首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragments containing different cytoarchitectonic fields were dissected out of late embryonic rat hippocampal primordia and transplanted into the hippocampus or septum of adult syngeneic hosts. Field CA3 transplants contained clusters of large, angular (pyramidal) cell bodies surrounded by a radiating corona of dendrites. These cells stained selectively with our monoclonal antibody Py, and a proportion were labelled by [3H]thymidine administered on the 15th day of embryonic life. Field CA1 transplants contained smaller, angular, Py-negative cells, which formed elongated laminae rather than globular clusters. The ability of the host dentate granule cells to project to the transplants was examined by (1) the Timm stain for mossy fibres, (2) electron microscopy of Golgi-impregnated CA3 pyramidal neurons in the transplants, and (3) quantitative electron microscopic assessment of the proportions of large mossy fibre terminals in the synaptic population of the transplants. The Timm stain showed that CA3 transplants received a projection from host dentate granule cells when the transplants were placed in direct contact with the axons in the host mossy fibre pathway. As in the normal host field CA3, the ingrowing mossy fibres terminated selectively on the juxtacellular regions of the dendritic tree and ignored the major part of the dendrites in the radiating corona. The electron micrographs showed that within this territory the host mossy fibres formed synaptic terminals with all the complex features typical of normal mossy fibres, and were presynaptic to complex spines arising from the juxtacellular region of Golgi-impregnated donor CA3 pyramidal cells. The quantitative electron microscopic study demonstrated that the mossy fibre-innervated juxtacellular regions of the field CA3 transplants had up to 20% of the normal density of mossy fibre synapses found in the stratum lucidum of field CA3 in situ. CA3 transplants which were placed in the septum, remote from the host mossy fibres, had either trivial numbers of mossy fibre synapses or none. This confirmed that the abundant mossy fibre terminals in the intrahippocampal CA3 transplants were of host origin, and not due to donor dentate granule cells inadvertently included in the grafts. The selectivity of the host dentate projection for field CA3 transplants was demonstrated by the observation that CA1 transplants in the same locations received only slight mossy fibre projections in the Timm stain, and in electron micrographs their synaptic population had only insignificant numbers of large mossy fibre terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Kainate receptors (KARs) are abundantly expressed in the central nervous system at a period of intense synaptogenesis and might participate in the maturation of neural networks. We have described the postnatal development of mossy fibre excitatory synaptic transmission in CA3 pyramidal cells and we have explored the potential role of KARs in synaptic maturation. In CA3 pyramidal cells, mossy fibre stimulation evokes EPSCs as early as postnatal day 3 (P3). At this early stage, mossy fibre (MF)-EPSCs are fully blocked by GYKI 53655, an AMPA receptor (AMPAR) antagonist. A postsynaptic KAR component can only be detected from P6. Thus, AMPAR-EPSCs precede KAR-EPSCs during postnatal maturation at this synapse. All MF-EPSCs display a KAR component after P10. A key issue of the present work is that between P6 and P9, the presence of a postsynaptic KAR component tightly coincides with AMPAR-mediated EPSCs of large amplitude, and with the onset of low frequency facilitation (from 0.1 Hz to 1 Hz), a presynaptic form of short-term synaptic plasticity. In addition, mice lacking functional KARs throughout postnatal development display MF-EPSCs of significantly smaller amplitude at stages of maturation where synaptic KARs are normally present, due to both pre- and postsynaptic impairment of synaptic transmission. These data suggest a role for KARs in the maturation of mossy fibre synapses.  相似文献   

3.
The glutamate immunoreactivity of different cell populations was compared quantitatively in the cerebellar cortex of cat, using an antiserum raised against glutamate coupled to bovine serum albumin by glutaraldehyde. Neuronal and glial processes were identified on serial electron microscopic sections which were processed by a postembedding immunogold procedure. The surface density of colloidal gold particles was used for statistical comparison of the relative levels of glutamate in cell populations, or in different parts of the same population. The terminals of mossy and parallel fibres had significantly higher levels of glutamate immunoreactivity than Golgi cell terminals, granule cell dendritic digits, Purkinje cell dendrites or dendritic spines. Golgi cell terminals were identified by their position and GABA immunoreactivity as revealed by immunogold in serial sections. The dendritic digits of the putative glutamatergic granule cells had significantly higher glutamate immunoreactivity than did Purkinje cell dendrites and dendritic spines. Glial cell processes in the molecular layer had lower level of glutamate immunoreactivity than any of the neuronal processes. The results demonstrate that the highest levels of glutamate immunoreactivity occur in mossy and parallel fibre presynaptic terminals that are known to have an excitatory effect. This supports previous suggestions that glutamate may be a transmitter at these synapses. The measurement of the levels of putative amino acid transmitters in identified neuronal populations, or in different parts of the same population, could have wide applications in studies on the chemical neuroanatomy of the nervous system.  相似文献   

4.
Glutamate is the main neurotransmitter at hippocampal mossy fibre (MF) terminals. Because neurotransmitters have been proposed as regulating factors of neural network formation and neurite morphogenesis in the developing CNS, we examined the possible contribution of glutamate to MF pathfinding. Entorhino-hippocampal slices prepared from early postnatal rats were cultivated in the presence of glutamate receptor antagonists. Timm histochemical staining revealed that pharmacological blockade of metabotropic glutamate receptors (mGluR), but not of ionotropic glutamate receptors, induced abnormal outgrowth of the MFs. When slices were cultured in the presence of mGluR antagonists, DiI-labelled MF axons displayed a great degree of defasciculation, and MF-mediated EPSPs in the CA3 pyramidal cells were altered. Similar results were obtained for a selective antagonist of group II mGluR, but not of group I or III mGluR. Glutamate is, therefore, likely to regulate MF outgrowth via activation of group II mGluR. The present study may provide a novel role of glutamate in hippocampal development.  相似文献   

5.
Induction and expression of long-term potentiation (LTP) in area CA1 of the hippocampus require the coordinated regulation of several cellular processes. We found that LTP in area CA1 was associated with an N-methyl-D-aspartate (NMDA) receptor-dependent increase in glutamate uptake. The increase in glutamate uptake was inhibited by either removal of Na+ or addition of D,L-threo-beta-hydroxyaspartate. Dihydrokainate (DHK), a specific inhibitor of the glial glutamate transporter GLT-1, did not block the increase in glutamate uptake. LTP was also associated with a translocation of the EAAC1 glutamate transporter from the cytosol to the plasma membrane. Contextual fear conditioning increased the maximum rate (Vmax) of glutamate uptake and membrane expression of EAAC1 in area CA1. These results indicate that regulation of glutamate uptake may be important for maintaining the level of synaptic strength during long-term changes in synaptic efficacy.  相似文献   

6.
Exocytosis of synaptic vesicle contents defines the quantal nature of neurotransmitter release. Here we developed a technique to directly assess exocytosis by measuring vesicular zinc release with the zinc-sensitive dye FluoZin-3 at the hippocampal mossy fibre (MF) synapse. Using a photodiode, we were able to clearly resolve the zinc fluorescence transient ([Zn2+]t) with a train of five action potentials in mouse hippocampal brain slices. The vesicular origin of [Zn2+]t was verified by the lack of zinc signal in vesicular zinc transporter Znt3-deficient mice. Manipulating release probability with the application of neuromodulators such as DCG IV, 4-aminopyridine and forskolin as well as a paired train stimulation protocol altered both the [Zn2+]t and the field excitatory postsynaptic potential (fEPSP) coordinately, strongly indicating that zinc is co-released with glutamate during exocytosis. Since zinc ions colocalize with glutamate in small clear vesicles and modulate postsynaptic excitability at NMDA and GABA receptors, the findings establish zinc as a cotransmitter during physiological signalling at the mossy fibre synapse. The ability to directly visualize release dynamics with zinc imaging will facilitate the exploration of the molecular pharmacology and plasticity of exocytosis at MF synapses.  相似文献   

7.
Tetraethylammonium (TEA), a K(+)-channel blocker, reportedly induces long-term potentiation (LTP) of hippocampal CA1 synaptic responses, but at CA3 and the dentate gyrus (DG), the characteristics of TEA-induced plasticity and modulation by inhibitory interneurons remain unclear. This study recorded field EPSPs from CA1, CA3 and DG to examine the involvement of GABAergic modulation in TEA-induced synaptic plasticity for each region. In Schaffer collateral-CA1 synapses and associational fiber (AF)-CA3 synapses, bath application of TEA-induced LTP in the presence and absence of picrotoxin (PTX), a GABA(A) receptor blocker, whereas TEA-induced LTP at mossy fiber (MF)-CA3 synapses was detected only in the absence of GABA(A) receptor blockers. MF-CA3 LTP showed sensitivity to Ni(2+), but not to nifedipine. In DG, synaptic plasticity was modulated by GABAergic inputs, but characteristics differed between the afferent lateral perforant path (LPP) and medial perforant path (MPP). LPP-DG synapses showed TEA-induced LTP during PTX application, whereas at MPP-DG synapses, TEA-induced long-term depression (LTD) was seen in the absence of PTX. This series of results demonstrates that TEA-induced DG and CA3 plasticity displays afferent specificity and is exposed to GABAergic modulation in an opposite manner.  相似文献   

8.
The induction of mossy fiber-CA3 long-term potentiation (LTP) and depression (LTD) has been variously described as being dependent on either pre- or postsynaptic factors. Some of the postsynaptic factors for LTP induction include ephrin-B receptor tyrosine kinases and a rise in postsynaptic Ca2+ ([Ca2+]i). Ca2+ is also believed to be involved in the induction of the various forms of LTD at this synapse. We used photolysis of caged Ca2+ compounds to test whether a postsynaptic rise in [Ca2+]i is sufficient to induce changes in synaptic transmission at mossy fiber synapses onto rat hippocampal CA3 pyramidal neurons. We were able to elevate postsynaptic [Ca2+]i to approximately 1 microm for a few seconds in pyramidal cell somata and dendrites. We estimate that CA3 pyramidal neurons have approximately fivefold greater endogenous Ca2+ buffer capacity than CA1 neurons, limiting the rise in [Ca2+]i achievable by photolysis. This [Ca2+]i rise induced either a potentiation or a depression at mossy fiber synapses in different preparations. Neither the potentiation nor the depression was accompanied by consistent changes in paired-pulse facilitation, suggesting that these forms of plasticity may be distinct from synaptically induced LTP and LTD at this synapse. Our results are consistent with a postsynaptic locus for the induction of at least some forms of synaptic plasticity at mossy fiber synapses.  相似文献   

9.
Glutamate transporter-1 (GLT-1) is responsible for the largest proportion of glutamate transport in the brain and the density of GLT-1 molecules inserted in the plasma membrane is highest in regions of high demand. Previous electron microscopic studies in the hippocampus and cerebellum have shown that GLT-1 is concentrated both in the vicinity of and at considerable distance from the synaptic cleft [Chaudry et al., Neuron 15 (1995) 711-721], but little is known about its distribution in the neocortex. We therefore studied the spatial relationships between elements expressing the presynaptic marker synaptophysin and those containing GLT-1 in the rat cerebral cortex using confocal microscopy.Preliminary studies confirmed that GLT-1 positive puncta were exclusively astrocytic processes; moreover, they showed that in most cases GLT-1 positive processes either completely surrounded asymmetric synapses or had no apparent relationship with synapses; occasionally, they were apposed to terminals containing pleomorphic vesicles. In sections double-labeled for GLT-1 and synaptophysin, codistribution analysis revealed that 61.2% of pixels detecting fluorescent emission for GLT-1 immunoreactivity overlapped with pixels detecting synaptophysin. The percentages of GLT-1/synaptophysin codistribution were significantly different from controls. In sections double-labeled for GLT-1 and the vesicular GABA transporter, codistribution analysis revealed that 27% of pixels detecting GLT-1 overlapped with those revealing the vesicular GABA transporter.The remarkable 'synaptic' localization of GLT-1 provides anatomical support for the hypothesis that in the cerebral cortex GLT-1 contributes to shaping fast, point-to-point, excitatory synaptic transmission. Moreover, the considerable fraction of GLT-1 immunoreactivity localized at sites distant from axon terminals supports the notion that glutamate spillout occurs also in the intact brain and suggests that 'extrasynaptic' GLT-1 regulates the diffusion of glutamate escaped from the cleft.  相似文献   

10.
There is controversy over the extent to which glutamate released at one synapse can escape from the synaptic cleft and affect receptors at other synapses nearby, thereby compromising the synapse-specificity of information transmission. Here we show that the glial glutamate transporters GLAST and GLT-1 limit the activation of Purkinje cell AMPA receptors produced by glutamate diffusion between parallel fibre synapses in the cerebellar cortex of juvenile mice. For a single stimulus to the cerebellar molecular layer of wild-type mice, increasing the number of activated parallel fibres prolonged the parallel fibre EPSC, demonstrating an interaction between different synapses. Knocking out GLAST, or blocking GLT-1 in the absence of GLAST, prolonged the EPSC when many parallel fibres were stimulated but not when few were stimulated. When spatially separated parallel fibres were activated by granular layer stimulation, the EPSC prolongation produced by stimulating more fibres or reducing glutamate transport was greatly reduced. Thus, GLAST and GLT-1 curtail the EPSC produced by a single stimulus only when many nearby fibres are simultaneously activated. However when trains of stimuli were applied, even to a small number of parallel fibres, knocking out GLAST or blocking GLT-1 in the absence of GLAST greatly prolonged and enhanced the AMPA receptor-mediated current. These results show that glial cell glutamate transporters allow neighbouring synapses to operate more independently, and control the postsynaptic response to high frequency bursts of action potentials.  相似文献   

11.
Glial glutamate transporters, GLAST and GLT-1, are co-localized in processes of Bergmann glia (BG) wrapping excitatory synapses on Purkinje cells (PCs). Although GLAST is expressed six-fold more abundantly than GLT-1, no change is detected in the kinetics of climbing fiber (CF)-mediated excitatory postsynaptic currents (CF-EPSCs) in PCs in GLAST(-/-) mice compared to the wild-type mice (WT). Here we aimed to clarify the mechanism(s) underlying this unexpected finding using a selective GLT-1 blocker, dihydrokainate (DHK), and a novel antagonist of glial glutamate transporter, (2S,3S)-3-[3-(4-methoxybenzoylamino)benzyloxy]aspartate (PMB-TBOA). In the presence of cyclothiazide (CTZ), which attenuates the desensitization of AMPA receptors, DHK prolonged the decay time constant (tau(w)) of CF-EPSCs in WT, indicating that GLT-1 plays a partial role in the removal of glutamate. The application of 100 nM PMB-TBOA, which inhibited CF-mediated transporter currents in BG by approximately 80%, caused no change in tau(w) in WT in the absence of CTZ, whereas it prolonged tau(w) in the presence of CTZ. This prolonged value of tau(w) was similar to that in GLAST(-/-) mice in the presence of CTZ. These results indicate that glial glutamate transporters can apparently retain the fast decay kinetics of CF-EPSCs if a small proportion ( approximately 20%) of functional transporters is preserved.  相似文献   

12.
Synaptic development is an activity-dependent process utilizing coordinated network activity to drive synaptogenesis and subsequent refinement of immature connections. Hippocampal CA3 pyramidal neurons (PYRs) exhibit intense burst firing (BF) early in development, concomitant with the period of mossy fibre (MF) development. However, whether developing MF–PYR synapses utilize PYR BF to promote MF synapse maturation remains unknown. Recently, we demonstrated that transient tonic depolarization of postsynaptic PYRs induces a persistent postsynaptic form of long-term depression (depolarization-induced long-term depression, DiLTD) at immature MF–PYR synapses. DiLTD induction is NMDAR independent but does require postsynaptic Ca2+ influx through L-type voltage gated Ca2+ channels (L-VGCCs), and is expressed as a reduction in AMPAR function through the loss of GluR2-lacking AMPARs present at immature MF–PYR synapses. Here we examined whether more physiologically relevant phasic L-VGCC activation by PYR action potential (AP) BF activity patterns can trigger DiLTD. Using combined electrophysiological and Ca2+ imaging approaches we demonstrate that PYR BF effectively drives L-VGCC activation and that brief periods of repetitive PYR BF, produced by direct current injection or intrinsic network activity induces NMDAR-independent LTD by promoting Ca2+ influx through the activated L-VGCCs. This BF induced LTD, just like DiLTD, is specific for developing MF–PYR synapses, is PICK1 dependent, and is expressed postsynaptically. Our results demonstrate that DiLTD can be induced by phasic L-VGCC activation driven by PYR BF, suggesting the engagement of natural PYR network activity patterns for MF synapse maturation.  相似文献   

13.
Learning and memory are thought to involve activity-dependent changes in synaptic efficacy such as long-term potentiation (LTP) and long-term depression (LTD). Recent studies have indicated that endocannabinoid-dependent modulation of inhibitory transmission facilitates induction of hippocampal LTP and that endocannabinoids play a key role in certain forms of LTD. Here, we show that repetitive low-frequency synaptic stimulation (LFS) produces persistent up-regulation of endocannabinoid signaling at hippocampal CA1 GABAergic synapses. This LFS also produces LTD of inhibitory synapses and facilitates LTP at excitatory, glutamatergic synapses. These endocannabinoid-mediated plastic changes could contribute to information storage within the brain.  相似文献   

14.
A semiquantitative electron microscopic immunocytochemical procedure was used to study the cellular and subcellular distribution of glutaraldehyde-fixed glutamate in rat hippocampal formation. Ultrathin plastic-embedded sections were incubated with a primary glutamate antiserum followed by a secondary antibody coupled to colloidal gold particles. A computer-assisted assessment of gold particle densities revealed that the axon terminals of all of the main excitatory pathways in the hippocampus were enriched with glutamate-like immunoreactivity relative to other tissue elements, including the parent cell bodies (granule and pyramidal cells). The different excitatory pathways showed slightly different labelling intensities: boutons in the termination zone of the lateral perforant path were covered by higher gold particle densities than boutons situated in the termination zones of the medial perforant path, the Schaffer collateral/commissural pathway and the hilar associational/commissural pathway. The mossy fibre terminals were significantly less enriched in immunoreactivity than terminals of the lateral perforant path and the Schaffer collateral/commissural pathway. Within the terminals, glutamate-like immunoreactivity was concentrated over synaptic vesicles and mitochondria. Terminals establishing symmetric junctions with cell bodies or dendritic stems displayed low particle densities, as did glial cell processes. These findings support the idea that glutamate is a major excitatory neurotransmitter in hippocampal excitatory synapses. Our observations are also in line with biochemical data pointing to the existence of a considerable neuronal and a smaller glial, metabolic pool of glutamate.  相似文献   

15.
Summary The cellular and subcellular localization of glutamine, a major glutamate precursor, was studied by means of an antiserum raised against glutaraldehydefixed glutamine. Ultrathin sections from the cerebellar cortex of rat and baboon (Papio anubis) were incubated sequentially in the primary antiserum and in a secondary antibody coupled to colloidal gold particles. The labelling intensity was quantified by computer-aided calculation of gold particle densities. High levels of immunoreactivity occurred in glial cells (Bergmann fibres, astrocytes, and oligodendrocytes), intermediate levels in cell bodies and processes of granule cells, and low levels in terminals of presumed GABAergic or glutamatergic fibres (terminals of basket and Golgi cells, and of parallel, mossy, and climbing fibres). The labelling intensity of Purkinje cells showed some variation, but never exceeded that in glial cells. Within the nerve fibre terminals, the glutamine-like immunoreactivity showed some preference for mitochondria, but was otherwise evenly distributed. The predominant glial localization of glutamine was also obvious in light microscopic preparations processed according to the postembedding peroxidase-antiperoxidase procedure. Gold particle densities over different types of profile in glutamine immunolabelled sections were compared with particle densities over the corresponding types of profiles in neighbouring sections labelled with an antiserum to glutaraldehyde-fixed glutamate. The glutamate/glutamine ratio, expressed arbitrarily by the ratio between the respective gold particle densities, varied by a factor of about 6, with the highest ratio in the putative glutamatergic mossy and parallel fibre terminals, and the lowest ratio in glial elements. The remaining tissue components displayed intermediate ratios. The present study provides direct morphological evidence for the existence in the brain of distinct compartments with differing glutamate/glutamine ratios.This paper is dedicated to Professor Fred Walberg on the occasion of his 70th birthdayOn leave of absence from Department of Anatomy, Capital Institute of Medicine, You An Men Street, Beijing, China  相似文献   

16.
We have explored the mechanisms involved in the facilitation of glutamate release mediated by the activation of kainate receptors in the rat hippocampus using isolated nerve terminal (synaptosome) and slice preparations. In hippocampal nerve terminals, kainate (KA) produced an increase of glutamate release at concentrations of agonist ranging from 10 to 1000 μ m . In hippocampal slices, KA at low nanomolar concentrations (20–50 n m ) also produced an increase of evoked excitatory postsynaptic currents (eEPSCs) at mossy fibre–CA3 synapses. In both, synaptosomes and slices, the effect of KA was antagonized by CNQX, and persisted after pretreatment with a cocktail of antagonists for other receptors whose activation could potentially have produced facilitation of release. These data indicate that the facilitation of glutamate release observed is mediated by the activation of presynaptic glutamate receptors of the kainate type. Mechanistically, the observed effects of KA appear to be the same in synaptosomal and slice preparations. Thus, the effect of KA on glutamate release and mossy fibre–CA3 synaptic transmission was occluded by the stimulation of adenylyl cyclase by forskolin and suppressed by the inhibition of protein kinase A by H-89 or Rp-Br-cAMP. We conclude that kainate receptors present at presynaptic terminals in the rat hippocampus mediate the facilitation of glutamate release through a mechanism involving the activation of an adenylyl cyclase–second messenger cAMP–protein kinase A signalling cascade.  相似文献   

17.
Zinc is found throughout the CNS at synapses co-localized with glutamate in presynaptic terminals. In particular, dentate granule cells' (DGC) mossy fiber (MF) axons contain especially high concentrations of zinc co-localized with glutamate within vesicles. To study possible physiological roles of zinc, visualized slice-patch techniques were used to voltage-clamp rat CA3 pyramidal neurons, and miniature excitatory postsynaptic currents (mEPSCs) were isolated. Bath-applied zinc (200 microM) enhanced median mEPSC peak amplitudes to 153.0% of controls, without affecting mEPSC kinetics. To characterize this augmentation further, rapid agonist application was performed on perisomatic outside-out patches to coapply zinc with glutamate extremely rapidly for brief (1 ms) durations, thereby emulating release kinetics of these substances at excitatory synapses. When zinc was coapplied with glutamate, zinc augmented peak glutamate currents (mean +/- SE, 116.6 +/- 2.8% and 143.8 +/- 9.8% of controls at 50 and 200 microM zinc, respectively). This zinc-induced potentiation was concentration dependent, and pharmacological isolation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated currents (AMPAR currents) gave results similar to those observed with glutamate application (mean, 115.0 +/- 5.4% and 132.5 +/- 9.1% of controls at 50 and 200 microM zinc, respectively). Inclusion of the AMPAR desensitization blocker cyclothiazide in the control solution, however, abolished zinc-induced augmentation of glutamate-evoked currents, suggesting that zinc may potentiate AMPAR currents by inhibiting AMPAR desensitization. Based on the results of the present study, we hypothesize that zinc is a powerful modulator of both excitatory synaptic transmission and glutamate-evoked currents at physiologically relevant concentrations. This modulatory role played by zinc may be a significant factor in enhancing excitatory neurotransmission and could significantly regulate function at the mossy fiber-CA3 synapse.  相似文献   

18.
Epileptiform activity in rat hippocampus strengthens excitatory synapses   总被引:1,自引:0,他引:1  
Although epileptic seizures are characterized by excessive excitation, the role of excitatory synaptic transmission in the induction and expression of epilepsy remains unclear. Here, we show that epileptiform activity strengthens excitatory hippocampal synapses by increasing the number of functional (RS)-α-amino-3hydroxy-5methyl-4-isoxadepropionate (AMPA)-type glutamate receptors in CA3–CA1 synapses. This form of synaptic strengthening occludes long-term potentiation (LTP) and enhances long-term depression (LTD), processes involved in learning and memory. These changes in synaptic transmission and plasticity, which are fully blocked with N -methyl-D-aspartate (NMDA) receptor antagonists, may underlie epilepsy induction and seizure-associated memory deficits.  相似文献   

19.
马晓凯  王滨  范凯  付元山 《解剖学报》2007,38(2):139-143
目的 探讨大鼠丘脑前核-海马下托复合体神经元环路的突触结构及谷氨酸分布特征.方法 应用HRP束路追踪结合包埋后胶体金免疫电镜技术.结果 在丘脑前核内,可见HRP顺行标记的海马下托复合体传入轴突终末,终末多为卵圆形,内含圆形透亮突触小泡和数个线粒体.其做为突触前成分与HRP标记的树突或非HRP标记的树突形成非对称性突触.在谷氨酸胶体金免疫反应切片上,胶体金颗粒标记胞体、树突、轴突终末等.HRP标记的轴突终末和一些非HRP标记的与突触后成分形成非对称性突触的轴突终末(Gray Ⅰ型)内,胶体金颗粒密度明显大于背景(胞体、树突、Gray Ⅱ型轴突终末等)的胶体金颗粒密度.其平均胶体金颗粒密度为突触后树突的3倍多,为对称性轴突终末(Gray Ⅱ型)的6倍多.在两张邻近的连续切片,γ-氨基丁酸(GABA)胶体金免疫反应切片上,GABA胶体金颗粒浓重标记Gray Ⅱ型轴突终末,背景标记极少;而非对称性轴突终末(Gray Ⅰ型)胶体金颗粒标记极弱.谷氨酸胶体金免疫反应切片上,Gray Ⅱ型轴突终末胶体金颗粒标记极弱.GABA阳性轴突终末与HRP标记的树突形成对称性突触,在同一树突上可见GABA能轴突终末形成的对称性突触和其他轴突终末形成的非对称性突触.结论 丘脑前核内来自海马下托复合体投射神经元的轴突终末是谷氨酸能的;来自海马下托复合体皮质投射神经元轴突终末,在丘脑前核与投射至海马下托皮质的神经元树突形成非对称性轴-树突触.  相似文献   

20.
Hippocampal synaptic plasticity between Schaffer collaterals and CA1 pyramidal neurons can be induced by activation of N-methyl-d-aspartate receptors (NMDARs) or of metabotropic glutamate receptors (mGluRs). Inhibitory GABAergic interneurons in this region abundantly terminate on pyramidal neurons and may thus influence synaptic plasticity. Although NMDAR-dependent synaptic plasticity is known to be influenced by inhibitory interneurons, little is known about the role of GABA on mGluR-dependent plasticity. Here, we used field potential recordings of the Schaffer collateral-CA1 synapses in rat hippocampal slices in order to study the effect of GABAA receptor (GABAAR) inhibition on mGluR-dependent long-term depression (LTD). Without GABAAR blockade, mGluR-dependent LTD was induced pharmacologically by the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG, 100 μM, 10 min) as well as electrically by paired-pulse low-frequency stimulation (PP-LFS, 900 paired pulses at 1 Hz) resulting in a stable depression of the field response lasting at least 80 min after LTD induction. The GABAAR antagonist gabazine (5 μM) itself caused an increase of field responses suggesting an endogenous GABA release inhibiting CA1 field potentials. However, when either DHPG or PP-LFS was applied during GABAAR inhibition, the field responses were significantly reduced. Moreover, normalizing these responses to experiments without GABAAR blockade, there was no significant effect of gabazine on both DHPG- and PP-LFS-induced LTD. Thus, our results show that mGluR-dependent LTD at Schaffer collateral-CA1 synapses is unaffected by GABAAR mediated synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号