首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of the inotropic effect of cardiac glycosides on the heart has long been controversial. Inotropic effects at low concentrations of cardiac glycosides indicate more than one class of receptor or more than one cellular mechanism. In the brain of the rat, high- and low-affinity cardiac glycoside receptors have been shown to be associated with two structurally different isoforms of the catalytic subunit of the Na+,K+-ATPase, termed alpha and alpha(+). Evidence is presented here that the high- and low-affinity sites in rat cardiac ventricle are associated with Na+,K+-ATPase catalytic subunit forms similar to the alpha(+) and alpha forms in the brain. Membranes from the rat ventricle contained polypeptides with the electrophoretic mobilities of alpha and alpha(+), which could be stained by isoform-specific anti-Na+,K+-ATPase antibodies on electrophoretic blots. Both polypeptides also displayed Na+-stimulated phosphorylation with [gamma-32P]ATP. Inhibition of Na+,K+-ATPase activity by ouabain demonstrated the presence of both high- and low-affinity ATPases proportional to the presence of the alpha(+) and alpha polypeptides. The ratios of the two isoforms changed with postnatal maturation, paralleling known changes in cardiac physiology and cardiac glycoside sensitivity. Cardiac glycoside sensitivity can evidently be regulated at the level of gene expression by developmental signals.  相似文献   

2.
The distance that separates alphabeta protomers of the Na(+), K(+)-ATPase in microsomes and in purified membranes prepared from duck nasal salt glands was estimated by measuring fluorescence resonance energy transfer between anthroylouabain bound to a population of alphabeta protomers and either N-[7-nitrobenz-2-oxa-1, 3-diazol-4-yl]-6-aminohexyl ouabain or 5-(and-6)-carboxyfluorescein-6-aminohexyl ouabain bound to the rest. Energy transfer between probes bound in the microsomal preparation was less than in the purified membranes. The efficiency of energy transfer between anthroylouabain and N-[7-nitrobenz-2-oxa-1, 3-diazol-4-yl]-6-aminohexyl ouabain was 29.2% in the microsomes compared with 62.6% in the purified preparation. Similar results were obtained with 5-(and-6)-carboxyfluorescein-6-aminohexyl ouabain as acceptor. We calculate that either the protomer bound probes were on the average 13 A farther apart in the microsomes than in the purified membranes, or that 53% of the protomers are monomeric in the microsome preparation. Microsomes prepared in the presence of phalloidin (a toxin that binds to F actin and stabilizes the actin-based cytoskeleton) showed less quench than those prepared in its absence. The data support the hypothesis that protomers are kept apart by their association with the cytoskeleton. The turnover rate while hydrolyzing ATP is the same in the microsomal and purified preparations; higher oligomer formation has no significant effect on the enzyme reaction mechanism.  相似文献   

3.
Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37 degrees C) resulted in a time-dependent decrease in specific (+)-[3H]amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-[3H]amphetamine binding, whereas incubation with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-[3H]amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-[3H]amphetamine binding, suggesting the involvement of Na+,K+-ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na+,K+-ATPase activity and the number of specific "high-affinity" binding sites for [3H]ouabain, and a good correlation was observed (r = 0.89; P less than 0.02) between the glucose-stimulated increase in (+)-[3H]amphetamine and [3H]ouabain binding. Similar increases in (+)-[3H]amphetamine binding, [3H]ouabain binding, and Na+,K+-ATPase activity were observed in the hypothalamus after parenteral administration of glucose to rats. The administration of anorectic doses of amphetamine (0.1-5.0 mg/kg of body weight) also increased Na+,K+-ATPase activity in the hypothalamus. These data suggest that the (+)-[3H]amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na+,K+-ATPase activity, and the latter may be involved in the "glucostatic" regulation of appetite.  相似文献   

4.
Platelet Na(+),K(+)-adenosine triphosphatase (ATPase) activity was measured in 34 (15 males, 19 females) healthy subjects, 89 (35 males, 54 females) hyperthyroid patients, and 34 (7 males, 27 females) treated hyperthyroid patients to assess the potential of this measurement as a tissue marker and diagnostic test for hyperthyroidism. Platelet Na(+),K(+)-ATPase activity was measured in platelet lysates by the rate of release of phosphate from adenosine triphosphate (ATP) in the presence and absence of ouabain. Platelet Na(+),K(+)-ATPase activity (median and range) in the hyperthyroid group (271, 169 to 821 pmol/h/g protein) was significantly higher compared with the healthy group (125, 74 to 185 micromol/h/g protein, P <.001 by Mann-Whitney U test). The treated hyperthyroid group had slightly, but significantly higher, free triiodothyronine (FT3) and free thyroxine (FT4), as well as platelet Na(+),K(+)-ATPase activity (147, 98 to 246 micromol/h/g protein, P <.05). If a platelet Na(+),K(+)-ATPase activity of 190 micromol/h/g protein was used as a cut off value, the specificity and sensitivity were 90% and 93%, respectively. We conclude that platelet Na(+),K(+)-ATPase may be a useful tissue marker of hyperthyroidism.  相似文献   

5.
Most biological membranes are functionally asymmetric. To study biochemical control of cardiac transsarcolemmalion fluxes, it would be of obvious advantage to use isolated vesicles of sarcolemma which retains the low passive permeability characteristics of intact sarcolemma because in such vesicles the membrane should exhibit its normal asymmetric character with respect to enzymic activities. The purpose of this investigation was to attempt identify such vesicles in a cardiac microsomal (membrane vesicular) preparation. We studied activation by Na+ and K+ of Na+, K+-ATPase and its associated K+-phosphatase activities, using as substrates ATP or p-nitrophenylphosphate (pNPP) in the presence of Mg2+. Optimal concentrations of K+ alone (10 mM) stimulated p-nitrophenylphosphatase (pNPPase) activity 1.8-fold, and over 80% of the increase could be inhibited by ouabain. Optimal Na+ plus K+ concentrations (100 mM and 10 mM, respectively) stimulated the rate of ATP hydrolysis 2-fold, but only 11 +/- 1.1% of the increased activity was ouabain-sensitive. Optimal pretreatment with sodium dodecyl sulfate (SDS) (0.3 mg/ml) rendered both activities completely sensitive to inhibition by ouabain and reduced the basal Mg2+-ATPase activity by 70-90%. The K+-stimulated pNPPase activity doubled after preincubation in SDS, but the ATPase activity stimulated by Na+ plus K+ fell by 50% under these conditions. A similar pattern of apparent activation was produced by preincubation with deoxycholate (DOC), except that basal Mg2+-dependent activities were resistant to destruction by this detergent. The incremental responses to activation by ions and substrates, and inhibition by oubain, are consistent with the hypothesis that permeability-intact vesicles of sarcolemma are present in the isolated preparation, and that detergent activation renders the vesicles highly permeable to the ions, substrates, and ouabain.  相似文献   

6.
An ATP-hydrolyzing activity with the properties of a Mg(2+)-dependent (Na(+),K(+))-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from a 20-fold purified plasma membrane fraction of the marine diatom, Nitzschia alba is described.The basal activity requires Mg(2+) and further stimulation by Na(+) or Na(+) plus K(+) is dependent on the presence of Mg(2+); Mn(2+) or Co(2+) can partially substitute for the divalent cation requirement but Ca(2+) equimolar with Mg(2+) inhibits the activity by 54%. ATP is the preferred substrate for the Na(+) plus K(+) stimulated activity, while CTP, UTP, and ADP are only slightly hydrolyzed. The apparent K(m) is 8 x 10(-4) M ATP.The ATP hydrolysis-rate is dependent on the relative concentrations of Na(+) and K(+); the K(0.5) for Na(+) and K(+) are 2 mM and 50 mM, respectively. Basal activity is synergistically stimulated by Na(+) plus K(+) only at certain ion concentrations and shows a strong specificity for both cations.In the presence of Na(+) at 5 mM and K(+) at 350 mM, the ATPase is completely inhibited by p-chloromercuric benzoic acid 10(-4) M, N-ethyl maleimide 10(-3) M, and iodoacetamide 10(-2) M, but is insensitive to ouabain at 10(-7) to 10(-3) M.This study demonstrates for the first time that algal plasma membrane contains an ATPase that is synergistically stimulated by Na(+) and K(+).  相似文献   

7.
Na(+),K(+)-ATPase and gastric H(+),K(+)-ATPase are two related enzymes that are responsible for active cation transport. Na(+), K(+)-ATPase activity is inhibited specifically by ouabain, whereas H(+),K(+)-ATPase is insensitive to this drug. Because it is not known which parts of the catalytic subunit of Na(+),K(+)-ATPase are responsible for ouabain binding, we prepared chimeras in which small parts of the alpha-subunit of H(+),K(+)-ATPase were replaced by their counterparts of the alpha(1)-subunit of rat Na(+),K(+)-ATPase. A chimeric enzyme in which transmembrane segments 5 and 6 of H(+), K(+)-ATPase were replaced by those of Na(+),K(+)-ATPase could form a phosphorylated intermediate, but hardly showed a K(+)-stimulated dephosphorylation reaction. When transmembrane segments 3 and 4 of Na(+),K(+)-ATPase were also included in this chimeric ATPase, K(+)-stimulated dephosphorylation became apparent. This suggests that there is a direct interaction between the hairpins M3-M4 and M5-M6. Remarkably, this chimeric enzyme, HN34/56, had obtained a high-affinity ouabain-binding site, whereas the rat Na(+), K(+)-ATPase, from which the hairpins originate, has a low affinity for ouabain. The low affinity of the rat Na(+),K(+)-ATPase previously had been attributed to the presence of two charged amino acids in the extracellular domain between M1 and M2. In the HN34/56 chimera, the M1/M2 loop, however, originates from H(+),K(+)-ATPase, which has two polar uncharged amino acids on this position. Placement of two charged amino acids in the M1/M2 loop of chimera HN34/56 results in a decreased ouabain affinity. This indicates that although the M1/M2 loop affects the ouabain affinity, binding occurs when the M3/M4 and M5/M6 hairpins of Na(+),K(+)-ATPase are present.  相似文献   

8.
Na(+)-Ca2+ exchange is proposed to be an important regulator of myoplasmic intracellular Ca2+ concentration ([Ca2+]i) and contraction in vascular smooth muscle. We investigated the role of Na(+)-Ca2+ exchange in regulating [Ca2+]i in swine carotid arterial tissues that were loaded with aequorin to allow simultaneous measurement of [Ca2+]i and force. Reversal of Na(+)-Ca2+ exchange, by reduction of extracellular Na+ concentration ([Na+]o) to 1.2 mM, induced a large increase in aequorin-estimated [Ca2+]i and a low [Ca2+]i sensitivity. The contraction induced by 1.2 mM [Na+]o was partially caused by depolarization and opening of L-type Ca2+ channels because 10 microM diltiazem partially attenuated the 1.2 mM [Na+]o-induced increases in [Ca2+]i. High dose ouabain (10 microM), a putative endogenous Na+,K(+)-ATPase inhibitor, increased both [Ca2+]i and force. However, the increases in [Ca2+]i and force were mostly blocked by 10 microM phentolamine, suggesting the predominant effect of ouabain was to increase norepinephrine release from nerve terminals. In the presence of 10 microM phentolamine, 10 microM ouabain slightly accentuated 1 microM histamine-induced increases in [Ca2+]i and force. The ouabain dose necessary to induce contraction in the absence of phentolamine was significantly less than the ouabain dose necessary to accentuate histamine-induced contractions in the presence of phentolamine. These results suggest that Na(+)-Ca2+ exchange exists in swine arterial smooth muscle. These data also suggest that ouabain (which should increase [Na+]i and inhibit Na(+)-Ca2+ exchange) primarily enhances contractile function in the swine carotid artery by releasing catecholamines from nerve terminals; direct action of Na+,K(+)-ATPase inhibitors on smooth muscle appears to occur only with very high doses.  相似文献   

9.
The ability of plasma to inhibit 86 rubidium uptake in rat aorta and to displace [3H]-ouabain from hog brain Na+,K+-ATPase was used as a measure of plasma Na+,K+-ATPase inhibitory activity in seven normotensive and eight hypertensive subjects. Rat aortae rings were incubated in oxygenated plasma containing 86 rubidium (2 microCi/mL) for 30 mins at 37 degrees C and uptake measured and expressed as mumol/kg wet weight/min. Plasma was extracted with a mixture of chloroform and methanol (2:1) and the extract separated by silicic acid column followed by thin layer chromatography and fractions assayed for ouabain displacement using digoxin as a standard. Total ouabain displacement was calculated as the sum of all fractions. There was a strong correlation between the two methods for total plasma Na+,K+-ATPase inhibitory activity (r = 0.761, P less than 0.01). There was a significant positive correlation between plasma Na+,K+-ATPase inhibitory activity and blood pressure in all subjects. Na+,K+-ATPase inhibitory activity was significantly higher in plasma of hypertensives by both methods (P less than 0.001). The increased Na+,K+-ATPase inhibitory activity in plasma from hypertensives was due to the nonesterified fatty acid, long chain acylcarnitine and diphosphatidylglycerol fractions.  相似文献   

10.
Using the chicken sarcoplasmic/endoplasmic reticulum Ca2+ (SERCA)-ATPase as a parental molecule and replacing various portions with the corresponding portions of the chicken Na+,K(+)-ATPase alpha 1 subunit, Ca2+/thapsigargin- and Na+/ouabain-sensitive domains critical for these P-type ATPase activities were identified. In the chimera, [n/c]CC, the amino-terminal amino acids Met-1 to Asp-162 of the SERCA (isoform 1) (SERCA1) ATPase were replaced with the corresponding portion (Met-1-Asp-200) of the Na+,K(+)-ATPase alpha 1 subunit. In the chimera CC[c/n], the carboxyl-terminal amino acids (Ser-830 to COOH) of the SERCA1 ATPase were replaced with the corresponding segment (Leu-861 to COOH) of the Na+,K(+)-ATPase alpha 1 subunit, and in the chimera CNC, the middle part (Gly-354-Lys-712) of the SERCA1 ATPase was exchanged with the Na+,K(+)-ATPase alpha 1 subunit (Gly-378-Lys-724). None of the chimeric molecules exhibited any detectable ouabain-sensitive Na+,K(+)-ATPase activity, but they did exhibit thapsigargin-sensitive Ca(2+)-ATPase activity. Therefore, the segments Ile-163-Gly-354 and Lys-712-Ser-830 of the SERCA1 ATPase are sufficient for Ca2+ and thapsigargin sensitivity. The SERCA1-ATPase activity of [n/c]CC, but not of CCC, CNC, or CC[c/n], was further stimulated by addition of Na+ in the assay medium containing Ca2+. This additional stimulation of SERCA1-ATPase activity by Na+ was abolished when the amino-terminal region (Met-1-Leu-69) of [n/c]CC was deleted ([delta n/c]CC). In the absence of Na+, the SERCA1-ATPase activity of [n/c]CC was inhibited by ouabain, and, in the presence of Na+, its activity was stimulated by this drug. On the other hand, the ATPase activity of [delta n/c]CC was not affected by ouabain, although [delta n/c]CC can still bind [3H]ouabain. These results suggest that a distinct Na(+)-sensitive domain (Na+ sensor) located within the restricted amino-terminal region (Met-1-Leu-69) of the Na+,K(+)-ATPase alpha 1 subunit regulates ATPase activity. The Na+ sensor also controls ouabain action in concert with the major ouabain-binding region between Ala-70 and Asp-200 of alpha 1 subunit.  相似文献   

11.
To elucidate the role of intracellular Na(+) kinetics in the mechanism for ischemic preconditioning (IPC), we measured intracellular Na(+) concentration ([Na(+)](i)) using (23)Na-magnetic resonance spectroscopy in isolated rat hearts. IPC significantly delayed the initial [Na(+)](i) increase (d[Na(+)](i)/dt) compared with non-IPC control, resulting in attenuation of Na(+) accumulation (Delta[Na(+)](i)) during 27 minutes of ischemia with better functional recovery. [Na(+)](i) in IPC, but not in control, recovered to preischemic level during a 6-minute reperfusion. The Na(+)-H(+) exchange inhibitor further suppressed d[Na(+)](i)/dt in both control and IPC hearts with concomitant improvement of functional recovery, suggesting little contribution to the mechanism of IPC. The mitochondrial ATP-sensitive K(+) (mito K(ATP)) channel activator diazoxide (30 micromol/L) completely mimicked both [Na(+)](i) kinetics and functional recovery in IPC without any additive effects to IPC. The mito K(ATP) channel blocker 5-hydroxydecanoic acid (100 micromol/L) lost protective effect as well as the attenuation of d[Na(+)](i)/dt and [Na(+)](i) recovery induced by diazoxide. However, 5-hydroxydecanoic acid also lost IPC-induced protection, but incompletely abolished the alteration of d[Na(+)](i)/dt and the [Na(+)](i) recovery. The Na(+)/K(+)-ATPase inhibitor ouabain (200 micromol/L) did not change d[Na(+)](i)/dt in non-IPC hearts, but it abolished the IPC- or diazoxide-induced reduction of d[Na(+)](i)/dt and the [Na(+)](i) recovery, whereas IPC followed by ouabain treatment showed partial functional recovery with smaller Delta[Na(+)](i) than other ouabain groups. In conclusion, alteration of Na(+) kinetics by preserving Na(+) efflux via Na(+)/K(+)-ATPase mediated by mito K(ATP) channel activation mainly contributes to functional protection in IPC hearts. The contribution of mito K(ATP) channel-independent pathway relating to Na(+) kinetics including reduced Na(+) influx is limited in functional protection of IPC.  相似文献   

12.
A sensitive assay method to evaluate the inhibitor of Na+, K+-ATPase in human urine was developed by measuring the inorganic phosphate liberated from ATP in vitro using Na+, K+-ATPase from porcine cerebral cortex. Ouabain inhibited the Na+, K+-ATPase by competing with the potassium ion (an apparent Ki = 2.6 +/- 0.89 X 10(-8) M, n = 8) under the condition of 100 mM NaCl, 4.5 mM MgSO4 and 0.56 mM ATP. The apparent Km value of KCl was 0.4 mM. Factors inhibiting Na+, K+-ATPase were detected in the post-salt fraction on Sephadex G-15 chromatography following the ethanol extraction of lyophilized fresh urine of sodium loaded human subjects (300 meq Na+/day, for 4 days) with essential hypertension. Two active fractions around the 400 daltons following salt were eluted on Sephadex G-15 chromatography. The slower eluted factor competed kinetically with potassium ion, but the inhibitory activity was lost within two days during storage at 4 degrees C. The faster-eluted inhibitor lost its activity within a day. These results indicate that the unstable inhibiting factors of Na+, K+-ATPase exist in human urine and one of these factors inhibits ouabain sensitive Na+, K+-ATPase by binding to the potassium binding site (or very close to it), which exists at the outer surface of the cell membrane of this enzyme.  相似文献   

13.
Cardiac glycosides such as G-strophanthin (ouabain) bind to and inhibit the plasma membrane Na+,K(+)-ATPase but not the sarcoplasmic reticulum (SR) Ca(2+)-ATPase, whereas thapsigargin specifically blocks the SR Ca(2+)-ATPase. The chimera [n/c]CC, in which the amino-terminal amino acids Met1 to Asp162 of the SR Ca(2+)-ATPase (SERCA1) were replaced with the corresponding portion of the Na+,K(+)-ATPase alpha 1 subunit (Met1 to Asp200), retained thapsigargin- and Ca(2+)-sensitive ATPase activity, although the activity was lower than that of the wild-type SR Ca(2+)-ATPase. Moreover, this Ca(2+)-sensitive ATPase activity was inhibited by ouabain. The chimera NCC, in which Met1-Gly354 of the SR Ca(2+)-ATPase were replaced with the corresponding portion of the Na+,K(+)-ATPase, lost the thapsigargin-sensitive Ca(2+)-ATPase activity seen in CCC and [n/c]CC. [3H]Ouabain binding to [n/c]CC and NCC demonstrated that the affinity for this inhibitor seen in the wild-type chicken Na+,K(+)-ATPase was restored in these chimeric molecules. Thus, the ouabain-binding domains are distinct from the thapsigargin sites; ouabain binds to the amino-terminal portion (Met1 to Asp200) of the Na+,K(+)-ATPase alpha 1 subunit, whereas thapsigargin interacts with the regions after Asp162 of the Ca(2+)-ATPase. Moreover, the amino-terminal 200 amino acids of the Na+,K(+)-ATPase alpha 1 subunit are sufficient to exert ouabain-dependent inhibition even after incorporation into the corresponding portion of the Ca(2+)-ATPase, and the segment Ile163 to Gly354 of the SR Ca(2+)-ATPase is critical for thapsigargin- and Ca(2+)-sensitive ATPase activity.  相似文献   

14.
The method of voltage clamp fluorometry combined with site-directed fluorescence labeling was used to detect local protein motions of the fully active Na(+)K(+)-ATPase in real time under physiological conditions. Because helix M5 extends from the cytoplasmic site of ATP hydrolysis into the cation binding region, we chose the extracellular M5-M6 loop of the sheep alpha(1)-subunit for the insertion of cysteine residues to identify reporter positions for conformational rearrangements during the catalytic cycle. After expression of the single cysteine mutants in Xenopus oocytes and covalent attachment of tetramethylrhodamine-6-maleimide, only mutant N790C reported molecular rearrangements of the M5-M6 loop by showing large, ouabain-sensitive fluorescence changes ( approximately 5%) on addition of extracellular K(+). When the enzyme was subjected to voltage jumps under Na(+)Na(+)-exchange conditions, we observed fluorescence changes that directly correlated to transient charge movements originating from the E(1)P-E(2)P transition of the transport cycle. The voltage jump-induced fluorescence changes and transient currents were abolished after replacement of Na(+) by tetraethylammonium or on addition of ouabain, showing that conformational flexibility is impaired under these conditions. Voltage-dependent fluorescence changes could also be observed in the presence of subsaturating K(+) concentrations. This allowed to monitor the time course of voltage-dependent relaxations into a new stationary distribution of states under turnover conditions, showing the acceleration of relaxation kinetics with increasing K(+) concentrations. As a result, the stationary distribution between E(1) and E(2) states and voltage-dependent relaxation times can be determined at any time and membrane potential under Na(+)Na(+) exchange as well as Na(+)K(+) turnover conditions.  相似文献   

15.
Microsomal fractions from homogenates of pig gastric fundic mucosa showed high levels of K+-stimulated adenosine triphosphatase (ATPase) and K+-stimulated phosphatase. Similar preparations from antral mucosa showed virtually no such activity. Because of mitochondrial contamination the fundic microsomes were further separated by sucrose density gradient centrifugation. A low density band of membranes (peak 1.12 to 1.13 g per ml) possessed all of the K+-stimulated enzyme activities. Morphological features and the abundant glycoproteins of the low density microsomes suggested they might be derived from the tubulovesicles of oxyntic cells. Mitochondrial and ribosomal markers were associated with membranes with much higher densities (greater than 1.22). The K+-stimulated ATPase has a pH optimum of 7.5 and required Mg++, but neither Na+ nor ouabain had any appreciable effect on the activity. Stimulation of basal ATPase by K+ ranged from 1.5 to 3.0-fold with an apparent Ka for activation between 0.2 to 0.4 mM K+. Addition of various K+ ionophoretic substances (e.g., gramicidin) produced further stimulation of K+-ATPase up to 6 times the basal rate. The mean activities for seven separate preparations of purified low density pig fundic microsomes were as follows (micromoles of ATP hydrolyzed per mg protein per hr +/- SEM); basal ATPase, 15.8 +/- 2.8; plus 10 mM K+, 29.3 +/- 4.5; plus 10 mM K+ and 10(-5) M gramicidin, 45.2 +/- 5.2. Neither the basal ATPase nor the K+-stimulated rates were altered by HCO3- or Cl-. The occurrence of these active and unique enzyme activities in the oxyntic region of gastric mucosa suggest some relation with secretory activity. Possible functional roles are discussed.  相似文献   

16.
A cardiac muscle sarcolemmal preparation, enriched in adenylate cyclase, Na+, K+ -ATPase, beta, muscarinic and ouabain receptors, also contained endogenous protein kinase activity. Phosphorylation of sarcolemmal membrane proteins by the endogenous protein kinase occurred mainly on 22 000 and 12 000 Mr proteins. To determine the effect of this phosphorylation on sarcolemmal properties, sarcolemmal vesicles were preincubated under conditions for optimal phosphorylation while control vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both control and phosphorylated vesicles were centrifuged, resuspended in 10 mM Tris-Cl (pH 7.4) and subsequently assayed for ATPase activities and for binding of ouabain, dihydroalprenolol and quinuclidinyl benzilate to the membranes. Sarcolemmal phosphorylation was associated with an increase in Ca2+ -ATPase activity but had no effect on Mg2+ ATPase or Na+, K+ -ATPase activity or on ouabain binding. Muscarinic receptor and beta-adrenoreceptor binding also appeared to be unaffected.  相似文献   

17.
The activities of Na+K(+)- and Mg(2+)-ATPases in mitochondrial, microsomal, and cytosolic fractions of Singi fish (Heteropneustes fossilis Bloch) brain were investigated after injections of various doses (0.012, 0.025, 0.05, and 0.10 micrograms/g) of triiodothyronine (T3) for 3 consecutive days. Both ATPases were found in the mitochondrial and microsomal fractions. The cytosolic fraction showed only Mg(2+)-ATPase activity. Mitochondrial Na+K(+)-ATPase activity increased to almost the same level in fish treated with 0.025, 0.05, or 0.10 micrograms of T3/g, while the T3 dose of 0.012 micrograms/g was ineffective in this respect. Microsomal Na+K(+)-ATPase activity increased to about the same level with all of the doses of T3 used. No detectable amount of Na+K(+)-ATPase was found in the brain cytosolic fraction. Mitochondrial Mg(2+)-ATPase activity was enhanced with 0.025, 0.05, and 0.10 micrograms of T3/g. The last dose, however, produced a higher increase in activity than the other two doses. Surprisingly, microsomal and cytosolic Mg(2+)-ATPase activity was not increased by T3 treatment. Although T3 concentrations rose sharply after each T3 injection, the serum T3 level in T3-injected fish was not different from that in the control as observed on the fourth day. The T3-induced rise of Na+K(+)- and Mg(2+)-ATPase activities was inhibited by cycloheximide treatment. Immersion of Singi fishes in thiourea significantly reduced brain Na+K(+)-ATPase activity in microsomal and mitochondrial fractions but decreased Mg(2+)-ATPase activity only in the mitochondrial fraction. Three consecutive daily injections of T3 (0.10 micrograms/g) into the thiourea-treated fishes increased their ATPase activities even beyond the control level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Recently, a beta subunit for the rat gastric H+,K(+)-ATPase (HK beta), which is structurally similar to the beta subunit of Na+, K(+)-ATPase, has been cloned and characterized. Using heterologous expression in yeast, we have tested the specificity of beta subunit assembly with different isoforms of the alpha subunit of Na+, K(+)-ATPase. Coexpression in yeast cells of the HK beta with both the sheep alpha 1 subunit and the rat alpha 3 subunit isoforms of Na+, K(+)-ATPase (alpha 1 and alpha 3, respectively) leads to the appearance of high-affinity ouabain-binding sites in yeast membranes. These ouabain-binding sites (alpha 1 plus HK beta, alpha 3 plus HK beta) have a high affinity for ouabain (Kd, 5-10 nM) and are expressed at levels similar to those formed with the rat beta 1 subunit of Na+, K(+)-ATPase (beta 1) (alpha 1 plus beta 1 or alpha 3 plus beta 1). Potassium acts as a specific antagonist of ouabain binding by alpha 1 plus HK beta and alpha 3 plus HK beta just like sodium pumps formed with beta 1. Sodium pumps formed with the HK beta, however, show quantitative differences in their affinity for ouabain and in the antagonism of K+ for ouabain binding. These data suggest that the structure of the beta subunit may play a role in sodium pump function.  相似文献   

19.
Na+,K+-ATPase activity, phosphorylation, and [3H]ouabain binding in sarcolemma isolated from spontaneously hypertensive rat (SHR) hearts were compared to the same parameters in sarcolemma from normotensive rat (WKY) hearts. Sarcolemma prepared from SHR heart contained significantly less ouabain-inhibitable ATPase activity than sarcolemma from WKY heart. No significant differences in sarcolemmal protein content or recovery were noted between the two groups. The numbers of phosphorylation sites and ouabain binding sites were lower for SHR hearts than for WKY hearts. The KD values for ouabain binding were the same (0.30 muM) in cardiac sarcolemma of SHR and WKY. The I50 values for inhibition by ouabain of Na+,K+-ATPase were also the same for both groups (SHR = 49 microM; WKY = 44 microM). These data suggest that the decrease of cardiac sarcolemmal Na+,K+-ATPase activity in SHR hearts is due to a decrease in the number of active sites.  相似文献   

20.
AIMS/HYPOTHESIS: C-peptide, the cleavage product of proinsulin processing exerts physiological effects including stimulation of Na(+),K(+)-ATPase in erythrocytes and renal proximal tubules. This study was undertaken to assess the physiological effects of connecting peptide on Na(+),K(+)-ATPase activity in the medullary thick ascending limb of Henle's loop. METHODS: Na(+),K(+)-ATPase activity was measured as the ouabain-sensitive generation of (32)Pi from gamma[(32)P]-ATP and (86)Rb uptake on isolated rat medullary thick ascending limbs. The cell-surface expression of Na(+),K(+)-ATPase was evaluated by Western blotting of biotinylated proteins, and its phosphorylation amount was measured by autoradiography. The membrane-associated fraction of protein kinase C isoforms was evaluated by Western blotting. RESULTS: Rat connecting peptide concentration-dependently stimulated Na(+),K(+)-ATPase activity with a threshold at 10(-9) mol/l and a maximal effect at 10(-7) mol/l. C-peptide (10(-7) mol/l) already stimulates Na(+),K(+)-ATPase activity after 5 min with a plateau from 15 to 60 min. C-peptide (10(-7) mol/l) stimulated Na(+),K(+)-ATPase activity and (86)Rb uptake to the same extent, but did not alter Na(+),K(+)-ATPase cell surface expression. The stimulation of Na(+),K(+)-ATPase activity was associated with an increase in Na(+),K(+)-ATPase alpha-subunit phosphorylation and both effects were abolished by a specific protein kinase C inhibitor. Furthermore, connecting peptide induced selective membrane translocation of PKC-alpha. CONCLUSION/INTERPRETATION: This study provides evidence that in rat medullary thick ascending limb, C-peptide stimulates Na(+),K(+)-ATPase activity within a physiological concentration range. This effect is due to an increase in Na(+),K(+)-ATPase turnover rate that is most likely mediated by protein kinase C-alpha phosphorylation of the Na(+),K(+)-ATPase alpha-subunit, suggesting that C-peptide could control Na(+) reabsorption during non-fasting periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号