首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of alkali-activated slag (AAS) under thermal treatment has received particular attention. In this study, the effect of five elevated temperatures (25, 200, 400, 600, and 800 °C) and two cooling methods (air cooling and water spraying) on the mechanical and durability properties, microstructure, and phase evolution of AAS was investigated. The results show that AAS mortars exhibit higher resistance to thermal attack than OPC in terms of strength and durability. AAS samples cooled in air show higher residual strength than those cooled by spraying water, which is mainly attributed to fewer cracks formed in the former. The resistance to carbonization of exposed AAS mortars depends on the pore size distribution, while that to chloride ion penetration depends on the porosity. Cooling methods show a minor effect on the phase evolution of reaction products, suggesting that the microstructure degradation is mainly responsible for the damage of AAS structures. This study provides fundamental knowledge for the thermally induced changes on AAS which contributes new ideas for the development of construction structures with higher fire resistance.  相似文献   

2.
Ordinary Portland cement (OPC) is known for its significant contribution to carbon dioxide emissions. Geopolymer has a lower footprint in terms of CO2 emissions and has been considered as an alternative for OPC. A well-developed understanding of the use of fly-ash-based and slag-based geopolymers as separate systems has been reached in the literature, specifically regarding their mechanical properties. However, the microstructural and durability of the combined system after slag addition introduces more interactive gels and complex microstructural formations. The microstructural changes of complex blended systems contribute to significant advances in the durability of fly ash/slag geopolymers. In the present review, the setting time, microstructural properties (gel phase development, permeability properties, shrinkage behavior), and durability (chloride resistance, sulfate attack, and carbonatation), as discussed literature, are studied and summarized to simplify and draw conclusions.  相似文献   

3.
The present study concerns a development of calcium aluminate cement (CAC) concrete to enhance the durability against an externally chemically aggressive environment, in particular, chloride-induced corrosion. To evaluate the inhibition effect and concrete properties, CAC was partially mixed with ordinary Portland cement (OPC), ranging from 5% to 15%, as a binder. As a result, it was found that an increase in the CAC in binder resulted in a dramatic decrease in the setting time of fresh concrete. However, the compressive strength was lower, ranging about 20 MPa, while OPC indicated about 30–35 MPa at an equivalent age. When it comes to chloride transport, there was only marginal variation in the diffusivity of chloride ions. The corrosion resistance of CAC mixture was significantly enhanced: its chloride threshold level for corrosion initiation exceeded 3.0% by weight of binder, whilst OPC and CAC concrete indicated about 0.5%–1.0%.  相似文献   

4.
Ordinary Portland cement (OPC) is a conventional material used to construct rigid pavement that emits large amounts of carbon dioxide (CO2) during its manufacturing process, which is bad for the environment. It is also claimed that OPC is susceptible to acid attack, which increases the maintenance cost of rigid pavement. Therefore, a fly ash based geopolymer is proposed as a material for rigid pavement application as it releases lesser amounts of CO2 during the synthesis process and has higher acid resistance compared to OPC. This current study optimizes the formulation to produce fly ash based geopolymer with the highest compressive strength. In addition, the durability of fly ash based geopolymer concrete and OPC concrete in an acidic environment is also determined and compared. The results show that the optimum value of sodium hydroxide concentration, the ratio of sodium silicate to sodium hydroxide, and the ratio of solid-to-liquid for fly ash based geopolymer are 10 M, 2.0, and 2.5, respectively, with a maximum compressive strength of 47 MPa. The results also highlight that the durability of fly ash based geopolymer is higher than that of OPC concrete, indicating that fly ash based geopolymer is a better material for rigid pavement applications, with a percentage of compressive strength loss of 7.38% to 21.94% for OPC concrete. This current study contributes to the field of knowledge by providing a reference for future development of fly ash based geopolymer for rigid pavement applications.  相似文献   

5.
Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO2 emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO2 intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO2 emissions reduction and resources and energy conservation in the concrete industry.  相似文献   

6.
In this study, we investigated the formation and evolution of the corrosion layers in alkali-activated mortar and ordinary Portland cement mortar exposed to sulfuric acid and acetic acid environments with different pH values, and explored the differences in the deterioration mechanisms. The experimental results indicated that ordinary Portland cement (OPC) mortars experienced more severe deterioration in terms of appearance, mass loss, and strength loss as compared with alkali-activated mortars exposed to an acetic acid environment, but their neutralization depths were smaller. Alkali-activated fly ash (AAF) mortar had a the relatively intact appearance but the greatest neutralization depth, which was due to its stable three-dimensional network but highly porous structure. To sum up, alkali-activated fly ash/slag (AFS) mortar had the best resistance to acid attack. In addition, the mortars exposed to acetic acid suffered greater deterioration than those exposed to sulfuric acid with the same pH values, which was mainly due to the highly porous corrosion layer formed in acetic acid, whereas crystallization of gypsum in sulfuric acid had a pore filling effect. However, for alkali-activated slag (AAS) and OPC mortars exposed to a sulfuric acid environment, extensive gypsum resulted in the formation of micro-cracks, and the corrosion layer of OPC mortar was more prone to fall off. OPC mortar also had the greatest resistance difference values of the continuously connected micro-pores before and after acid corrosion, followed by AAS, AAF, and AFS mortars, and these values for all the specimens were smaller in sulfuric acid. Furthermore, the gaps between acetic and sulfuric acid attacks increased with increased calcium content in binders, which were 7%, 13%, 21%, and 29% for AAF, AFS, AAS, and OPC mortars, respectively. Thus, it can be inferred that an appropriate amount of gypsum existed in the corrosion layer which could act as a barrier to some extent ina sulfuric acid environment.  相似文献   

7.
Sulfate attack in concrete structures significantly reduces their durability. This article reports the experimental findings on the effects of sodium sulfate on limestone calcined clay cement (LC3) in an alternate wet and dry media. The samples underwent wet–dry conditions of 28 cycles. Two types of LC3 were studied, one made from clay (LC3-CL) and the other made from fired rejected clay bricks (LC3-FR). The composition of each LC3 blend by weight was 50% clinker, 30% calcined clay, 15% limestone, and 5% gypsum. The reference compressive strength was evaluated at 2, 7, and 28 days of age. Then, ordinary Portland cement (OPC) and LC3-CL blends were subjected to alternate wet–dry cycle tests, immersion in a 5% sodium sulfate solution, or in water. For all exposed samples, sorptivity tests and compressive strength were done. The results showed that LC3 blends met the requirements for KS-EAS 18-1:2017 standard, which specifies the composition and conformity criteria for common cements in Kenya. The LC3 blend also had a lower rate of initial absorption compared to OPC. Additionally, LC3 blend also showed good resistance to sodium sulfate when exposed to alternating wetting and drying environment. OPC showed higher compressive strength than LC3 blends for testing ages of 2, 7, and 28 days. However, the LC3 samples utilized in the sodium sulfate attack experiment, which were later tested after 84 days, exhibited higher compressive strengths than OPC tested after the same period.  相似文献   

8.
This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA) to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C). However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete.  相似文献   

9.
In recent years, the development of ternary cements has become a priority research line for obtaining cements with a lower carbon footprint, with the goal to contribute to achieve climate neutrality by 2050. This study compared ordinary Portland cement (OPC) durability to the performance of ternary cements bearing OPC plus 7% of a 2:1 binary blend of either calcareous (Hc) or siliceous (Hs) concrete waste fines and shatterproof glass. Durability was measured further to the existing legislation for testing concrete water absorption, effective porosity, pressurized water absorption and resistance to chlorides and CO2. The experimental findings showed that the 7% blended mortars performed better than the reference cement in terms of total and effective porosity, but they absorbed more pressurized water. They also exhibited lower CO2 resistance, particularly in the calcareous blend, likely due to its higher porosity. Including the binary blend of CDW enhanced chloride resistance with diffusion coefficients of 2.9 × 10−11 m2 s−1 (calcareous fines-glass, 7%Hc-G) and 1.5 × 10−11 m2 s−1 (siliceous fines-glass, 7%Hs-G) compared to the reference cement’s 4.3 × 10−11 m2 s−1. The siliceous fines-glass blend out-performed the calcareous blend in all the durability tests. As the mortars with and without CDW (construction and demolition waste) performed to similar standards overall, the former were deemed viable for the manufacture of future eco-efficient cements.  相似文献   

10.
11.
Recent studies have shown promising potential for using Glass Pozzolan (GP) as an alternative supplementary cementitious material (SCM) due to the scarcity of fly ash and slag in the United States. However, comprehensive studies on the freeze–thaw (FT) resistance and air void system of mixtures containing GP are lacking. Therefore, this study aimed to evaluate GP’s effect on FT resistance and characterize mixtures with different GP contents, both macro- and microscopically. In this study, six concrete mixes were considered: Three mixes with 20%, 30% and 40% GP as cement replacements and two other comparable mixes with 30% fly ash and 40% slag, as well as a mix with 100% Ordinary Portland cement (OPC) as a reference. Concrete samples were prepared, cured and tested according to the ASTM standards for accelerated FT resistance for 1000 cycles and corresponding dynamic modulus of elasticity (Ed). All the samples showed minimal deterioration and scaling and high F/T resistance with a durability factor of over 90%. The relationships among FT resistance parameters, air-pressured method measurements of fresh concretes and air void analysis parameters of hardened concretes were examined in this study. X-ray micro-tomography (micro-CT scan) was used to evaluate micro-cracks development after 1000 freeze–thaw cycles and to determine spatial parameters of air voids in the concretes. Pore structure properties obtained from mercury intrusion porosimetry (MIP) and N2 adsorption method showed refined pore structure for higher cement replacement with GP, indicating more gel formation (C-S-H) which was verified by thermogravimetric analysis (TGA).  相似文献   

12.
Fly ash is widely used in the cement industry to improve the performance and durability of concrete. The future availability of fly ash, however, is a concern, as most countries are inclining towards renewable energy sources as opposed to fossil fuels. Additional concerns have been raised regarding the impact of strict environmental regulations on fly ash quality and variability. This paper, therefore, evaluates if nano calcium carbonate (nano CaCO3) can be used as an alternative to fly ash. This paper presents comprehensive testing results (fresh, hardened, and durability) for OPC (Ordinary Portland Cement) and PLC (Portland Limestone Cement) concretes with 1% nano CaCO3 and compares them to those for concretes with fly ash (both Class F and C). Compared to concretes with fly ash, OPC and PLC with nano CaCO3 presented improved testing results in most cases, including later age strength, permeability, and scaling resistance. As nanotechnology in concrete is a relatively new topic, more research on the efficient use of nanotechnology, such as for proper dispersion of nano CaCO3 in the concrete, has potential to offer increased benefits. Further, nano CaCO3 is environmentally and economically viable, as it has the potential to be produced within the cement plant while utilizing waste CO2 and generating economic revenue to the industry. Thus, nano CaCO3 has the potential to serve as an alternative to fly ash in all beneficial aspects—economic, environmental, and technical.  相似文献   

13.
This paper presents the testing of the durability of concrete where a part of cement was replaced with ground panel cathode ray tube glass (CRT) finer than 63 µm. The percentage of cement replaced with glass is 5%, 10%, 15%, 20%, and 35%, by mass. The highest percent share of mineral admixtures in CEM II (Portland-composiste cement) cement was chosen as the top limit of replacement of cement with glass. In terms of the concrete durability, the following tests are performed: freeze-thaw resistance, freeze-thaw resistance with de-icing salts-scaling, resistance to wear according to the Böhme test, sulfate attack resistance, and resistance to penetration of water under pressure. A compressive strength test is performed, and shrinkage of concrete is monitored. In order to determine the microstructure of concrete, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) analyses were performed. The obtained research results indicate that the replacement of a part of cement with finely ground CRT glass up to 15% by mass has a positive effect on the compressive strength of concrete in terms of its increase without compromising the durability of concrete. The results obtained by experimental testing unequivocally show that concrete mixtures made with partial replacement (up to 15%) of cement with finely ground CRT glass have the same freeze-thaw resistance, resistance to freeze/thaw with de-icing salt, resistance to wear by abrasion, and resistance to sulfate attack as the reference concrete. In terms of environmental protection, the use of CRT glass as a component for making concrete is also very significant.  相似文献   

14.
The low environmental impact and high long-term performance of products are becoming imperative for the sustainable development of the construction industry. Alkali-activated materials (AAMs) are one of the available low-embodied-carbon alternatives to Portland cement (OPC). For their application in the marine environment or where de-icing salts are used, it is of utmost importance to demonstrate their equal or better performance compared to OPC. The aim of this study was to compare the corrosion behaviour of the steel in AAMs based on different regionally available by-products with the behaviour of the steel in OPC. The by-products used were fly ash, slag, silica fume, and iron-silica fines. The corrosion process of each system was monitored by the corrosion potential and polarisation resistance during exposure to tap water and chloride solution over a period of almost one year. Certain AAMs showed a higher resistance to chloride penetration compared to OPC, which was attributed to the smaller number of capillary pores and higher gel phase precipitation. The same corrosion resistance compared to OPC was achieved with alkali-activated fly ash and alkali-activated slag mortars. The stability of the systems in tap water and chloride solution was confirmed by the visual assessment of the steel surface at the end of the test period.  相似文献   

15.
Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C) and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC). Surprisingly, AAB-mortars (with 2.5 molar solution) achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.  相似文献   

16.
Concrete sulfate attack is of great interest as it represents one of the main reasons of concrete deterioration and poor durability for concrete structures. In this research, the effect of different cement types on concrete sulfate resistance was investigated. This included three concrete classes, namely, low strength concrete, medium strength concrete, and high strength concrete. Blast furnace cement (BFC), sulfate resisting Portland cement (CEM I-SR5), and ordinary Portland cement (OPC) were used in a total of eighteen concrete mixes. Three binder contents of 250 kg/m3, 350 kg/m3, and 450 kg/m3 and a constant silica fume (SF) content were applied in this experimental study. The water/binder (w/b) ratio was varied between 0.4 and 0.8. Concrete specimens were immersed in highly severe effective sodium sulfate solutions (10,000 ppm) for 180 days after standard curing for 28 days. The fresh concrete performance was evaluated through a slump test to attain proper workability. Concrete compressive strength and mass change at 28 days and 180 days were measured before and after immersion in the solution to evaluate the long-term effect of sulfate attack on the proposed concrete durability. Scanning electron microscopy (SEM) analysis was conducted to study the concrete microstructure and its deterioration stages. The obtained results revealed that BFC cement has the best resistance to aggressive sulfate attacks. The strength deterioration of BFC cement was 3.5% with w/b of 0.4 and it increased to about 7.8% when increasing the w/b ratio to 0.6, which are comparable to other types of cement used. The findings of this research confirmed that the quality of concrete, specifically its composition of low permeability, is the best and recommended protection against sulfate attack.  相似文献   

17.
Sulfate attack is one of the drawbacks of cementitious materials for stabilized soils. In the current study, a durability comparison of stabilized soil with cement (Type IV) and waste paper fly ash (WPFA) was conducted. First, the treated soil’s unconfined compressive strength (UCS) was tested. Next, the treated soil was subjected to various wetting/drying cycles with various sulfate concentrations and temperatures for a year. In the meantime, samples were taken for DRX, FTIR, and TGA microstructural analyses. Additionally, samples were manufactured to track swelling over an 800 day period. The outcomes show that WPFA’s UCS remained constant. Furthermore, ettringite development can be seen in the microstructural studies, however testing on linear displacement over 800 days revealed no significant changes in swelling. Finally, SEM was used to verify the ettringite formation at 360 days in order to confirm the previous findings. All the results indicated that stabilizing soil with 5% of WPFA and 3% of cement IV is possible even in presence of high sulfate concentrations, while maintaining the durability of the structure.  相似文献   

18.
The alkali-silica reaction (ASR) is an important consideration in ensuring the long-term durability of concrete materials, especially for those containing reactive aggregates. Although fly ash (FA) has proven to be useful in preventing ASR expansion, the filler effect and the effect of FA fineness on ASR expansion are not well defined in the present literature. Hence, this study aimed to examine the effects of the filler and fineness of FA on ASR mortar expansion. FAs with two different finenesses were used to substitute ordinary Portland cement (OPC) at 20% by weight of binder. River sand (RS) with the same fineness as the FA was also used to replace OPC at the same rate as FA. The replacement of OPC with RS (an inert material) was carried out to observe the filler effect of FA on ASR. The results showed that FA and RS provided lower ASR expansions compared with the control mortar. Fine and coarse fly ashes in this study had almost the same effectiveness in mitigating the ASR expansion of the mortars. For the filler effect, smaller particles of RS had more influence on the ASR reduction than RS with coarser particles. A significant mitigation of the ASR expansion was obtained by decreasing the OPC content in the mortar mixture through its partial substitution with FA and RS.  相似文献   

19.
Graphene’s outstanding properties make it a potential material for reinforced cementitious composites. However, its shortcomings, such as easy agglomeration and poor dispersion, severely restrict its application in cementitious materials. In this paper, a highly dispersible graphene (TiO2-RGO) with better dispersibility compared with graphene oxide (GO) is obtained through improvement of the graphene preparation method. In this study, both GO and TiO2-RGO can improve the pore size distribution of cement mortars. According to the results of the mercury intrusion porosity (MIP) test, the porosity of cement mortar mixed with GO and TiO2-RGO was reduced by 26% and 40%, respectively, relative to ordinary cement mortar specimens. However, the TiO2-RGO cement mortars showed better pore size distribution and porosity than GO cement mortars. Comparative tests on the strength and durability of ordinary cement mortars, GO cement mortars, and TiO2-RGO cement mortars were conducted, and it was found that with the same amount of TiO2-RGO and GO, the TiO2-RGO cement mortars have nearly twice the strength of GO cement mortars. In addition, it has far higher durability, such as impermeability and chloride ion penetration resistance, than GO cement mortars. These results indicate that TiO2-RGO prepared by titanium dioxide (TiO2) intercalation can better improve the strength and durability performance of cement mortars compared to GO.  相似文献   

20.
The increasing concern for decarbonization and sustainability in construction materials is calling for green binders to partially replace cement since its production is responsible for approximately 8% of global anthropogenic greenhouse gas emissions. Supplementary cementitious materials (SCMs), including fly ash, slag, silica fume, etc., can be used as a partial replacement for ordinary Portland cement (OPC) owing to reduced carbon dioxide emissions associated with OPC production. This study aims to investigate the sustainable use of waste oyster shell powder (OSP)-lithium slag (LS)-ground granulated blast furnace slag (GGBFS) ternary SCM system in green concrete. The effect of ternary SCMs to OPC ratio (0%, 10%, 20%, and 30%) on compressive strength and permeability of the green concrete were studied. The reaction products of the concrete containing OSP-LS-GGBFS SCM system were characterized by SEM and thermogravimetric analyses. The results obtained from this study revealed that the compressive strength of concrete mixed with ternary SCMs are improved compared with the reference specimens. The OSP-LS-GGBFS ternary SCMs-based mortars exhibited a lower porosity and permeability compared to the control specimens. However, when the substitution rate was 30%, the two parameters showed a decline. In addition, the samples incorporating ternary SCMs had a more refined pore structure and lower permeability than that of specimens adding OSP alone. This work expands the possibility of valorization of OSP for sustainable construction materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号