. The present study reveals the properties of two conductances that mediate currents whose reversal at or near the equilibrium potential for K(+) over a wide range of extracellular K(+) concentrations identifies them as K(+) currents. One rapidly inactivating conductance, g(KL), had a threshold of activation at -70 mV, rose steeply as a function of depolarization with half-maximal activation at -45 +/- 6 mV (mean +/- SD), and was fully activated at 0 mV. The low-threshold K(+) current (I(KL)) was largely blocked by alpha-dendrotoxin (alpha-DTX) and partially blocked by DTX-K and tityustoxin, indicating that this current was mediated through potassium channels of the Kv1 (also known as shaker or KCNA) family. The maximum low-threshold K(+) conductance (g(KL)) was large, 514 +/- 135 nS. Blocking I(KL) with alpha-DTX revealed a second K(+) current with a higher threshold (I(KH)) that was largely blocked by 20 mM tetraethylammonium (TEA). The more slowly inactivating conductance, g(KH), had a threshold for activation at -40 mV, reached half-maximal activation at -16 +/- 5 mV, and was fully activated at +30 mV. The maximum high-threshold conductance, g(KH), was on average 116 +/- 27 nS. The present experiments show that it is not the biophysical and pharmacological properties but the magnitude of the K(+) conductances that make octopus cells unusual. At the resting potential, -62 mV, g(KL) contributes approximately 42 nS to the resting conductance and mediates a resting K(+) current of 1 nA. The resting outward K(+) current is balanced by an inward current through the hyperpolarization-activated conductance, g(h), that has been described previously.  相似文献   

17.
We characterized a voltage-dependent transient K(+) current in dental pulp fibroblasts on dental pulp slice preparations by using a nystatin perforated-patch recording configuration. The mean resting membrane potential of dental pulp fibroblasts was -53 mV. Depolarizing voltage steps to +60 mV from a holding potential of -80 mV evoked transient outward currents that are activated rapidly and subsequently inactivated during pulses. The activation threshold of the transient outward current was -40 mV. The reversal potential of the current closely followed the K(+) equilibrium potential, indicating that the current was selective for K(+). The steady-state inactivation of the peak outward K(+) currents described by a Boltzmann function with half-inactivation occurred at -47 mV. The K(+) current exhibited rapid activation, and the time to peak amplitude of the current was dependent on the membrane potentials. The inactivation process of the current was well fitted with a single exponential function, and the current exhibited slow inactivating kinetics (the time constants of decay ranged from 353 ms at -20 mV to 217 ms at +60 mV). The K(+) current was sensitive to intracellular Cs(+) and to extracellular 4-aminopyridine in a concentration-dependent manner, but it was not sensitive to tetraethylammonium, mast cell degranulating peptide, and dendrotoxin-I. The blood depressing substance-I failed to block the K(+) current. These results indicated that dental pulp fibroblasts expressed a slow-inactivating transient K(+) current.  相似文献   

18.
1. Voltage-clamp recordings were made from cultured AtT-20 pituitary cells using the whole-cell patch-clamp technique. Cells were perfused internally with Cs+ to block K+ currents and bathed externally with either 1 microM tetrodotoxin or with tetraethylammonium (TEA) as a Na+ substitute to block voltage-activated Na+ currents. 2. Depolarizing voltage steps from a holding potential of -80 mV to potentials positive to -30 mV evoked two currents: a fast inward current that activated between -30 and +70 mV and a slowly activating current (designated "slow step current") that was inward between -30 and near 0 mV (the Cl- equilibrium potential) and outward positive to about 0 mV. Repolarization to -80 mV revealed a slowly decaying, inward tail current, whose magnitude with respect to step potential closely matched the current-voltage relationship of the voltage-activated Ca2+ current. 3. Activation of the fast inward current, slow step current, and tail current, was prevented by extracellular application of Cd2+ or removal of extracellular Ca2+. Replacement of extracellular Ca2+ with Ba2+ potentiated the fast inward current but blocked the slow step and tail currents. Intracellular perfusion with greater than 1 mM of the Ca2+ chelators ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) or [1,2-bis(2)aminophenoxy]ethane N,N,N',N'-tetraacetic acid (BAPTA) prevented activation of the slow step and tail currents, but not the fast inward current. 4. The reversal potential of the slow inward current was sensitive to changes in the Cl- equilibrium potential but not to substitution of TEA for Na+. The slow step current, but not the fast inward current, was partially blocked by the Cl- channel blocker, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. 5. These data indicate that both the slow inward tail current and the slowly activating, reversible step current were a Ca2+-dependent Cl- current, similar to that described in other neuronal and nonneuronal cell types. The fast inward current was a voltage-activated Ca2+ current, described previously in these and other cells. 6. In the absence of intracellular EGTA, the tail current decayed with complex kinetics, its time course apparently dependent on the magnitude of the voltage-activated Ca2+ current. In the presence of 200 microM intracellular EGTA, the tail current decayed significantly faster and often decayed exponentially.  相似文献   

19.
PURPOSE: Hepatic stellate cells (HSC) are a type of pericyte with varying characteristics according to their location. However, the electrophysiological properties of HSC are not completely understood. Therefore, this study investigated the difference in the voltage-dependent K(+) currents in HSC. MATERIALS AND METHODS: The voltage-dependent K(+) currents in rat HSC were evaluated using the whole cell configuration of the patch-clamp technique. RESULTS: Four different types of voltage-dependent K(+) currents in HSC were identified based on the outward and inward K(+) currents. Type D had the dominant delayed rectifier K(+) current, and type A had the dominant transient outward K(+) current. Type I had an inwardly rectifying K(+) current, whereas the non-type I did not. TEA (5 mM) and 4-AP (2 mM) suppressed the outward K(+) currents differentially in type D and A. Changing the holding potential from -80 to -40 mV reduced the amplitude of the transient outward K(+) currents in type A. The inwardly rectifying K(+) currents either declined markedly or were sustained in type I during the hyperpolarizing step pulses from -120 to -150 mV. CONCLUSION: There are four different configurations of voltage-dependent K(+) currents expressed in cultured HSC. These results are expected to provide information that will help determine the properties of the K(+) currents in HSC as well as the different type HSC populations.  相似文献   

20.
It is widely accepted that energy deprivation causes a neuronal death that is mainly determined by an increase in the extracellular level of glutamate. Consequently an excessive membrane depolarization and a rise in the intracellular concentration of sodium and calcium are produced. In spite of this scenario, the function of excitatory and inhibitory amino acids during an episode of energy failure has not been studied yet at a cellular level. In a model of cerebral hypoglycemia in the rat substantia nigra pars compacta, we measured neuronal responses to excitatory amino acid agonists. Under single-electrode voltage-clamp mode at -60 mV, the application of the ionotropic glutamate receptor agonists N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, kainate, and the metabotropic group I agonist (S)-3,5-dihydroxyphenilglycine (DHPG) produced reversible inward currents in the dopaminergic cells. In addition, an outward current was caused by the superfusion of the metabotropic GABA(B) agonist baclofen. Glucose deprivation enhanced the inward responses caused by each ionotropic glutamate agonist. In contrast, hypoglycemia depressed the DHPG-induced inward current and the baclofen-induced outward current. These effects of hypoglycemia were reversible. To test whether a failure of the Na(+)/K(+) ATPase pump could account for the modification of the agonist-induced currents during hypoglycemia, we treated the midbrain slices with strophanthidin (1-3 microM). Strophanthidin enhanced the inward currents caused by glutamate agonists. However, it did not modify the GABA(B)-induced outward current. Our data suggest that glucose deprivation enhances the inward current caused by the stimulation of ionotropic glutamate receptors while it dampens the responses caused by the activation of metabotropic receptors. Thus a substantial component of the augmented neuronal response to glutamate, during energy deprivation, is very likely due to the failure of Na(+) and Ca(2+) extrusion and might ultimately favor excitotoxic processes in the dopaminergic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号