首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huntington's disease (HD) is a fatal neurodegenerative disease characterized pathologically by aggregates composed of N-terminal fragments of the mutant form of the protein huntingtin (htt). The role of these N-terminal fragments in disease pathogenesis has been questioned based in part on studies in transgenic mice. In one important example, mice that express an N-terminal fragment of mutant htt terminating at the C-terminus of exon 2 (termed the Shortstop mouse) were reported to develop robust inclusion pathology without developing phenotypic abnormalities seen in the R6/2 or N171-82Q models of HD, which are also based on expression of mutant N-terminal htt fragments. To further explore the capacity of mutant exon-2 htt fragments to produce neurologic abnormalities (N-terminal 118 amino acids; N118), we generated transgenic mice expressing cDNA that encodes htt N118-82Q with the mouse prion promoter vector. In mice generated in this manner, we demonstrate robust inclusion pathology accompanied by early death and failure to gain weight. These phenotypes are the most robust abnormalities identified in the R6/2 and N171-82Q models. We conclude that the lack of an overt phenotype in the initial Shortstop mice cannot be completely explained by the properties of mutant htt N118 fragments.  相似文献   

2.
Huntington's disease (HD) results from the expansion of a glutamine repeat near the N-terminus of huntingtin (htt). At post-mortem, neurons in the central nervous system of patients have been found to accumulate N-terminal fragments of mutant htt in nuclear and cytoplasmic inclusions. This pathology has been reproduced in transgenic mice expressing the first 171 amino acids of htt with 82 glutamines along with losses of motoric function, hypoactivity and abbreviated life-span. The relative contributions of nuclear versus cytoplasmic mutant htt to the pathogenesis of disease have not been clarified. To examine whether pathogenic processes in the nucleus disproportionately contribute to disease features in vivo, we fused a nuclear localization signal (NLS) derived from atrophin-1 to the N-terminus of an N171-82Q construct. Two lines of mice (lines 8A and 61) that were identified expressed NLS-N171-82Q at comparable levels and developed phenotypes identical to our previously described HD-N171-82Q mice. Western blot and immunohistochemical analyses revealed that NLS-N171-82Q fragments accumulate in nuclear, but not cytoplasmic, compartments. These data suggest that disruption of nuclear processes may account for many of the disease phenotypes displayed in the mouse models generated by expressing mutant N-terminal fragments of htt.  相似文献   

3.
Recent studies have implicated an N-terminal caspase-6 cleavage product of mutant huntingtin (htt) as an important mediator of toxicity in Huntington's disease (HD). To directly assess the consequences of such fragments on neurologic function, we produced transgenic mice that express a caspase-6 length N-terminal fragment of mutant htt (N586) with both normal (23Q) and disease (82Q) length glutamine repeats. In contrast to mice expressing N586-23Q, mice expressing N586-82Q accumulate large cytoplasmic inclusion bodies that can be visualized with antibodies to epitopes throughout the N586 protein. However, biochemical analyses of aggregated mutant huntingtin in these mice demonstrated that the inclusion bodies are composed largely of a much smaller htt fragment (terminating before residue 115), with lesser amounts of full-length N586-82Q fragments. Mice expressing the N586-82Q fragment show symptoms typical of previously generated mice expressing mutant huntingtin fragments, including failure to maintain weight, small brain weight and reductions in specific mRNAs in the striatum. Uniquely, these N586-82Q mice develop a progressive movement disorder that includes dramatic deficits in motor performance on the rotarod and ataxia. Our findings suggest that caspase-6-derived fragments of mutant htt are capable of inducing novel HD-related phenotypes, but these fragments are not terminal cleavage products as they are subject to further proteolysis. In this scenario, mutant htt fragments derived from caspase 6, or possibly other proteases, could mediate HD pathogenesis via a 'hit and run' type of mechanism in which caspase-6, or other larger N-terminal fragments, mediate a neurotoxic process before being cleaved to a smaller fragment that accumulates pathologically.  相似文献   

4.
5.
Autophagy regulates the processing of amino terminal huntingtin fragments   总被引:10,自引:0,他引:10  
The N-terminus of mutant huntingtin (htt) has a polyglutamine expansion and forms neuronal aggregates in the brain of Huntington's disease (HD) patients. Htt expression in vitro activates autophagy, but it is unclear whether autophagic/lysosomal pathways process htt, especially N-terminal htt fragments. We explored the role of autophagy in htt processing in three cell lines, clonal striatal cells, PC12 cells and rodent embryonic cells lacking cathepsin D. Blocking autophagy raised levels of exogenously expressed htt1-287 or 1-969, reduced cell viability and increased the number of cells bearing mutant htt aggregates. Stimulating autophagy promoted htt degradation, including breakdown of caspase cleaved N-terminal htt fragments. Htt expression increased levels of the lysosomal enzyme cathepsin D by an autophagy-dependent pathway. Cells without cathepsin D accumulated more N-terminal htt fragments and cells with cathepsin D were more efficient in degrading wt htt than mutant htt in vitro. These results suggest that autophagy plays a critical role in the degradation of N-terminal htt. Altered processing of mutant htt by autophagy and cathepsin D may contribute to HD pathogenesis.  相似文献   

6.
7.
Huntington's disease (HD) is an inherited, neurodegenerative disorder caused by the expansion of a glutamine repeat in the N-terminus of the huntingtin protein. To gain insight into the pathogenesis of HD, we generated transgenic mice that express a cDNA encoding an N-terminal fragment (171 amino acids) of huntingtin with 82, 44 or 18 glutamines. Mice expressing relatively low steady-state levels of N171 huntingtin with 82 glutamine repeats (N171-82Q) develop behavioral abnormalities, including loss of coordination, tremors, hypokinesis and abnormal gait, before dying prematurely. In mice exhibiting these abnormalities, diffuse nuclear labeling, intranuclear inclusions and neuritic aggregates, all immunoreactive with an antibody to the N-terminus (amino acids 1-17) of huntingtin (AP194), were found in multiple populations of neurons. None of these behavioral or pathological phenotypes were seen in mice expressing N171-18Q. These findings are consistent with the idea that N-terminal fragments of huntingtin with a repeat expansion are toxic to neurons, and that N-terminal fragments are prone to form both intranuclear inclusions and neuritic aggregates.   相似文献   

8.
9.
Li  SH; Li  XJ 《Human molecular genetics》1998,7(5):777-782
Huntington's disease (HD) is caused by expansion of a glutamine repeat in huntingtin. Mutant huntingtin contains 36-55 repeats in adult HD patients and >60 repeats in juvenile HD patients. An N-terminal fragment of mutant huntingtin forms aggregates in neuronal nuclei in the brains of transgenic mice and HD patients. Aggregation of expanded polyglutamine is thought to be a common pathological mechanism in HD and other glutamine repeat diseases. It is not clear how the length of the repeats is correlated with formation of protein aggregates. By expressing a series of huntingtin constructs encoding various glutamine repeats (23-150 units) in cultured cells we observed N-terminal fragments of huntingtin (amino acids 1-67 and 1-212), but not full- length huntingtins, with glutamine repeats >/=66 units formed protein aggregates. Huntingtin aggregation was not induced when the repeat was </=49 units and was markedly promoted by very long repeats >/=120 units. This study suggests that various N-terminal fragments of mutant huntingtin can form aggregates and that aggregation is prompted by lengthening the glutamine repeat.   相似文献   

10.
Expansion of CAG repeats within the coding region of target genes is the cause of several autosomal dominant neurodegenerative diseases including Huntington's disease (HD). A hallmark of HD is the proteolytic production of N-terminal fragments of huntingtin containing polyglutamine repeats that form ubiquitinated aggregates in the nucleus and cytoplasm of the affected neurons. In this study, we used an ecdysone-inducible stable mouse neuro2a cell line that expresses truncated N-terminal huntingtin (tNhtt) with different polyglutamine length, along with mice transgenic for HD exon 1, to demonstrate that the ubiquitin-proteasome pathway is involved in the pathogenesis of HD. Proteasomal 20S core catalytic component was redistributed to the polyglutamine aggregates in both the cellular and transgenic mouse models. Proteasome inhibitor dramatically increased the rate of aggregate formation caused by tNhtt protein with 60 glutamine (60Q) repeats, but had very little influence on aggregate formation by tNhtt protein with 150Q repeats. Both normal and polyglutamine-expanded tNhtt proteins were degraded by proteasome, but the rate of degradation was inversely proportional to the repeat length. The shift of the proteasomal components from the total cellular environment to the aggregates, as well as the comparatively slower degradation of tNhtt with longer polyglutamine, decreased the proteasome's availability for degrading other key target proteins, such as p53. This altered proteasomal function was associated with disrupted mitochondrial membrane potential, released cytochrome c from mitochondria into the cytosol and activated caspase-9- and caspase-3-like proteases. These results suggest that the impaired proteasomal function plays an important role in polyglutamine protein-induced cell death.  相似文献   

11.
In Huntington's disease (HD), CAG repeats extend a glutamine tract in huntingtin to initiate the dominant loss of striatal neurons and chorea. Neuropathological changes include the formation of insoluble mutant N-terminal fragment, as nuclear/neuropil inclusions and filter-trap amyloid, which may either participate in the disease process or be a degradative by-product. In young Hdh knock-in mice, CAGs that expand the glutamine tract in mouse huntingtin to childhood-onset HD lengths lead to nuclear accumulation of full-length mutant huntingtin and later accumulation of insoluble fragment. Here we report late-onset neurodegeneration and gait deficits in older Hdh(Q111) knock-in mice, demonstrating that the nuclear phenotypes comprise early stages in a disease process that conforms to genetic and pathologic criteria determined in HD patients. Furthermore, using the early nuclear-accumulation phenotypes as surrogate markers, we show in genetic experiments that the disease process, initiated by full-length mutant protein, is hastened by co-expression of mutant fragment; therefore, accrual of insoluble-product in already compromised neurons may exacerbate pathogenesis. In contrast, timing of early disease events was not altered by normal huntingtin or by mutant caspase-1, two proteins shown to reduce inclusions and glutamine toxicity in other HD models. Thus, potential HD therapies in man might be directed at different levels: preventing the disease-initiating mechanism or slowing the subsequent progression of pathogenesis.  相似文献   

12.
Synapse abnormalities in Huntington's disease (HD) patients can precede clinical diagnosis and neuron loss by decades. The polyglutamine expansion in the huntingtin (htt) protein that underlies this disorder leads to perturbations in many cellular pathways, including the disruption of Rab11-dependent endosomal recycling. Impairment of the small GTPase Rab11 leads to the defective formation of vesicles in HD models and may thus contribute to the early stages of the synaptic dysfunction in this disorder. Here, we employ transgenic Drosophila melanogaster models of HD to investigate anomalies at the synapse and the role of Rab11 in this pathology. We find that the expression of mutant htt in the larval neuromuscular junction decreases the presynaptic vesicle size, reduces quantal amplitudes and evoked synaptic transmission and alters larval crawling behaviour. Furthermore, these indicators of early synaptic dysfunction are reversed by the overexpression of Rab11. This work highlights a potential novel HD therapeutic strategy for early intervention, prior to neuronal loss and clinical manifestation of disease.  相似文献   

13.
Huntington's disease (HD) arises from an expanded polyglutamine (polyQ) in the N-terminus of the huntingtin (htt) protein. Neuronal degeneration and inclusions containing N-terminal fragments of mutant htt are present in the cortex and striatum of HD brain. Recently, a model of polyQ aggregate structure has been proposed on the basis of studies with synthetic polyQ peptides and includes an alternating beta-strand/beta-turn structure with seven glutamine residues per beta-strand. We tested this model in the context of the htt exon-1 N-terminal fragment in both mammalian cell culture and cultured primary cortical neurons. We found our data support this model in the htt protein and provide a better understanding of the structural basis of polyQ aggregation in toxicity in HD.  相似文献   

14.
Huntington's disease (HD) is caused by a mutation causing expanded polyglutamine tracts in the N-terminal fragment of huntingtin. A pathological hallmark of HD is the formation of aggregates in the striatal neurons. Here we report that ageing human huntingtin knock-in mice expressing mutant human huntingtin contained neuronal huntingtin aggregates, as revealed by immunohistochemical analysis. In heterozygous knock-in mice with 77 CAG repeats, aggregates of N-terminal fragments of huntingtin were specifically formed in nuclei and neuropils in the striatal projection neurons, and in neuropils in their projection regions. This aggregate formation progressed depending on age, became interacted with proteolytic or chaperone proteins, and occurred most prominently in the nucleus accumbens. These mutant mice demonstrated abnormal aggressive behavior. In homozygous knock-in mice, heavy deposits of intranuclear and neuropil aggregates were detected, which extended to other regions; and characteristic large perikaryal aggregates were also found in the affected neurons. However, cell death was not observed among the striatal and affected neurons of these mutant mice. Our results indicate that the polyglutamine aggregates do not necessarily correlate with neuronal death. These human huntingtin knock-in mice should be useful to provide an effective therapeutic approach against HD.  相似文献   

15.
Oxidative Stress in Huntington's Disease   总被引:7,自引:0,他引:7  
It has been five years since the elucidation of the genetic mutation underlying the pathogenesis of Huntington's disease (HD) (97), however the precise mechanism of the selective neuronal death it propagates still remains an enigma. Several different etiological processes may play roles, and strong evidence from studies in both humans and animal models suggests the involvement of energy metabolism dysfunction, excitotoxic processes, and oxidative stress. Importantly, the recent development of transgenic mouse models of HD led to the identification of neuronal intranuclear inclusion bodies in affected brain regions in both mouse models and in HD brain, consisting of protein aggregates containing fragments of mutant huntingtin protein. These observations opened new avenues of investigation into possible huntingtin protein interactions and their putative pathogenetic sequelae. Amongst these studies, findings of elevated levels of oxdative damage products such as malondialdehyde, 8-hydroxy-deoxyguanosine, 3-nitrotyrosine and heme oxygenase in areas of degeneration in HD brain, and of increased free radical production in animal models, indicate the involvement of oxidative stress either as a causative event, or as a secondary constituent of the cell death cascade in the disease. Here we review the evidence for oxidative damage and potential mechanisms of neuronal death in HD.  相似文献   

16.
The ability to overexpress full-length huntingtin or large fragments represents an important challenge to mimic Huntington's pathology and reproduce all stages of the disease in a time frame compatible with rodent life span. In the present study, tetracycline-regulated lentiviral vectors leading to high expression levels were used to accelerate the pathological process. Rats were simultaneously injected with vectors coding for the transactivator and wild type (WT) or mutated huntingtin (TRE-853-19Q/82Q) in the left and right striatum, respectively, and analyzed in the 'on' and 'off' conditions. Overexpression of TRE-853-19Q protein or residual expression of TRE-853-82Q in 'off' condition did not cause any significant neuronal pathology. Overexpressed TRE-853-82Q protein led to proteolytic release of N-terminal htt fragments, nuclear aggregation, and a striatal dysfunction as revealed by decrease of DARPP-32 staining but absence of NeuN down-regulation. The differential effect on the DARPP-32/NeuN neuronal staining was observed as early as 1 month after injection and maintained at 3 months. In contrast, expression of a shorter htt form (htt171-82Q) did not require processing prior formation of nuclear aggregates and caused decrease of both DARPP-32 and NeuN neuronal markers at one month post-injection suggesting that polyQ pathology may be dependent on protein context. Finally, the reversibility of the pathology was assessed. Huntingtin expression was turn 'on' for 1 month and then shut 'off' for 2 months. Recovery of DARPP-32 immunoreactivity and clearance of huntingtin aggregates were observed in animals treated with doxycycline. These results suggest that a tetracycline-regulated system may be particularly attractive to model Huntington's disease and induce early and reversible striatal neuropathology in vivo.  相似文献   

17.
Huntington disease (HD) is an adult-onset neurodegenerative disease caused by a toxic gain of function in the huntingtin (htt) protein. The contribution of wild-type htt function to the pathogenesis of HD is currently uncertain. To assess the role of wild-type htt in HD, we generated YAC128 mice that do not express wild-type htt (YAC128-/-) but express the same amount of mutant htt as normal YAC128 mice (YAC128+/+). YAC128-/- mice perform worse than YAC128+/+ mice in the rotarod test of motor coordination (P = 0.001) and are hypoactive compared with YAC128+/+ mice at 2 months (P = 0.003). Striatal neuropathology was not clearly worse in YAC128-/- mice compared with YAC128+/+ mice. There was no significant effect of decreased wild-type htt on striatal volume, neuronal counts or DARPP-32 expression but a modest worsening of striatal neuronal atrophy was evident (6%, P = 0.03). The testis of YAC128+/+ mice showed atrophy and degeneration, which was markedly worsened in the absence of wild-type htt (P = 0.001). YAC128+/+ mice also showed a male specific deficit in survival compared with WT mice which was exacerbated by the loss of wild-type htt (12-month-male survival, P < 0.001). Overall, we demonstrate that the loss of wild-type htt influences motor dysfunction, hyperkinesia, testicular degeneration and impaired lifespan in YAC128 mice. The mild effect of wild-type htt on striatal phenotypes in YAC128 mice suggests that the characteristic striatal neuropathology in HD is caused primarily by the toxicity of mutant htt and that replacement of wild-type htt will not be an adequate treatment for HD.  相似文献   

18.
19.
Extensive striatal neuronal loss occurs in Huntington's disease (HD), which is caused by an expanded polyglutamine tract in huntingtin (htt). Evidence suggests that mutant htt directly or indirectly compromises mitochondrial function, contributing to the neuronal loss. To determine the role of compromised mitochondrial function in the neuronal cell death in HD, immortalized striatal cells established from Hdh(Q7) (wild-type) and Hdh(Q111) (mutant) mouse knock-in embryos were treated with 3-nitropropionic acid (3-NP), a mitochondrial complex II toxin. 3-NP treatment caused significantly greater cell death in mutant striatal cells compared with wild-type cells. In contrast, the extent of cell death induced by rotenone, a complex I inhibitor, was similar in both cell lines. Although evidence of apoptosis was present in 3-NP-treated wild-type striatal cells, it was absent in 3-NP-treated mutant cells. 3-NP treatment caused a greater loss of mitochondrial membrane potential (deltapsim) in mutant striatal cells compared with wild-type cells. Cyclosporine A, an inhibitor of mitochondrial permeability transition pore (PTP), and ruthenium red, an inhibitor of the mitochondrial calcium uniporter, both rescued mutant striatal cells from 3-NP-induced cell death and prevented the loss of deltapsim. These data show that mutant htt specifically increases cell vulnerability to mitochondrial complex II inhibition and further switched the type of cell death induced by complex II inhibition from apoptosis to a non-apoptotic form, caused by mitochondrial membrane depolarization, probably initiated by mitochondrial calcium overload and subsequent PTP opening. These findings suggest that impaired mitochondrial complex II function in HD may contribute to non-apoptotic neuronal cell death.  相似文献   

20.
Robinson P  Lebel M  Cyr M 《Neuroscience》2008,153(3):762-772
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by abnormal CAG repeat expansion in the IT15 gene encoding huntingtin protein (htt). Mutated htt is predicted to acquire toxic properties in specific brain regions. For instance, striatal neurons expressing dopamine receptors predominantly degenerate in HD patients. Although the basis of this specific vulnerability remains unclear, a great deal of evidence has documented the ability of the dopamine system to modulate the toxicity of expanded htt. To investigate the relationship between dopamine receptors and expanded htt, we transfected enhanced green fluorescent proteins (EGFP) tagged to normal (25 CAG) or mutant (103 CAG) htt in SK-N-MC neuroblastoma cells that endogenously express D1 receptors. Forming nuclear and cytoplasmic aggregates, mutant htt-EGFP was toxic to cells beyond 24 h post-transfection. Remarkably, low doses of a selective D1 receptors agonist or forskolin, an activator of adenylate cyclase, accelerated the formation of mutant htt nuclear aggregates, whereas the number of cytoplasmic aggregates was decreased. These effects were associated with a minor increase in cell death. Understanding the functional bases of these effects may further elucidate the role of dopamine receptors signaling in the complex pathophysiology of HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号