首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular model is one of the most appealing to explain the peculiar optical properties of Carbon nanodots (CNDs) and was proven to be successful for the bottom up synthesis, where a few molecules were recognized. Among the others, citrazinic acid is relevant for the synthesis of citric acid-based CNDs. Here we report a combined experimental and computational approach to discuss the formation of different protonated and deprotonated species of citrazinic acid and their contribution to vibrational and magnetic spectra. By computing the free energy formation in water solution, we selected the most favoured species and we retrieved their presence in the experimental surface enhanced Raman spectra. As well, the chemical shifts are discussed in terms of tautomers and rotamers of most favoured species. The expected formation of protonated and de-protonated citrazinic acid ions under extreme pH conditions was proven by evaluating specific interactions with H2SO4 and NaOH molecules. The reported results confirm that the presence of citrazinic acid and its ionic forms should be considered in the interpretation of the spectroscopic features of CNDs.  相似文献   

2.
Carbon nanotubes (CNTs) are among the most exploited carbon allotropes in the emerging technologies of molecular sensing and bioengineering. However, the advancement of algal nanobiotechnology and nanobionics is hindered by the lack of methods for the straightforward visualization of the CNTs inside the cell. Herein, we present a handy and label-free experimental strategy based on visible Raman microscopy to assess the internalization of single-walled carbon nanotubes (SWCNTs) using the model photosynthetic alga Chlamydomonas reinhardtii as a recipient. The relationship between the properties of SWCNTs and their biological behavior was demonstrated, along with the occurrence of excitation energy transfer from the excited chlorophyll molecules to the SWCNTs. The non-radiative deactivation of the chlorophyll excitation promoted by the SWCNTs enables the recording of Raman signals originating from cellular compounds located near the nanotubes, such as carotenoids, polyphosphates, and starch. Furthermore, the outcome of this study unveils the possibility to exploit SWCNTs as spectroscopic probes in photosynthetic and non-photosynthetic systems where the fluorescence background hinders the acquisition of Raman scattering signals.  相似文献   

3.
Carbon nanoparticles with large surface areas were produced by the reduction of carbon disulfide with metallic lithium at 500 °C. The carbon nanoparticles account for about 80% of the carbon product. The carbon nanoparticles were characterized by X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy and N2 physisorption. The results showed that carbon nanoparticles predominate in the product. The influence of experimental conditions was investigated, which indicated that temperature plays a crucial role in the formation of carbon nanoparticles. The possible formation mechanism of the carbon nanoparticles was discussed. This method provides a simple and efficient route to the synthesis of carbon nanoparticles.  相似文献   

4.
The inhibiting properties of 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (PyODT) on the corrosion of carbon steel in 1.0 M HCl solution were investigated by potentiodynamic polarization, electrochemical impedance spectroscopy, Raman spectroscopy, and SEM-EDX analysis. An approach based on machine learning algorithms and Raman data was also applied to follow the carbon steel degradation in different experimental conditions. The electrochemical measurements revealed that PyODT behaves as a mixed-type corrosion inhibitor, reaching an efficiency of about 93.1% at a concentration of 5 mM, after 1 h exposure to 1.0 M HCl solution. Due to the molecular adsorption and structural organization of PyODT molecules on the C-steel surface, higher inhibitive effectiveness of about 97% was obtained at 24 h immersion. The surface analysis showed a significantly reduced degradation state of the carbon steel surface in the presence of PyODT due to the inhibitor adsorption revealed by Raman spectroscopy and the presence of N and S atoms in the EDX spectra. The combination of Raman spectroscopy and machine learning algorithms was proved to be a facile and reliable tool for an incipient identification of the corrosion sites on a metallic surface exposed to corrosive environments.  相似文献   

5.
Optical recording of membrane potential permits spatially resolved measurement of electrical activity in subcellular regions of single cells, which would be inaccessible to electrodes, and imaging of spatiotemporal patterns of action potential propagation in excitable tissues, such as the brain or heart. However, the available voltage-sensitive dyes (VSDs) are not always spectrally compatible with newly available optical technologies for sensing or manipulating the physiological state of a system. Here, we describe a series of 19 fluorinated VSDs based on the hemicyanine class of chromophores. Strategic placement of the fluorine atoms on the chromophores can result in either blue or red shifts in the absorbance and emission spectra. The range of one-photon excitation wavelengths afforded by these new VSDs spans 440–670 nm; the two-photon excitation range is 900–1,340 nm. The emission of each VSD is shifted by at least 100 nm to the red of its one-photon excitation spectrum. The set of VSDs, thus, affords an extended toolkit for optical recording to match a broad range of experimental requirements. We show the sensitivity to voltage and the photostability of the new VSDs in a series of experimental preparations ranging in scale from single dendritic spines to whole heart. Among the advances shown in these applications are simultaneous recording of voltage and calcium in single dendritic spines and optical electrophysiology recordings using two-photon excitation above 1,100 nm.  相似文献   

6.
Excitation spectra for triplet state formation and fluorescence emission from uracil and thymine in neutral aqueous solution at room temperature are anomalous when compared to the absorption spectra of uracil and thymine.The experimental data are critically examined with respect to three molecular models; Model 1, which is characterized by increased intersystem crossing from higher vibrational levels of S(1); Model 2, in which fluorescence is attributed to a (pi,pi(*)) state, whereas intersystem crossing occurs from an (npi(*)) state; and Model 3, in which fluorescence is attributed to a tautomer I, while triplet yields originate from tautomer II. Reasons are presented for discarding Models 1 and 2, and it is demonstrated that the observed excitation spectra complement each other with respect to the absorption spectrum, such that the quantum yields of triplet formation and fluorescence emission become independent of exciting wavelength. It is suggested that the fluorescing tautomer I has the N(3)-C(4) enol structure, while the triplet-forming tautomer II is most likely the predominant diketo form.  相似文献   

7.
Silicon oxycarbides synthesized through a conventional polymeric route show characteristic nanodomains that consist of sp2 hybridized carbon, tetrahedrally coordinated SiO4, and tetrahedrally coordinated silicon with carbon substitution for oxygen, called “mixed bonds.” Here we synthesize two preceramic polymers possessing both phenyl substituents as unique organic groups. In one precursor, the phenyl group is directly bonded to silicon, resulting in a SiOC polymer-derived ceramic (PDC) with mixed bonding. In the other precursor, the phenyl group is bonded to the silicon through Si-O-C bridges, which results in a SiOC PDC without mixed bonding. Radial breathing-like mode bands in the Raman spectra reveal that SiOC PDCs contain carbon nanoscrolls with spiral-like rolled-up geometry and open edges at the ends of their structure. Calorimetric measurements of the heat of dissolution in a molten salt solvent show that the SiOC PDCs with mixed bonding have negative enthalpies of formation with respect to crystalline components (silicon carbide, cristobalite, and graphite) and are more thermodynamically stable than those without. The heats of formation from crystalline SiO2, SiC, and C of SiOC PDCs without mixed bonding are close to zero and depend on the pyrolysis temperature. Solid state MAS NMR confirms the presence or absence of mixed bonding and further shows that, without mixed bonding, terminal hydroxyls are bound to some of the Si-O tetrahedra. This study indicates that mixed bonding, along with additional factors, such as the presence of terminal hydroxyl groups, contributes to the thermodynamic stability of SiOC PDCs.  相似文献   

8.
Chemistry of the actinide elements represents a challenging yet vital scientific frontier. Development of actinide chemistry requires fundamental understanding of the relative roles of actinide valence-region orbitals and the nature of their chemical bonding. We report here an experimental and theoretical investigation of the uranium methylidyne molecules X(3)U CH (X = F, Cl, Br), F(2)ClU CH, and F(3)U CF formed through reactions of laser-ablated uranium atoms and trihalomethanes or carbon tetrafluoride in excess argon. By using matrix infrared spectroscopy and relativistic quantum chemistry calculations, we have shown that these actinide complexes possess relatively strong U C triple bonds between the U 6d-5f hybrid orbitals and carbon 2s-2p orbitals. Electron-withdrawing ligands are critical in stabilizing the U(VI) oxidation state and sustaining the formation of uranium multiple bonds. These unique U C-bearing molecules are examples of the long-sought actinide-alkylidynes. This discovery opens the door to the rational synthesis of triple-bonded actinide carbon compounds.  相似文献   

9.
Rapid-flow resonance Raman vibrational spectra of bacterial photosynthetic reaction centers from the R-26 mutant of Rhodobacter sphaeroides have been obtained by using excitation wavelengths (810-910 nm) resonant with the lowest energy, photochemically active electronic absorption. The technique of shifted excitation Raman difference spectroscopy is used to identify genuine Raman scattering bands in the presence of a large fluorescence background. The comparison of spectra obtained from untreated reaction centers and from reaction centers treated with the oxidant K3Fe(CN)6 demonstrates that resonance enhancement is obtained from the special pair. Relatively strong Raman scattering is observed for special pair vibrations with frequencies of 36, 94, 127, 202, 730, and 898 cm-1; other modes are observed at 71, 337, and 685 cm-1. Qualitative Raman excitation profiles are reported for some of the strong modes, and resonance enhancement is observed to occur throughout the near-IR absorption band of the special pair. These Raman data determine which vibrations are coupled to the optical absorption in the special pair and, thus, probe the nuclear motion that occurs after electronic excitation. Implications for the interpretation of previous hole-burning experiments and for the excited-state dynamics and photochemistry of reaction centers are discussed.  相似文献   

10.
Achieving label-free, molecular-specific imaging with high spatial resolution in deep tissue is often considered the grand challenge of optical imaging. To accomplish this goal, significant optical scattering in tissues has to be overcome while achieving molecular specificity without resorting to extrinsic labeling. We demonstrate the feasibility of developing such an optical imaging modality by combining the molecularly specific stimulated Raman excitation with the photoacoustic detection. By employing two ultrashort excitation laser pulses, separated in frequency by the vibrational frequency of a targeted molecule, only the specific vibrational level of the target molecules in the illuminated tissue volume is excited. This targeted optical absorption generates ultrasonic waves (referred to as stimulated Raman photoacoustic waves) which are detected using a traditional ultrasonic transducer to form an image following the design of the established photoacoustic microscopy.  相似文献   

11.
Fe-N-C materials are promising non-precious metal catalysts for the oxygen reduction reaction in fuel cells and batteries. However, during the synthesis of these materials less active Fe-containing nanoparticles are formed in many cases which lead to a decrease in electrochemical activity and stability. In this study, we reveal the significant properties of the carbon support required for the successful incorporation of Fe-N-related active sites. The impact of two carbon blacks and two activated biomass-based carbons on the Fe-N-C synthesis is investigated and crucial support properties are identified. Carbon supports having low portions of amorphous carbon, moderate surface areas (>800 m2/g) and mesopores result in the successful incorporation of Fe and N on an atomic level and improved oxygen reduction reaction (ORR) activity. A low surface area and especially amorphous parts of the carbon promote the formation of metallic iron species covered by a graphitic layer. In contrast, highly microporous systems with amorphous carbon provoke the formation of less active iron carbides and carbon nanotubes. Overall, a phosphoric acid activated biomass is revealed as novel and sustainable carbon support for the formation of Fe-Nx sites. Overall, this study provides valuable and significant information for the future development of novel and sustainable carbon supports for Fe-N-C catalysts.  相似文献   

12.
Graphene oxide (GO)-phosphor hybrid nanoscrolls were synthesized using a simple chemical method. The GO-phosphor ratio was varied to find the optimum ratio for enhanced optical characteristics of the hybrid. A scanning electron microscope analysis revealed that synthesized GO scrolls achieved a length of over 20 μm with interior cavities. The GO-phosphor hybrid is extensively analyzed using Raman spectroscopy, suggesting that various Raman combination modes are activated with the appearance of a low-frequency radial breathing-like mode (RBLM) of the type observed in carbon nanotubes. All of the synthesized GO-phosphor hybrids exhibit an intense luminescent emission around 540 nm along with a broad emission at approximately 400 nm, with the intensity ratio varying with the GO-phosphor ratio. The photoluminescence emissions were gauged using Commission Internationale d''Eclairage (CIE) coordinates and at an optimum ratio. The coordinates shift to the white region of the color spectra. Our study suggests that the GO-phosphor hybrid nanoscrolls are suitable candidates for light-emitting applications.  相似文献   

13.
In this work, we report the synthesis method of carbon quantum dots (CDs) using the one-step method for fast and effective metal ion determination. Ascorbic acid was used as an inexpensive and environmentally friendly precursor. High-pressure and high-temperature reactors were used for this purpose. Microscopic characterization revealed the size of CDs was in the range of 2–6 nm and they had an ordered structure. The photoluminescence properties of the CDs depend on the process temperature, and we obtained the highest PL spectra for 6 h of hydrothermal reaction. The maximum emission spectra depend poorly on synthesis time. Further characterization shows that CDs are a good contender for sensing Fe3+ in aqueous systems and can detect concentrations up to 0.49 ppm. The emission spectra efficiency was enhanced by up to 200% with synthesis time.  相似文献   

14.
Surface plasmon polaritons (SPPs) are responsible for exotic optical phenomena, including negative refraction, surface enhanced Raman scattering, and nanoscale focusing of light. Although many materials support SPPs, the choice of metal for most applications has been based on traditional plasmonic materials (Ag, Au) because there have been no side-by-side comparisons of the different materials on well-defined, nanostructured surfaces. Here, we report a platform that not only enabled rapid screening of a wide range of metals under different excitation conditions and dielectric environments, but also identified new and unexpected materials for biosensing applications. Nanopyramidal gratings were used to generate plasmon dispersion diagrams for Al, Ag, Au, Cu, and Pd. Surprisingly, the SPP coupling efficiencies of Cu and Al exceeded widely used plasmonic materials under certain excitation conditions. Furthermore, grazing angle excitation led to the highest refractive index sensitivities (figure of merit >85) reported at optical frequencies because of extremely narrow SPP resonances (full-width-at-half-minimum <6 nm or 7 meV). Finally, our screening process revealed that Ag, with the highest sensitivity, was not necessarily the preferred material for detecting molecules. We discovered that Au and even Pd, a weak plasmonic material, showed comparable index shifts on formation of a protein monolayer.  相似文献   

15.
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.  相似文献   

16.
High-pressure methods are increasingly used to produce new dense materials with unusual properties. Increasing efforts to understand the reaction mechanisms at the microscopic level, to set up and optimize synthetic approaches, are currently directed at carbon-based solids. A fundamental, but still unsolved, question concerns how the electronic excited states are involved in the high-pressure reactivity of molecular systems. Technical difficulties in such experiments include small sample dimensions and possible damage to the sample as a result of the absorption of intense laser fields. These experimental challenges make the direct characterization of the electronic properties as a function of pressure by linear and nonlinear optical spectroscopies up to several GPa a hard task. We report here the measurement of two-photon excitation spectra in a molecular crystal under pressure, up to 12 GPa in benzene, the archetypal aromatic system. Comparison between the pressure shift of the exciton line and the monomer fluorescence provides evidence for different compressibilities of the ground and first excited states. The formation of structural excimers occurs with increasing pressure involving molecules on equivalent crystal sites that are favorably arranged in a parallel configuration. These species represent the nucleation sites for the transformation of benzene into amorphous hydrogenated carbon. The present results provide a unified picture of the chemical reactivity of benzene at high pressure.  相似文献   

17.
Background Gastric cancer is one of the most common cancers in Japan. The use of endoscopy is increasing, along with the number of histological examinations of specimens obtained by endoscopy. However, it takes several days to reach a diagnosis, which increases the medical expense. Raman spectroscopy is one of the available optical techniques, and the Raman spectrum for each molecule and tissue is characteristic and specific. The present study investigated whether Raman spectroscopy can be used to diagnose gastric cancer. Methods A total of 251 fresh biopsy specimens of gastric carcinoma and non-neoplastic mucosa were obtained from 49 gastric cancer patients at endoscopy. Without any pretreatment, the fresh specimens were measured with a near-infrared multichannel Raman spectroscopic system with an excitation wavelength of 1064 nm, and Raman spectra specific for the specimens were obtained. A principal component analysis (PCA) was performed to distinguish gastric cancer and non-neoplastic tissue, and a discriminant analysis was used to evaluate the accuracy of the gastric cancer diagnosis. Results The Raman spectra for cancer specimens differed from those for non-neoplastic specimens, especially at around 1644 cm−1. Sensitivity was 66%, specificity was 73%, and accuracy was 70%. The accuracy of diagnosis using the single Raman scattering intensity at 1644 cm−1 was 70%, consistent with the PCA result. Conclusions The present results indicate that near-infrared multichannel Raman spectroscopy with a 1064-nm excitation wavelength is useful for gastric cancer diagnosis. Establishment of a Raman diagnostic system for gastric cancer may improve the clinical diagnosis of gastric cancer and be beneficial for patients.  相似文献   

18.
We report on the Sm3+ and Sm3+:Yb3+-doped barium fluorotellurite glasses prepared using the conventional melting and quenching method. The spectroscopic characterisations were investigated with Raman and FTIR to evaluate the glasses’ structural and hydroxyl (-OH) content. The Raman analysis revealed a structural modification in the glass network upon adding and increasing the Yb3+ concentration from a TeO3 trigonal pyramid to a TeO4 trigonal bi-pyramid polyhedral. At the same time, the FTIR measurements showed the existence of -OH groups in the glass. Thus, under the current experimental conditions and nominal composition, the -OH group contents are too large to enable an effective removal. The near-infrared region of the absorption spectra is employed to determine the nephelauxetic ratio and bonding parameters. The average nephelauxetic ratio decreases, and the bonding parameter increases with the increasing Yb3+ content in the glasses. A room temperature visible and near-infrared photoluminescence ranging from 500 to 1500 nm in wavelength and decay properties were investigated for glasses doped with Sm3+ and Sm3+-Yb3+ by exciting them with 450 and 980 nm laser sources. Exciting the Sm3+- and Sm3+-Yb3+-doped glasses by 450 nm excitation reveals a new series of photoluminescence emissions at 1200, 1293, and 1418 nm, corresponding to the 6F11/2 state to the 6HJ (J = 7/2, 9/2, 11/2) transitions. Under the 976 nm laser excitation, a broad photoluminescence emission from 980 to 1200 nm was detected. A decay lifetime decreased from ~244 to ~43 μs by increasing the Yb3+ content, ascribing to concentration quenching and the OH content.  相似文献   

19.
DsRed, a brilliantly red fluorescent protein, was recently cloned from Discosoma coral by homology to the green fluorescent protein (GFP) from the jellyfish Aequorea. A core question in the biochemistry of DsRed is the mechanism by which the GFP-like 475-nm excitation and 500-nm emission maxima of immature DsRed are red-shifted to the 558-nm excitation and 583-nm emission maxima of mature DsRed. After digestion of mature DsRed with lysyl endopeptidase, high-resolution mass spectra of the purified chromophore-bearing peptide reveal that some of the molecules have lost 2 Da relative to the peptide analogously prepared from a mutant, K83R, that stays green. Tandem mass spectrometry indicates that the bond between the alpha-carbon and nitrogen of Gln-66 has been dehydrogenated in DsRed, extending the GFP chromophore by forming C==N==C==O at the 2-position of the imidazolidinone. This acylimine substituent quantitatively accounts for the red shift according to quantum mechanical calculations. Reversible hydration of the C==N bond in the acylimine would explain why denaturation shifts mature DsRed back to a GFP-like absorbance. The C==N bond hydrolyses upon boiling, explaining why DsRed shows two fragment bands on SDS/PAGE. This assay suggests that conversion from green to red chromophores remains incomplete even after prolonged aging.  相似文献   

20.
Intrinsic, three-dimensionally resolved, microscopic imaging of dynamical structures and biochemical processes in living preparations has been realized by nonlinear laser scanning fluorescence microscopy. The search for useful two-photon and three-photon excitation spectra, motivated by the emergence of nonlinear microscopy as a powerful biophysical instrument, has now discovered a virtual artist's palette of chemical indicators, fluorescent markers, and native biological fluorophores, including NADH, flavins, and green fluorescent proteins, that are applicable to living biological preparations. More than 25 two-photon excitation spectra of ultraviolet and visible absorbing molecules reveal useful cross sections, some conveniently blue-shifted, for near-infrared absorption. Measurements of three-photon fluorophore excitation spectra now define alternative windows at relatively benign wavelengths to excite deeper ultraviolet fluorophores. The inherent optical sectioning capability of nonlinear excitation provides three-dimensional resolution for imaging and avoids out-of-focus background and photodamage. Here, the measured nonlinear excitation spectra and their photophysical characteristics that empower nonlinear laser microscopy for biological imaging are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号