首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Effect of exercise duration on optimal pedaling rate choice in triathletes.   总被引:3,自引:0,他引:3  
The purpose of this study was to investigate the effect of an exercise duration similar to triathlon's cyclism event (approximately 1 hr), on factors determining the freely chosen cadence. Nine trained triathletes completed a cycling track session conducted at a speed corresponding to 75% of maximal heart rate. This session was composed of five submaximal rides performed at five cadences presented in a random order (65, 80, 95, 110 rpm and freely chosen cadence) realized before and after a 1-hr exercise at the freely chosen cadence. Results show, during the first condition, that triathletes choose spontaneously a cadence (90,1 +/- 10,7 rpm) close to the neuromuscular optimum (89,6 +/- 1,1 rpm) while at the end of exercise, a decrease of the freely chosen cadence (82,8 +/- 8,7 rpm) was observed toward the energetically optimal cadence (78,6 +/- 5,8 rpm). These findings suggest the hypothesis of an adaptation of the movement pattern with the exercise duration in order to minimize the energy cost rather than the neuromuscular cost of cycling.  相似文献   

2.
Many studies have attempted to describe the optimal cadence in cycling. However, the effect on performance has received little attention. The aim of the present study was therefore to examine the effect of cadence on performance during prolonged cycling (~30 min). Fourteen male elite cyclists performed two or five time trials at different cadences [60, 80, 100, 120 rpm or freely chosen cadence (FCC)]. The total work was the same between the time trials, and the subjects were instructed to complete each time trial as fast as possible by adjusting the workload with buttons mounted on the handlebar. Accumulated work and cadence was visualised on a monitor. Oxygen uptake was measured continuously and blood lactate concentration every fifth minute. Compared to 80 rpm, finishing times at 60, 100 and 120 rpm were 3.5, 1.7 and 10.2% slower (P<0.05). Finishing time at FCC (mean 90 rpm) was indistinguishable from 80 and 100 rpm. Gross efficiency at 80 rpm was 2.9, 2.3, 3.4 and 12.3% larger than at 60, FCC, 100 and 120 rpm, respectively (P<0.05). The maximal energy turnover rate was 1.7% higher at 100 than at 80 rpm (P<0.05). This could not, however, compensate for the 3.4% lower efficiency at 100 rpm. This study demonstrated that elite cyclists perform best at their most efficient cadence despite the maximal energy turnover rate being larger at a higher cadence.  相似文献   

3.
The effect of temperature on skeletal muscle ATP turnover, pulmonary oxygen uptake and single fibre ATP and PCr content was studied during intense cycling exercise. Six healthy male subjects performed 6-min intense (Δ50%LT-VO2peak) cycling, at 60 rpm, under conditions of normal (N) and elevated muscle temperature (ET). Muscle biopsies obtained from the vastus lateralis at rest, 2 and 6 min were analysed for homogenate ATP, PCr, lactate and glycogen, allowing estimation of anaerobic ATP turnover. Freeze-dried single fibres from biopsies were characterised according to their myosin heavy chain composition (type I, IIA or IIAX) and analysed for ATP and PCr content. Pulmonary gas exchange was measured throughout. There was no difference in pulmonary oxygen uptake between the trials. The elevation of muscle temperature resulted in a lower (P < 0.05) PCr content, higher (P < 0.05) lactate content and greater (P < 0.05) anaerobic ATP turnover after 2 min of exercise. There was no effect of temperature on these measures at 6 min. In single fibres it was observed that in ET, there was a lower (P < 0.05) PCr content in type I fibres after 2 min with no differences between conditions after 6 min. The present study demonstrates that elevation of muscle temperature results in a greater anaerobic ATP turnover and type I fibre PCr degradation during the initial 2 min of intense exercise.  相似文献   

4.
The purpose of this study was to examine both the freely chosen cadence (FCC) and the physical variables associated with cadence selection in non-cyclists. Eighteen participants pedalled at 40, 50, and 60% of their maximal power output (determined by a maximal oxygen uptake test, W max), whilst cadence (50, 65, 80, 95, 110 rpm, and FCC) was manipulated. Gross efficiency, was used to analyse the most economical cadence whilst central and peripheral ratings of perceived exertion (RPE) were used to measure the most comfortable cadence and the cadence whereby muscle strain was minimised. Peak (T peak), mean crank torque (T mean) and the crank torque profile were analysed at 150 and 200 W at cadences of 50, 65, 80, 95, and 110 rpm in order to determine the mechanical load. FCC was found to be approximately 80 rpm at all workloads and was significantly higher than the most economical cadence (50 rpm). At 60% W max, RPE peripheral was minimised at 80 rpm which coincided with the FCC. Both T peak and T mean decreased as cadence increased and, conversely, increased as power output increased. An analysis of the crank torque profile showed that the crank angle at both the top (DPtop) and the bottom (DPbot) dead point of the crank cycle at 80 rpm occurred later in the cycling revolution when compared to 50 rpm. The findings suggested that the FCC in non-cyclists was more closely related to variables that minimise muscle strain and mechanical load than those associated with minimising metabolic economy.  相似文献   

5.
The purpose of this study was to examine the effect of regulation of work rate, computer controlled versus controlled by the subject, on the relationship between work rate, freely chosen pedal rate (FCC) and gross efficiency. Eighteen male cyclists participated in the study. One group, freely cycling (FC) on a competition bike mounted on an electromagnetic roller, could use gearing and cadence to achieve each work rate. The other group (EC) was cycling on an ergometer which enables a constant work rate, independent of cadence. Subjects performed an increasing work rate protocol from 100 W up to exhaustion. We found a strong interaction between group and work rate on cadence (P < 0.001). In the FC group, work rate affected cadence (P < 0.001), increasing from 72 rpm at 100 W to 106 rpm at 350 W. For the EC group, no work rate effect was present (average FCC 92 rpm). Gross efficiency increased with work rate for both groups. The efficiency–cadence relationship was strongly affected by the protocol. At a given work rate, very similar efficiency values were obtained at highly different cadences. The discrepancy in the FCC-work rate relationship between the EC group and the FC group may be related to the manner in which one can regulate work rate. FCC depends not only on work rate but is also affected considerably by the manner in which the work rate can be controlled by cadence. This finding may have important implications for the interpretation of the preferred pedaling rate, especially how this is related to optimizing metabolic cost.  相似文献   

6.
Fatigue and optimal conditions for short-term work capacity   总被引:1,自引:0,他引:1  
There is an optimal load and corresponding velocity at which peak power output occurs. It is reasonable to expect that these conditions will change as a result of fatigue during 30 s of all-out cycling. This study evaluated optimal velocity after 30 s of maximal isokinetic cycle ergometer exercise and tested the hypothesis that progressive adjustment of velocity (optimized) during 30 s of all-out cycling would permit greater short-term work capacity (STWC). Non-fatigued optimal cadence [NFOC, 109.6 (2.5) rpm] was determined for ten males on an SRM ergometer using regression analysis of the torque–angular velocity relation during a 7-s maximal acceleration. Fatigued optimal cadence [73.4 (2.4) rpm] was determined in the same way, immediately after a 30-s isokinetic test at NFOC. A subsequent trial with cadence decreasing in steps from NFOC to a conservative estimate of fatigued optimal cadence [83.9 (2.8) rpm] was completed to see if more work could be done with a more optimal cadence during the test. STWC was not different (P=0.50) between the constant [23,681 (764) J] and optimized [23,679 (708) J] conditions. Another more radical progressive change in cadence with four subjects yielded the same result (no increase in STWC). Extraneous factors apparently contribute more to variability in STWC than differences between constant and adjusted optimization of conditions.  相似文献   

7.
By comparing the characteristics of cardiac-locomotor synchronization (CLS) in running and cycling individuals, we tested whether the characteristics of CLS occurring during rhythmic exercise adhere to the central origin hypothesis, which postulates a direct interaction between cardiovascular centers in the brain and the pattern generator in the spinal cord. Ten healthy subjects performed both exercises at the same intensity (150 beats·min−1) and cadence (150 steps·min−1 during running and 75 rpm during cycling), while electrocardiograms and electromyograms from the right vastus lateralis muscle were monitored continuously. An examination of the occurrence of heart beats with respect to the locomotor phase revealed that, in running subjects, CLS exists for relatively prolonged periods at specific phases, whereas, in cycling subjects, it occurs intermittently and is not phase-specific [maximum duration of CLS: 113.6 (66.5) and 58.0 (29.3) s (P<0.05), respectively]. Determining the probability of CLS by chance as a function of its duration, we also found that, during running, CLS likely results from entrainment, whereas, during cycling, it results from chance, occurring when the cardiac rhythm approached the locomotor rhythm. Our result indicated that the duration of muscle contraction during cycling [317.0 (18.1) ms] was significantly longer than during running [205.6 (20.2) ms]. These results indicated that the difference in the CLS characteristics between running and cycling might be influenced by differences in peripheral inputs between exercise modes. Electronic Publication  相似文献   

8.
In maximal sprint cycling, the power–cadence relationship to assess the maximal power output (P max) and the corresponding optimal cadence (C opt) has been widely investigated in experimental studies. These studies have generally reported a quadratic power–cadence relationship passing through the origin. The aim of the present study was to evaluate an equivalent method to assess P max and C opt for endurance cycling. The two main hypotheses were: (1) in the range of cadences normally used by cyclists, the power–cadence relationship can be well fitted with a quadratic regression constrained to pass through the origin; (2) P max and C opt can be well estimated using this quadratic fit. We tested our hypothesis using a theoretical and an experimental approach. The power–cadence relationship simulated with the theoretical model was well fitted with a quadratic regression and the bias of the estimated P max and C opt was negligible (1.0 W and 0.6 rpm). In the experimental part, eight cyclists performed an incremental cycling test at 70, 80, 90, 100, and 110 rpm to yield power–cadence relationships at fixed blood lactate concentrations of 3, 3.5, and 4 mmol L−1. The determined power outputs were well fitted with quadratic regressions (R 2 = 0.94–0.96, residual standard deviation = 1.7%). The 95% confidence interval for assessing individual P max and C opt was ±4.4 W and ±2.9 rpm. These theoretical and experimental results suggest that P max, C opt, and the power–cadence relationship around C opt could be well estimated with the proposed method.  相似文献   

9.
Carbohydrate stores within muscle are considered essential as a fuel for prolonged endurance exercise, and regimes for enhancing such stores have proved successful in aiding performance. This study explored the effects of a hyperglycaemic–hyperinsulinemic clamp performed 18 h previously on subsequent prolonged endurance performance in cycling. Seven male subjects, accustomed to prolonged endurance cycling, performed 90 min of cycling at ~65% VO2max followed by a 16-km time trial 18 h after a 2-h hyperglycemic–hyperinsulinemic clamp (HCC). Hyperglycemia (10 mM) with insulin infused at 300 mU/m2/min over a 2-h period resulted in a total glucose uptake of 275 g (assessed by the area under the curve) of which glucose storage accounted for about 73% (i.e. 198 g). Patterns of substrate oxidation during 90-min exercise at 65% VO2max were not altered by HCC. Blood glucose and plasma insulin concentrations were higher during exercise after HCC compared with control (p < 0.05) while plasma NEFA was similar. Exercise performance was improved by 49 s and power output was 10–11% higher during the time trial (p < 0.05) after HCC. These data suggest that carbohydrate loading 18 h previously by means of a 2-h HCC improves cycling performance by 3.3% without any change in pattern of substrate oxidation.  相似文献   

10.
It was tested whether cyclists perform better during all-out cycling following prolonged cycling at the pedal rate resulting in minimum oxygen uptake (VO2), i.e. the energetically optimal pedal rate (OPR) rather than at the freely chosen pedal rate (FCPR). Nine trained cyclists cycled at 180 W to determine individual OPR and FCPR. Baseline performance was determined by measuring mean power output (W5min) and peak VO2 during 5-min all-out cycling at FCPR. Subsequently, on two separate days, the cyclists cycled 2.5 h at 180 W at OPR and FCPR, with each bout followed by a 5-min all-out trial. FCPR was higher (P < 0.05) than OPR at 180 W (95 ± 7 and 73 ± 11 rpm, respectively). During the prolonged cycling, VO2, heart rate (HR), and rate of perceived exertion (RPE) were 7–9% higher (P < 0.05) at FCPR than at OPR and increased (P < 0.05) 2–21% over time. During all-out cycling following prolonged cycling at OPR and FCPR, W5min was 8 and 10% lower (P < 0.05) than at baseline, respectively. Peak VO2 was lower (P < 0.05) than at baseline only after FCPR. The all-out trial power output was reduced following 2.5 h of cycling at 180 W at both OPR and FCPR. However, this aspect of performance was similar between the two pedal rates, despite a higher physiological load (i.e. VO2, HR, and RPE) at FCPR during prolonged cycling. Still, a reduced peak VO2 only occurred after cycling at FCPR. Therefore, during prolonged sub-maximal cycling, OPR is at least as advantageous as FCPR for performance optimization in subsequent all-out cycling.  相似文献   

11.
This study assessed the effect of altered carbohydrate (CHO) availability on self-selected work rate during prolonged time-trial cycling. Eight endurance-trained men undertook two experimental cycling time-trials after glycogen-depleting exercise and 2 days of: (a) high (9.3 ± 0 g CHO kg−1 day−1) (HC) and (b) low CHO intakes (0.6 ± 0.1 g CHO kg−1 day−1) (LC), via a double-blinded crossover design. All feedback regarding performance was removed during both exercise trials. Self-selected external power output was not different during the first 2 h of exercise between experimental conditions (P > 0.05), despite reported sensations of increased tiredness before and during exercise, significantly reduced whole body CHO oxidation (P < 0.05), plasma lactate concentrations (P < 0.05) and earlier onset of fatigue during exercise in LC versus HC. Perceived exertion was not different throughout exercise between conditions (P > 0.05). Mean power output declined significantly in LC versus HC (P < 0.05) after ∼ 2 h of exercise, and was associated with significant reductions in cadence, heart rate and plasma glucose concentration (P < 0.05). These results demonstrate that when compared with time-trial cycling performed after a HC diet, reduced CHO availability does not initially alter self-selected work rate in endurance athletes who are deceived of their CHO status prior to exercise. This finding suggests that reduced work rate during exercise following lowered CHO intake may, in part, be a consequence of the subject’s awareness of dietary CHO restriction rather than solely a physiologically mediated action. Further research is required to distinguish the influence of circulating glucose and peripheral glycogen availability on pacing strategy during prolonged exercise.  相似文献   

12.
The most economical cadence increases with increasing workload   总被引:5,自引:5,他引:0  
Several studies have suggested that the most economical cadence in cycling increases with increasing workload. However, none of these studies have been able to demonstrate this relationship with experimental data. The purpose of this study was to test the hypothesis that the most economical cadence in elite cyclists increases with increasing workload and to explore the effect of cadence on performance. Six elite road cyclists performed submaximal and maximal tests at four different cadences (60, 80, 100 and 120 rpm) on separate days. Respiratory data was measured at 0, 50, 125, 200, 275 and 350 W during the submaximal test and at the end of the maximal test. The maximal test was carried out as an incremental test, conducted to reveal differences in maximal oxygen uptake and time to exhaustion (short-term performance) between cadences. The results showed that the lowest oxygen uptake, i.e. the best work economy, shifted from 60 rpm at 0 W to 80 rpm at 350 W (P<0.05). No difference was found in maximal oxygen uptake among cadences (P>0.05), while the best performance was attained at the same cadence that elicited the best work economy (80 rpm) at 350 W (P<0.05). This study demonstrated that the most economical cadence increases with increasing workload in elite cyclists. It was further shown that work economy and performance are related during short efforts (~5 min) over a wide range of cadences.  相似文献   

13.
Previous investigators have reported velocity-dependent strength loss for single-joint actions following acute eccentric exercise. The extent to which velocity influences recovery of multi-joint function is not well documented. Our main purpose was to compare alterations in maximal cycling power produced across a range of pedaling rates following eccentric exercise. An additional purpose was to determine the extent to which changes in rating of perceived exertion (RPE) associated with submaximal cycling reflect changes in maximal cycling power. Eighteen cyclists performed baseline trials of maximal and submaximal single-leg concentric cycling immediately before and 24 and 48 h after acute submaximal single-leg eccentric (151 ± 32 W, 487 ± 107 s) and concentric (148 ± 21 W, 488 ± 79 s) cycling trials. Maximum cycling power (apex of power–pedaling rate relationship; P max) was assessed using inertial-load cycling, and powers produced at 65, 110 and 155 rpm were also analyzed. Compared to baseline, P max was reduced (11–13%) at 24–48 h in the eccentric leg (P < 0.001). Power produced at 65, 110 and 155 rpm was reduced by similar relative magnitudes (11–15%) at 24–48 h in the eccentric leg. RPE increased (15–18%) at 24–48 h in the eccentric leg (P < 0.001). Magnitudes of relative changes in RPE did not differ from those for P max. There were no alterations in the concentric leg. Our results indicated a global, rather than velocity-specific, reduction in neuromuscular function. Such a global reduction does not support the notion of fiber-type specific damage from eccentric exercise. The similar relative changes in RPE and P max suggest that increased exertion may reflect the need to recruit additional motor units to produce the same submaximal power.  相似文献   

14.
The aim of the present study was to investigate the influence of pedalling rate and power output in cycling on the neuromuscular activity of the knee extensor muscles. Ten subjects took part in 15 randomised trials, which consisted of three levels of power outputs (60%, 80% and 100% maximal aerobic power) and five cadences (70%, 85%, 100%, 115% and 130% of the freely chosen cadence, FCC). Root mean square (rms) was utilized to quantify electromyographic activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) muscles. The mean (SD) FCC did not change with power output, ranging from 85.0 (11.9) to 88.0 (11.1) rpm. A significant power effect (P<0.01) for the rms of VL, VM and RF muscles was observed. Results showed no significant cadence effect on neuromuscular activity of the VL and VM muscles, while the rms of the RF muscle was significantly greater (P<0.05) at 70% FCC when compared to other cadences. In conclusion, the neuromuscular activity of the knee extensor muscles was not significantly influenced by cadence manipulations. Thus, minimisation of the neuromuscular activity of these muscles would not seem to lead to the choice of a cadence in cycling. Electronic Publication  相似文献   

15.
AIM: The purpose of the present work was to assess the strategies set by the central nervous system in order to provide the power output required throughout a prolonged (1-h) pedalling exercise performed at different cadences (50 rpm, 110 rpm and the freely chosen cadence). METHODS: Neuromuscular (NM) activity of vastus lateralis, rectus femoris, biceps femoris and gastrocnemius lateralis muscles was studied quantitatively [root-mean square (RMS) and mean power frequency (MPF)] and qualitatively (timing of onset and offset of muscle bursts during crank cycle). RESULTS: The present results showed that increased cadence resulted in earlier muscle activation in crank cycle. The influence of cadence on RMS and MPF depended on the considered muscle and its functional role during pedalling. Timing of onset and offset of muscle bursts was not altered by fatigue throughout the prolonged exercise. In contrast, RMS and MPF of some muscles was found to increase during prolonged exercise. CONCLUSION: In summary, the present study revealed that tonic aspects of the NM activity (RMS, MPF) are altered during prolonged pedalling exercise, while phasic aspects are remained unchanged. These results suggest that the strategies set by the central nervous system in order to provide the power output required by the exercise are held constant throughout the exercise, but that quantitative aspects of the central drive are increased in order to adapt to the progressive occurrence of the NM fatigue.  相似文献   

16.
Efficiency in cycling: a review   总被引:1,自引:0,他引:1  
We focus on the effect of cadence and work rate on energy expenditure and efficiency in cycling, and present arguments to support the contention that gross efficiency can be considered to be the most relevant expression of efficiency. A linear relationship between work rate and energy expenditure appears to be a rather consistent outcome among the various studies considered in this review, irrespective of subject performance level. This relationship is an example of the Fenn effect, described more than 80 years ago for muscle contraction. About 91% of all variance in energy expenditure can be explained by work rate, with only about 10% being explained by cadence. Gross efficiency is strongly dependent on work rate, mainly because of the diminishing effect of the (zero work-rate) base-line energy expenditure with increasing work rate. The finding that elite athletes have a higher gross efficiency than lower-level performers may largely be explained by this phenomenon. However, no firm conclusions can be drawn about the energetically optimal cadence for cycling because of the multiple factors associated with cadence that affect energy expenditure.  相似文献   

17.
We examined the effect of an acute bout of resistance exercise on fractional muscle protein synthesis rates in human type I and type II muscle fibres. After a standardised breakfast (31 ± 1 kJ kg−1 body weight, consisting of 52 Energy% (En%) carbohydrate, 34 En% protein and 14 En% fat), 9 untrained men completed a lower-limb resistance exercise bout (8 sets of 10 repetitions leg press and leg extension at 70% 1RM). A primed, continuous infusion of l-[ring-13C6]phenylalanine was combined with muscle biopsies collected from both legs immediately after exercise and after 6 h of post-exercise recovery. Single muscle fibres were dissected from freeze-dried biopsies and stained for ATPase activity with pre-incubation at a pH of 4.3. Type I and II fibres were separated under a light microscope and analysed for protein-bound l-[ring-13C6]phenylalanine labelling. Baseline (post-exercise) l-[ring-13C6]phenylalanine muscle tissue labelling, expressed as (∂13C/12C), averaged −32.09 ± 0.28, −32.53 ± 0.10 and −32.02 ± 0.16 in the type I and II muscle fibres and mixed muscle, respectively (P = 0.14). During post-exercise recovery, muscle protein synthesis rates were marginally (8 ± 2%) higher in the type I than type II muscle fibres, at 0.100 ± 0.005 versus 0.094 ± 0.005%/h, respectively (P < 0.05), whereby rates of mixed muscle protein were 0.091 ± 0.005%/h. Muscle protein synthesis rates following resistance-type exercise are only marginally higher in type I compared with type II muscle fibres.  相似文献   

18.
This study was conducted to determine whether the heart rate increase at the onset of passive dynamic exercise is related to the amount of skeletal muscle mass engaged in movement. Fifteen healthy male subjects, 18–30 years old, performed, from the 4th to the 8th second of a 12-s apnea, four different 4-s bouts of passive cycling assigned in a counterbalanced order, each one different from the others by the number of limbs engaged in the movement (i.e., 1 arm, 2 arms, 2 arms + 1 leg and 2 arms + 2 legs), while respiratory movements and limb muscle electromyography were recorded. A repeated-measures ANOVA showed that the RR interval at the end of 4-s passive cycling was reduced in all the four different bouts (P < 0.05); the variations (delta values from pre-exercise to the end of 4 s of passive cycling) were directly related, in a non-linear trend, to the amount of muscle mass engaged in movement. These variations were more expressive when extremes were compared (110 ± 16 vs. 184 ± 24 ms, respectively, 1 limb vs. 4 limbs, P < 0.05), with differences observed from the first cardiac cycle after the onset of exercise. It was concluded that in healthy subjects, heart rate increase at the onset of passive cycling is directly related to the number of limbs and consequently the amount of muscle mass engaged, which is possibly related to a greater afferent input from stretch-sensitive muscle mechanoreceptors.  相似文献   

19.
This study examined the relationships between plasma and saliva adrenocortical hormones in response to long-duration submaximal exercise. In nine healthy, physically active, female volunteers, blood and saliva samples were taken at rest and every 30 min during a 120-min cycling trial at 50–55% VO2max for cortisol and dehydroepiandrosterone (DHEA) analysis. Correlation analysis revealed a moderate but significant relationship between plasma and saliva cortisol (r = 0.35, P < 0.02) and plasma and saliva DHEA (r = 0.47, P < 0.001) during the submaximal exercise. When expressed in percent of resting values, the correlations between the plasma and saliva concentrations were higher for both hormones during the exercise (cortisol: r = 0.72; DHEA: r = 0.68, P < 0.001). The results thus suggest that, even under prolonged exercise conditions, non-invasive saliva samples may offer a practical approach to assessing pituitary–adrenal function, especially when compared with individual basal values.  相似文献   

20.
 The hypothesis that high-intensity (HI) intermittent exercise impairs mitochondrial function was investigated with different microtechniques in human muscle samples. Ten male students performed three bouts of cycling at 130% of peak O2 consumption (V ·O2,peak). Muscle biopsies were taken from the vastus lateralis muscle at rest, at fatigue and after 110 min recovery. Mitochondrial function was measured both in isolated mitochondria and in muscle fibre bundles made permeable with saponin (skinned fibres). In isolated mitochondria there was no change in maximal respiration, rate of adenosine 5’-triphosphate (ATP) production (measured with bioluminescence) and respiratory control index after exercise or after recovery. The ATP production per consumed oxygen (P/O ratio) also remained unchanged at fatigue but decreased by 4% (P<0.05) after recovery. In skinned fibres, maximal adenosine 5’-diphosphate (ADP)-stimulated respiration increased by 23% from rest to exhaustion (P<0.05) and remained elevated after recovery, whereas the respiratory rates in the absence of ADP and at 0.1 mM ADP (submaximal respiration) were unchanged. The ratio between respiration at 0.1 and 1 mM ADP (ADP sensitivity index) decreased at fatigue (P<0.05) but after the recovery period was not significantly different from that at rest. It is concluded that mitochondrial oxidative potential is maintained or improved during exhaustive HI exercise. The finding that the sensitivity of mitochondrial respiration to ADP is reversibly decreased after strenuous exercise may indicate that the control of mitochondrial respiration is altered. Received: 17 June 1998 / Received after revision: 11 November 1998 / Accepted: 26 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号