首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) has been identified to implicate in the progression of osteoarthritis (OA). However, the mechanism underlying PVT1 in OA development remains largely unknown. This study aimed to investigate the effect of PVT1 on interleukin-1 beta (IL-1β)-induced injury in chondrocytes and explore potential mechanism. The cartilage tissues from 25 OA patients and normal controls were collected. Human transformed chondrocytes C28/I2 were stimulated by IL-1β. The levels of PVT1, microRNA (miR)-27b-3p, and tumor necrosis factor receptor-associated factor 3 (TRAF3) were detected by quantitative real-time polymerase chain reaction or western blot. IL-1β-induced injury was investigated by cell viability, apoptosis, autophagy and inflammatory response using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, flow cytometry, western blot and enzyme linked immunosorbent assay, respectively. The target association between miR-27b-3p and PVT1 or TRAF3 was explored by luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. We found that PVT1 expression was enhanced in OA patients and IL-1β-treated C28/I2 cells. Silence of PVT1 promoted cell viability and autophagy but suppressed apoptosis and inflammatory response in IL-1β-treated C28/I2 cells. miR-27b-3p was confirmed as a target of PVT1 and its deficiency reversed the suppressive effect of PVT1 knockdown on IL-1β-induced injury. TRAF3 was a target of miR-27b-3p and attenuated the effect of miR-27b-3p on IL-1β-induced injury in C28/I2 cells. Moreover, TRAF3 expression was positively regulated by PVT1 via sponging miR-27b-3p. Collectively, knockdown of PVT1 increased cell viability and autophagy but inhibited apoptosis and inflammatory response in chondrocytes treated by IL-1β via up-regulating miR-27b-3p and down-regulating TRAF3.  相似文献   

2.
Acute pancreatitis (AP) is an inflammatory disease with high morbidity and mortality. Dysregulation of microRNAs (miRNAs) was involved in human diseases, including AP. However, the effects of miR-92b-3p on AP process and its mechanism remain not been fully clarified. The expression levels of miR-92b-3p and tumor necrosis factor receptor-associated factor-3 (TRAF3) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of TRAF3, tumor necrosis factor α (TNF-α) TNF-α, interleukin-6 (IL-6), phosphorylated mitogen-activated protein kinase kinase 3 (p-MKK3), MKK3, p38 and phosphorylated p38 (p-p38) were detected by western blot. The concentration of TNF-α and IL-6 in the medium was measured using ELISA kits. The possible binding sites of miR-92b-3p and TRAF3 were predicted by TargetScan and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The expression level of miR-92b-3p was decreased and TRAF3 expression was increased in AR42J cells stimulated with caerulein. Moreover, the protein levels of pro-inflammatory cytokines (TNF-α and IL-6) were markedly elevated, and the expression levels of autophagy-related markers Beclin1 as well as the ratio of LC3-II/I were obviously increased in AR42J cells treated with caerulein. In addition, overexpression of miR-92b-3p or knockdown of TRAF3 significantly suppressed the release of pro-inflammatory cytokines and autophagy in caerulein-induced AR42J cells. Furthermore, TRAF3 was a direct target of miR-92b-3p and its upregulation reversed the effects of miR-92b-3p overexpression on inflammatory response and autophagy. Besides, overexpression of miR-92b-3p inhibited the activation of the MKK3-p38 pathway by affecting TRAF3 expression. In conclusion, miR-92b-3p attenuated inflammatory response and autophagy by downregulating TRAF3 and suppressing MKK3-p38 pathway in caerulein-induced AR42J cells, providing a novel avenue for treatment of AP.  相似文献   

3.
Glaucocalyxin A (GLA) is a bioactive ent-kauranoid diterpenoid derived from the herbal medicine, Rabdosia japonica var. glaucocalyx, and it has been reported to possess marked anti-inflammatory properties. However, the underlying mechanisms are not fully understood. Here, we reported that GLA dramatically inhibited canonical and non-canonical NLRP3 inflammasome activation induced by multiple agonists. In addition, GLA also blocked NLRC4 inflammasome activation but had no effect on AIM2 inflammasome. Furthermore, we found that GLA inhibited NLRP3 or NLRC4 agonists-induced ASC oligomerization, which is an upstream event of the inflammasomes assembly. Most importantly, administration of GLA significantly reduced lipopolysaccharide (LPS)-induced mortality in septic-shock mouse model. Additionally, GLA dose-dependently inhibited the production of interleukin (IL)-1β, but had no effect on NLRP3-independent TNF-α production induced by LPS in vivo. In conclusion, our study suggests that GLA alleviates LPS-induced septic shock and inflammation via inhibiting NLRP3 inflammasome activation and provides a promising candidate drug for the treatment of NLRP3-driven diseases.  相似文献   

4.
5.
Rheumatoid arthritis (RA) is a chronic, autoimmune disease characterized by inflammatory synovitis, but its pathogenesis remains unclear. NLRC5 is a newly discovered member of the NLR family that is effective in regulating autoimmunity, inflammatory responses, and cell death processes. Dexmedetomidine (DEX) has been reported to have a variety of pharmacological effects, including anti-inflammatory and analgesic effects. However, the role of DEX in RA has not been explored. In adjuvant-induced arthritis (AA) rat models, DEX (10 μg/kg and 20 μg/kg) reduced the pathological score, the arthritis score, paw swelling volume, and the serum levels of IL-1β, IL-6, IL-17A, and TNF-α. Moreover, by using Western blot and real-time quantitative PCR (RT-qPCR), it was demonstrated that DEX can inhibit the expression of IL-1β, IL-6, MMP-3, MMP-9 and P-P65 in the synovial tissue of AA rats. In human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), DEX (250 nM and 500 nM) was found to inhibit the expression of IL-1β, IL-6, MMP-3, MMP-9, and P-P65 following stimulation with TNF-α. Moreover, DEX can inhibit the invasion and migration of RA-FLSs stimulated by TNF-α. Finally, the expression of NLRC5 in RA-FLSs and AA rat models was also reduced by DEX. After silencing NLRC5 in RA-FLSs, the expression of IL-1β, IL-6, MMP-3, MMP-9, and P-P65, as well as the invasion and migration of cells, were significantly reduced. These results indicate that DEX inhibits the invasion, migration, and inflammation of RA-FLSs by reducing the expression of NLRC5 and inhibiting the NF-κB activation.  相似文献   

6.
ObjectiveIschemic stroke is one of the leading causes of death globally, and inflammation is considered as a vital contributor to the pathophysiology of ischemic stroke. Recently, microRNA-421-3p-derived macrophages is found to promote motor function recovery in spinal cord injury. Here, we explored whether microRNA-421-3p is involved in inflammation responses during cerebral ischemia/reperfusion (I/R) injury and its molecular mechanism.MethodsAn in vivo experimental animal model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro model of microglial subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) were used. The effects of microRNA-421-3p on cerebral I/R injury and its underlying mechanism were detected by quantitative real-time PCR, western blotting, immunofluorescence staining, RNA immunoprecipitation, flow cytometry, luciferase reporter assay, and bioinformatics analysis.ResultsWe find that microRNA-421-3p is significantly decreased in cerebral I/R injury in vitro and in vivo. Furthermore, overexpression of microRNA-421-3p evidently suppresses pro-inflammatory factor expressions and inhibits NF-κB p65 protein expression and nuclear translocation in BV2 microglia cells treated with OGD/R. However, microRNA-421-3p neither promotes p65 mRNA expression, nor affects p65 mRNA or protein stability. Moreover, we find the m6A ‘reader’ protein YTH domain family protein 1 (YTHDF1) is the specific target of microRNA-421-3p, and YTHDF1 specifically binds to the m6a site of p65 mRNA to promote its translation.ConclusionmicroRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting YTHDF1 to inhibit p65 mRNA translation. These findings provide novel insights into understanding the molecular pathogenesis of cerebral I/R injury.  相似文献   

7.
Osteoarthritis (OA) is a disease characterized by degeneration of the joint complex due to cartilage destruction. Fraxetin, a widely used and studied coumarin compound extracted from a traditional Chinese herb (Qin Pi), has shown anti-inflammatory and antioxidant properties, but its effects on OA have not been studied. In the present study, western blotting, immunofluorescence, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) were used to evaluate the effects of fraxetin on IL-1β-induced apoptotic activity, inflammatory responses, and catabolism in rat chondrocytes. The results showed that fraxetin prevented IL-1β-induced apoptosis of chondrocytes and inhibited inflammatory mediator release by regulating the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB pathway in chondrocytes. Additionally, fraxetin suppressed the upregulation of matrix metalloproteinase 13 (MMP13) and degradation of collagen II in the extracellular matrix (ECM). Moreover, the effects of fraxetin in vivo were assessed in a monosodium iodoacetate (MIA)-induced rat model of OA using hematoxylin and eosin (H&E) and Safranin O-fast green staining and magnetic resonance imaging (MRI). The results showed that fraxetin protected the cartilage against destruction. In conclusion, fraxetin could be a potential therapeutic for OA.  相似文献   

8.
Asthma is a chronic inflammatory disease that represents high hospitalizations and deaths in world. Copaiba oil (CO) is popularly used for relieving asthma symptoms and has already been shown to be effective in many inflammation models. This study aimed to investigate the immunomodulatory relationship of CO in ovalbumin (OVA)-induced allergic asthma. The composition of CO sample analyzed by GC and GC–MS and the toxicity test was performed in mice at doses of 50 or 100 mg/kg (by gavage). After, the experimental model of allergic asthma was induced with OVA and mice were orally treated with CO in two pre-established doses. The inflammatory infiltrate was evaluated in bronchoalveolar lavage fluid (BALF), while cytokines (IL-4, IL-5, IL-17, IFN-γ, TNF-α), IgE antibody and nitric oxide (NO) production was evaluated in BALF and lung homogenate (LH) of mice, together with the histology and histomorphometry of the lung tissue. CO significantly attenuated the number of inflammatory cells in BALF, suppressing NO production and reducing the response mediated by TH2 and TH17 (T helper) cells in both BALF and LH. Histopathological and histomorphometric analysis confirmed that CO significantly reduced the numbers of inflammatory infiltrate in the lung tissue, including in the parenchyma area. Our results indicate that CO has an effective in vivo antiasthmatic effect.  相似文献   

9.
Viral myocarditis (VMC) is characterized by cardiac inflammation and excessive inflammatory responses after viral infection. SENP2, a deSUMO-specific protease, has been reported to regulate antiviral innate immunity. This study aimed to investigate whether SENP2 affects CVB3-induced VMC. We generated a CVB3-induced VMC mouse model in 6-week-old cardiomyocyte-specific Senp2 knockout mice. The mice were sacrificed at days 0, 2, 4 and 6 after CVB3 infection. The survival rate, body weight, myocardial histopathological changes, viral load, cytokine levels and antiviral gene expression in cardiac tissues of both groups were investigated. Our study indicated that the expression of Senp2 in primary cardiomyocytes was upregulated by CVB3 infection. Moreover, deletion of Senp2 in the heart exacerbated CVB3 infection-induced myocarditis, facilitated CVB3 viral replication and downregulated the expression of antiviral proteins. In conclusion, our findings suggest a protective role for SENP2 in CVB3-induced VMC.  相似文献   

10.
The neuroinflammatory response induced by microglia plays a vital role in causing secondary brain damage after traumatic brain injury (TBI). Previous studies have found that the improved regulation of activated microglia could reduce neurological damage post-TBI. Phillyrin (Phi) is one of the main active ingredients extracted from the fruits of the medicinal plant Forsythia suspensa (Thunb.) with anti-inflammatory effects. Our study attempted to investigate the effects of phillyrin on microglial activation and neuron damage after TBI. The TBI model was applied to induce brain injury in mice, and neurological scores, brain water content, hematoxylin and eosin staining and Nissl staining were employed to determine the neuroprotective effects of phillyrin. Immunofluorescent staining and western blot analysis were used to detect nuclear factor-kappa B (NF-κB) and peroxisome proliferator–activated receptor gamma (PPARγ) expression and nuclear translocation, and the inflammation-related proteins and mRNAs were assessed by western blot analysis and quantitative real-time PCR. The results revealed that phillyrin not only inhibited the proinflammatory response induced by activated microglia but also attenuated neurological impairment and brain edema in vivo in a mouse TBI model. Additionally, phillyrin suppressed the phosphorylation of NF-κB in microglia after TBI insult. These effects of phillyrin were mostly abolished by the antagonist of PPARγ. Our results reveal that phillyrin could prominently inhibit the inflammation of microglia via the PPARγ signaling pathway, thus leading to potential neuroprotective treatment after traumatic brain injury.  相似文献   

11.
The present study investigated the effect of the continentalic acid (CNT) isolated from the Aralia Continentalis against the LPS and E. coli-induced nephrotoxicity. The LPS and E. coli administration markedly altered the behavioral parameters including spontaneous pain, tail suspension and survival rate. However, the treatment with CNT dose dependently improved the behavioral parameters. The CNT treatment significantly improved the renal functions test (RFTs) and hematological parameters following LPS and E. coli-induced kidney injury. Furthermore, the LPS and E. coli administration markedly compromised the anti-oxidant enzymes and enhanced the oxidative stress markers. However, the CNT treatment markedly enhanced the anti-oxidants enzymes such as GSH, GST, Catalase and SOD, while attenuated the oxidative stress markers such as MDA and POD. The MPO enzyme is widely used marker for the neutrophilic infiltration, the LPS and E. coli administration markedly increased the MPO activity. However, the CNT treatment markedly attenuated the MPO activity in both LPS and E. coli-induced kidney injury. Furthermore, the CNT treatment markedly attenuated the NO production compared to the LPS and E. coli-induced kidney injury group. Additionally, the CNT treatment improved the histological parameters markedly (H and E, PAS and Masson’s trichome staining) and protect the kidney from the inflammatory insult of the LPS and E. coli evidently. The comet assay revealed marked DNA damage, however, the CNT treatment markedly prevented the LPS and E. coli-induced kidney damage. The CNT treatment markedly enhanced the expression of Nrf2, while attenuated the iNOS expression in both models of kidney injury.  相似文献   

12.
MicroRNAs (miRNAs) have emerged as critical modulators involved in the regulation of airway remodeling in asthma. MicroRNA-182-5p (miR-182-5p) has been reported as a key miRNA in regulating the proliferation and migration of various cell types, and its dysfunction contributes is implicated in a wide range of pathological processes. Yet, it remains unknown whether miR-182-5p modulates the proliferation and migration of airway smooth muscle (ASM) cells during asthma. In the present study, we aimed to determine the potential role of miR-182-5p in regulating the proliferation and migration of ASM cells induced by tumor necrosis factor (TNF)-α in vitro. We found that TNF-α stimulation markedly reduced miR-182-5p expression in ASM cells. Gain-of-function experiments showed that miR-182-5p upregulation suppressed the proliferation and migration of ASM cells induced by TNF-α. By contrast, miR-182-5p inhibition had the opposite effect. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-182-5p. TRIM8 expression was induced by TNF-α stimulation, and TRIM8 knockdown markedly impeded TNF-α-induced ASM cell proliferation and migration. Moreover, miR-182-5p overexpression or TRIM8 knockdown significantly downregulated the activation of nuclear factor-κB (NF-κB) induced by TNF-α. However, TRIM8 restoration partially reversed the miR-182-5p-mediated inhibitory effect on TNF-α-induced ASM cell proliferation and migration. In conclusion, our study indicates that miR-182-5p restricts TNF-α-induced ASM cell proliferation and migration through downregulation of NF-κB activation via targeting TRIM8. The results of our study highlight the potential importance of the miR-182-5p/TRIM8/NF-κB axis in the airway remodeling of asthma.  相似文献   

13.
Mastitis is one of the most common diseases among dairy cows. There is still much debate worldwide as to whether antibiotic therapy should be given to dairy cows, or if natural products should be taken as a substitute for antibacterial therapy. As the antibiotic treatment leads to the bacterial resistance and drug residue in milk, introducing natural products for mastitis is becoming a trend. This study investigates the mechanisms of the protective effects of the natural product gambogic acid (GA) in lipopolysaccharide (LPS)-induced mastitis. For in vitro treatments, it was found that GA reduced IL-6, TNF-α, and IL-1β levels by inhibiting the phosphorylation of proteins in the nuclear factor κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathway. GA also maintained a stable membrane mitochondrial potential and inhibited the overproduction of reactive oxygen species, which protected the cells from apoptosis. On the other hand, in vivo treatments with GA were found to reduce pathological symptoms markedly, and protected the blood-milk barrier from damage induced by LPS. The results demonstrate that GA plays a vital role in suppressing inflammation, alleviating the apoptosis effect, and protecting the blood-milk barrier in mastitis induced by LPS. Thus, these results suggest that the natural product GA plays a potential role in mastitis treatment.  相似文献   

14.
IntroductionLiver injury induced by burn plus delayed resuscitation (B + DR) is life threatening in clinical settings. Mitochondrial damage and oxidative stress may account for the liver injury. MitoQ is a mitochondria-targeted antioxidant. We aimed to evaluate whether MitoQ protects against B + DR-induced liver injury.MethodsRats were randomly divided into three groups: (1) the sham group; (2) the B + DR group, which was characterized by third-degree burn of 30% of the total body surface area plus delayed resuscitation, and (3) the treatment group, in which rats from the B + DR model received the target treatment. MitoQ was injected intraperitoneally (i.p) at 15 min before resuscitation and shortly after resuscitation. In the vitro experiments, Kupffer cells (KCs) were subjected to hypoxia/reoxygenation (H/R) injury to simulate the B + DR model. Mitochondrial characteristics, oxidative stress, liver function, KCs apoptosis and activation of the NLRP3 inflammasome in KCs were measured.ResultsB + DR caused liver injury and oxidative stress. Excessive ROS lead to liver injury by damaging mitochondrial integrity and activating the mitochondrial DNA (mtDNA)-NLRP3 axis in KCs. The oxidized mtDNA, which was released into the cytosol during KCs apoptosis, directly bound and activated the NLRP3 inflammasome. MitoQ protected against liver injury by scavenging intracellular and mitochondrial ROS, preserving mitochondrial integrity and function, reducing KCs apoptosis, inhibiting the release of mtDNA, and suppressing the mtDNA-NLRP3 axis in KCs.ConclusionMitoQ protected against B + DR-induced liver injury by suppressing the mtDNA-NLRP3 axis.  相似文献   

15.
The incidence of colorectal cancer (CRC) is increasing annually worldwide. However, traditional chemotherapy has obvious side effects. Low-dose naltrexone (LDN) has been reported to delay tumor progression, but the mechanism remains unclear. Therefore, the aim of this study was to explore the mechanisms underlying the inhibitory effect of LDN on CRC progression in vivo and in vitro. We found that expression of macrophage markers (F4/80, CD68) was increased in nude mice treated with LDN compared with the control group (p < 0.05). Additionally, levels of M1 macrophage phenotypic markers (CD80) and cytokines (tumor necrosis factor-α, TNF-α) were higher than in the control group (p < 0.05). LDN was able to upregulate expression of the opioid growth factor receptor (OGFr) and apoptosis-related factors Bax, caspase-9, caspase-3, and PARP and downregulate expression of Bcl-2, Survivin, and Ki67 to promote tumor cell apoptosis. Therefore, we speculate that LDN reduces tumor size by increasing levels of M1-like macrophages and activating the Bax/Bcl-2/caspase-3/PARP signaling pathway to induce apoptosis. We suggest that LDN has potential for the treatment of CRC.  相似文献   

16.
17.
18.
Microglial inflammation induced by ischemic stroke aggravates brain damage. MicroRNAs (miRNAs) have emerged as pivotal regulators in ischemic stroke-induced inflammation in microglial cells. miR-665-3p has been reported as a critical inflammation-associated miRNA. However, whether miR-665-3p participates in regulating microglial inflammation during ischemic stroke is underdetermined. This study investigated the potential role of miR-665-3p in stroke-induced inflammation in microglial cells using a cellular model of oxygen-glucose deprivation (OGD)-stimulated microglial cells in vitro. We found that miR-665-3p expression was decreased in microglial cells exposed to OGD treatment. Functional experiments demonstrated that the overexpression of miR-665-3p attenuated OGD-induced apoptosis and inflammation in microglial cells. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-665-3p. TRIM8 expression was induced by OGD treatment in microglial cells and the knockdown of TRIM8 protected microglial cells from OGD -induced cytotoxicity and inflammation. Moreover, TRIM8 knockdown or miR-665-3p overexpression blocked OGD-induced activation of nuclear factor (NF)-κB signaling in microglial cells. In addition, TRIM8 overexpression partially reversed the miR-665-3p overexpression-mediated inhibitory effect on OGD-induced inflammation in microglial cells. Taken together, these results indicate that miR-665-3p up-regulation protects microglial cells from OGD-induced apoptosis and inflammatory response by targeting TRIM8 to inhibit NF-κB signaling.  相似文献   

19.
20.
In the present study, we have investigated and/or compared the role of glibenclamide, G as cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor, and lubiprostone, L as chloride channel-2 (ClC-2) activator in the 2,4-dinitrobenzene sulfonic acid (DNBS)-induced gastrointestinal inflammation. GI inflammation was induced by intrarectal administration of DNBS. Rats were randomly allocated in 5 groups as sham control, distilled water + DNBS, sulfasalazine (S) + DNBS, G + DNBS, and L + DNBS. All the groups were pre-treated successively for five days before the induction of colitis. One day before and the first four days after DNBS administration various parameters were studied. Later, blood chemistry, colon’s gross structure, histology, and the antioxidant load was examined. Pre-treatment with G significantly protected the change induced by DNBS concerning the change in body weight, food intake, diarrhea, occult blood in the feces, wet weight of the colon, and spleen. G because of its anti-inflammatory property down-regulated the neutrophil and WBC count and up-regulated the lymphocyte number. Moreover, G efficiently ameliorates the oxidative stress in the colon and declines the level of myeloperoxidase and malondialdehyde and up-regulated the level of superoxide dismutase and glutathione. Lubiprostone has not shown any promising effects, in fact, it causes an increase in diarrheal frequency. Our findings from this study represent that G has good potential to ameliorate GI inflammation induced by DNBS by its multiple actions including CFTR blockage and reducing the release of inflammatory markers from the MCs, anti-inflammatory and free radical scavenging property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号