首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background and Purpose

Recent reports have suggested that salidroside could protect cardiomyocytes from oxidative injury and stimulate glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase (AMPK). The aim of this study was to evaluate the therapeutic effects of salidroside on diabetic mice and to explore the underlying mechanisms.

Experimental Approach

The therapeutic effects of salidroside on type 2 diabetes were investigated. Increasing doses of salidroside (25, 50 and 100 mg·kg−1·day−1) were administered p.o. to db/db mice for 8 weeks. Biochemical analysis and histopathological examinations were conducted to evaluate the therapeutic effects of salidroside. Primary cultured mouse hepatocytes were used to further explore the underlying mechanisms in vitro.

Key Results

Salidroside dramatically reduced blood glucose and serum insulin levels and alleviated insulin resistance. Hypolipidaemic effects and amelioration of liver steatosis were observed after salidroside administration. In vitro, salidroside dose-dependently induced an increase in the phosphorylations of AMPK and PI3K/Akt, as well as glycogen synthase kinase 3β (GSK3β) in hepatocytes. Furthermore, salidroside-stimulated AMPK activation was found to suppress the expression of PEPCK and glucose-6-phosphatase. Salidroside-induced AMPK activation also resulted in phosphorylation of acetyl CoA carboxylase, which can reduce lipid accumulation in peripheral tissues. In isolated mitochondria, salidroside inhibited respiratory chain complex I and disturbed oxidation/phosphorylation coupling and moderately depolarized the mitochondrial membrane potential, resulting in a transient increase in the AMP/ATP ratio.

Conclusions and Implications

Salidroside exerts an antidiabetic effect by improving the cellular metabolic flux through the activation of a mitochondria-related AMPK/PI3K/Akt/GSK3β pathway  相似文献   

2.

Aim:

To investigate the potential effects of chronic ethanol intake on protein-tyrosine phosphatase-1B (PTP1B) and the insulin receptor signaling pathway in rat skeletal muscle.

Methods:

Rats received ethanol treatment at a daily dose of 0 (control), 0.5 (group L), 2.5 (group M) or 5 g·kg−1 (group H) via gastric gavage for 22 weeks. In vivo insulin sensitivity was measured using a hyperinsulinemic-euglycemic clamp. Expression of PTP1B in skeletal muscles was examined at both the mRNA (real-time PCR) and protein (Western blot) levels. PTP1B activity was assayed with a p-nitrophenol phosphate (PNPP) hydrolysis method. Changes of insulin signaling in skeletal muscle were analyzed with Western blotting.

Results:

The activity and expression of PTP1B were dose-dependently elevated 1.6 and 2.0 fold in the skeletal muscle by ethanol, resepctively, at the doses of 2.5 and 5 g·kg−1·d−1. Total IRβ and IRS-1, as well as their phosphorylated forms, were decreased by ethanol at the two higher doses. Moreover, chronic ethanol consumption resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase, inhibition of Akt phosphorylation and reduced levels of mitogen-activated protein kinase phosphorylation.

Conclusion:

Chronic ethanol intake at 2.5 and 5 g·kg−1·d−1 sufficient doses can down-regulate the expression of IRβ, P-IRβ, and IRS-1, as well as the phosphorylated forms of IRS-1 and Akt, in rat skeletal muscle, possibly through increased PTP1B activity.  相似文献   

3.

Background and Purpose

Methylene blue (MB) has recently been considered for new therapeutic applications. In this study, we investigated whether MB has antioxidant and mitochondria-protecting effects and can prevent the development of toxicant-induced hepatitis. In addition, we explored the underlying basis of its effects.

Experimental Approach

Blood biochemistry and histopathology were assessed in mice injected with CCl4 (0.5 mL·kg−1) following MB administration (3 mg·kg−1·day−1, 3 days). Immunoblottings were performed to measure protein levels. Cell survival, H2O2, and mitochondrial superoxide and membrane permeability transition were determined in HepG2 cells.

Key Results

MB protected cells from oxidative stress induced by arachidonic acid plus iron; it restored GSH content and decreased the production of H2O2. It consistently attenuated mitochondria dysfunction, as indicated by inhibition of superoxide production and mitochondrial permeability transition. MB inhibited glycogen synthase kinase-3β (GSK3β) and protected the liver against CCl4. Using siRNA, the inhibition of GSK3β was shown to depend on AMPK. MB increased the activation of AMPK in vitro (3–24 h) and in vivo. MB also increased the phosphorylation of liver kinase B1 (LKB1) via cAMP-dependent PKA. SiRNA knockdown of LKB1 eliminated phosphorylation of AMPK and inhibited MB activation of AMPK. In addition, MB treatment (≤1 h) facilitated PKA-mediated GSK3β serine phosphorylation independently of AMPK.

Conclusions and Implications

MB has antioxidant and mitochondria-protecting effects and protects the liver from toxicants, which results from the dual inhibition of GSK3β by AMPK downstream of PKA-activated LKB1, and PKA itself. Our findings reveal a novel pharmacological effect of MB and its molecular basis.  相似文献   

4.

Aim:

Defects in fatty acid metabolism contribute to the pathogenesis of insulin resistance and obesity. In this study, we investigated the effects of a novel compound yhhu981 on fatty acid metabolism in vitro and in vivo.

Methods:

The capacity to stimulate fatty acid oxidation was assessed in C2C12 myotubes. The fatty acid synthesis was studied in HepG2 cells using isotope tracing. The phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) was examined with Western blot analysis. For in vivo experiments, ob/ob mice were orally treated with yhhu981 acutely (300 mg/kg) or chronically (150 or 300 mg·kg−1·d−1 for 22 d). On the last day of treatment, serum and tissue samples were collected for analysis.

Results:

Yhhu981 (12.5–25 μmol/L) significantly increased fatty acid oxidation and the expression of related genes (Sirt1, Pgc1α and Mcad) in C2C12 myotubes, and inhibited fatty acid synthesis in HepG2 cells. Furthermore, yhhu981 dose-dependently increased the phosphorylation of AMPK and ACC in both C2C12 myotubes and HepG2 cells. Compound C, an AMPK inhibitor, blocked fatty acid oxidation in yhhu981-treated C2C12 myotubes and fatty acid synthesis decrease in yhhu981-treated HepG2 cells. Acute administration of yhhu981 decreased the respiratory exchange ratio in ob/ob mice, whereas chronic treatment with yhhu981 ameliorated the lipid abnormalities and ectopic lipid deposition in skeletal muscle and liver of ob/ob mice.

Conclusion:

Yhhu981 is a potent compound that stimulates fatty acid oxidation, and exerts pleiotropic effects on lipid metabolism by activating AMPK.  相似文献   

5.

Aim:

To establish the mechanism responsible for the stimulation of glucose uptake by Astragalus polysaccharide (APS), extracted from Astragalus membranaceus Bunge, in L6 myotubes in vitro.

Methods:

APS-stimulated glucose uptake in L6 myotubes was measured using the 2-deoxy-[3H]-D-glucose method. The adenine nucleotide contents in the cells were measured by HPLC. The phosphorylation of AMP-activated protein kinase (AMPK) and Akt substrate of 160 kDa (AS160) was examined using Western blot analysis. The cells transfected with 4P mutant AS160 (AS160-4P) were constructed using gene transfer approach.

Results:

Treatment of L6 myotubes with APS (100−1600 μg/mL) significantly increased glucose uptake in time- and concentration-dependent manners. The maximal glucose uptake was reached in the cells treated with APS (400 μg/mL) for 36 h. The APS-stimulated glucose uptake was significantly attenuated by pretreatment with Compound C, a selective AMPK inhibitor or in the cells overexpressing AS160-4P. Treatment of L6 myotubes with APS strongly promoted the activation of AMPK. We further demonstrated that either Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) or liver kinase B1 (LKB1) mediated APS-induced activation of AMPK in L6 myotubes, and the increased cellular AMP: ATP ratio was also involved. Treatment of L6 myotubes with APS robustly enhanced the phosphorylation of AS160, which was significantly attenuated by pretreatment with Compound C.

Conclusion:

Our results demonstrate that APS stimulates glucose uptake in L6 myotubes through the AMP-AMPK-AS160 pathway, which may contribute to its hypoglycemic effect.  相似文献   

6.

Aim:

Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan found in traditional Chinese herbs, has been determined to exhibit a variety of pharmacological activities, including anti-tumor, anti-inflammation, neuroprotection, and endurance enhancement. In the present study, we investigated the antioxidation and anti-fatigue effects of arctigenin in rats.

Methods:

Rat L6 skeletal muscle cell line was exposed to H2O2 (700 μmol/L), and ROS level was assayed using DCFH-DA as a probe. Male SD rats were injected with arctigenin (15 mg·kg−1·d−1, ip) for 6 weeks, and then the weight-loaded forced swimming test (WFST) was performed to evaluate their endurance. The levels of antioxidant-related genes in L6 cells and the skeletal muscles of rats were analyzed using real-time RT-PCR and Western blotting.

Results:

Incubation of L6 cells with arctigenin (1, 5, 20 μmol/L) dose-dependently decreased the H2O2-induced ROS production. WFST results demonstrated that chronic administration of arctigenin significantly enhanced the endurance of rats. Furthermore, molecular biology studies on L6 cells and skeletal muscles of the rats showed that arctigenin effectively increased the expression of the antioxidant-related genes, including superoxide dismutase (SOD), glutathione reductase (Gsr), glutathione peroxidase (GPX1), thioredoxin (Txn) and uncoupling protein 2 (UCP2), through regulation of two potential antioxidant pathways: AMPK/PGC-1α/PPARα in mitochondria and AMPK/p53/Nrf2 in the cell nucleus.

Conclusion:

Arctigenin efficiently enhances rat swimming endurance by elevation of the antioxidant capacity of the skeletal muscles, which has thereby highlighted the potential of this natural product as an antioxidant in the treatment of fatigue and related diseases.  相似文献   

7.

Aim:

To establish the mechanism underlying the improvement of glucose toxicity by Astragalus polysaccharide (APS), which occurred via an AMP activated protein kinase (AMPK)-dependent pathway.

Methods:

In vivo and in vitro effects of APS on glucose homeostasis were examined in a type 2 diabetes mellitus (T2DM) rat model. The T2DM rat model was duplicated by a high-fat diet (58% fat, 25.6% carbohydrate, and 16.4% protein) and a small dose of streptozotocin (STZ, 25 mg/kg, ip). After APS therapy (700 mg·kg−1·d−1, ig) for 8 weeks, blood glucose, glycosylated hemoglobin, and serum insulin were measured. Insulin sensitivity was evaluated by the comprehensive analysis of oral glucose tolerance tests (OGTT) and HOMA IR index. Hepatic glycogen was observed by the PAS staining method. The expression and activity of skeletal muscle AMPKα and acetyl-CoA carboxylase (ACC), and the phosphorylation of hepatic glycogen synthase (GS), the glycogen synthase (GS),were measured by Western blotting. Glucose uptake was measured with the 2-deoxy-[3H]-D-glucose method in C2C12 cells.

Results:

The hyperglycemia status, insulin sensitivity, glucose uptake, and activation level of AMPK in diabetic rats were improved in response to APS administration. APS could also alleviate glucose toxicity in cultured mouse cells by the activation of AMPK.

Conclusion:

APS can alleviate glucose toxicity by increasing liver glycogen synthesis and skeletal muscle glucose translocation in the T2DM rat model, via activation of AMPK.  相似文献   

8.

Background and Purpose

Perivascular adipose tissue (PVAT) releases adipocyte-derived hyperpolarizing factors (ADHFs) that may partly act by opening myocyte K+ channels. The present study in rat and mouse mesenteric arteries aimed to identify the myocyte K+ channel activated by PVAT and to determine whether adiponectin contributed to the hyperpolarizing effects of PVAT.

Experimental Approach

Myocyte membrane potential was recorded from de-endothelialized, non-contracted rat and mouse mesenteric arteries in the presence and absence of PVAT.

Key Results

The β3-adrenoceptor agonist, CL-316,243 (10 μM), generated PVAT-dependent, iberiotoxin-sensitive myocyte hyperpolarizations resulting from BKCa channel opening and which were partially blocked by L-NMMA (100 μM). Adiponectin (5 μg·mL−1) also produced iberiotoxin-sensitive hyperpolarizations in PVAT-denuded arterioles. Activation of myocyte AMP-activated protein kinase (AMPK) using 5 μM A-769662 also induced BKCa-mediated hyperpolarizations. Dorsomorphin abolished hyperpolarizations to CL-316,243, adiponectin and A-769662. In vessels from Adipo−/− mice, hyperpolarizations to CL-316,243 were absent whereas those to A-769662 and adiponectin were normal. In rat vessels, adipocyte-dependent hyperpolarizations were blocked by glibenclamide and clotrimazole but those to NS1619 (33 μM) were unaltered.

Conclusions and Implications

Under basal, non-contracted conditions, β3-adrenoceptor stimulation of PVAT releases an ADHF, which is probably adiponectin. This activates AMPK to open myocyte BKCa channels indirectly and additionally liberates NO, which also contributes to the observed PVAT-dependent myocyte hyperpolarizations. Clotrimazole and glibenclamide each reversed hyperpolarizations to adiponectin and A-769662, suggesting the involvement of myocyte TRPM4 channels in the ADHF-induced myocyte electrical changes mediated via the opening of BKCa channels.  相似文献   

9.

BACKGROUND AND PURPOSE

PPARβ enhances insulin sensitivity in adipocytes and skeletal muscle cells, but its effects on insulin signalling in endothelial cells are not known. We analysed the effects of the PPARβ/δ (PPARβ) agonists, GW0742 and L165041, on impaired insulin signalling induced by high glucose in HUVECs and aortic and mesenteric arteries from diabetic rats.

EXPERIMENTAL APPROACH

Insulin-stimulated NO production, Akt-Ser473 and eNOS-Ser1177 phosphorylation, and reactive oxygen species (ROS) production were studied in HUVECs incubated in low- or high-glucose medium. Insulin-stimulated relaxations and protein phosphorylation in vessels from streptozotocin (STZ)-induced diabetic rats were also analysed.

KEY RESULTS

HUVECs incubated in high-glucose medium showed a significant reduction in insulin-stimulated production of NO. High glucose also reduced insulin-induced Akt-Ser473 and eNOS-Ser1177 phosphorylation, increased IRS-1-Ser636 and ERK1/2-Thr183-Tyr185 phosphorylation and increased ROS production. The co-incubation with the PPARβ agonists GW0742 or L165041 prevented all these effects induced by high glucose. In turn, the effects induced by the agonists were suppressed when HUVEC were also incubated with the PPARβ antagonist GSK0660, the pyruvate dehydrogenase kinase (PDK)4 inhibitor dichloroacetate or after knockdown of both PPARβ and PDK4 with siRNA. The ERK1/2 inhibitor PD98059, ROS scavenger catalase, inhibitor of complex II thenoyltrifluoroacetone or uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone, also prevented glucose-induced insulin resistance. In STZ diabetic rats, oral GW0742 also improved insulin signalling and the impaired NO-mediated vascular relaxation.

CONCLUSION AND IMPLICATIONS

PPARβ activation in vitro and in vivo restores the endothelial function, preserving the insulin-Akt-eNOS pathway impaired by high glucose, at least in part, through PDK4 activation.  相似文献   

10.

Background and purpose:

Alagebrium is a breaker of cross-links in advanced glycation endproducts. However, the acute effects of alagebrium on methylglyoxal (MG), a major precursor of advanced glycation endproducts have not been reported. MG is a highly reactive endogenous metabolite, and its levels are elevated in diabetic patients. We investigated whether alagebrium attenuated the acute effects of exogenous MG on plasma MG levels, glucose tolerance and distribution of administered MG in different organs in Sprague-Dawley rats.

Experimental approach:

We measured MG levels (by HPLC), glucose tolerance, adipose tissue glucose uptake, GLUT4, insulin receptor and insulin receptor substrate 1 (IRS-1) protein expression, and phosporylated IRS-1 in rats treated with MG at doses of either 17.25 mg·kg−1 i.p. (MG-17 i.p.) or 50 mg·kg−1 i.v. (MG-50 i.v.) with or without alagebrium, 100 mg·kg−1 i.p.

Key results:

Alagebrium attenuated the increased MG levels in the plasma, aorta, heart, kidney, liver, lung and urine after MG administration. In MG-treated rats, glucose tolerance was impaired, plasma insulin levels were higher and insulin-stimulated glucose uptake by adipose tissue was reduced, relative to the corresponding control groups. In rats treated with MG-50 i.v., GLUT4 protein expression and IRS-1 tyrosine phosphorylation were decreased. Alagebrium pretreatment attenuated these effects of MG. In an in vitro assay, alagebrium reduced the amount of detectable MG.

Conclusions and implications:

Alagebrium acutely attenuated MG-induced glucose intolerance, suggesting a possible preventive role for alagebrium against the harmful effects of MG.  相似文献   

11.

Aim:

To investigate the effects of arbidol hydrochloride (ARB), a widely used antiviral agent, on the inflammation induced by influenza virus.

Methods:

MDCK cells were infected with seasonal influenza A/FM/1/47 (H1N1) or pandemic influenza A/Hubei/71/2009 (H1N1). In vitro cytotoxicity and antiviral activity of ARB was determined using MTT assay. BALB/c mice were infected with A/FM/1/47 (H1N1). Four hours later the mice were administered ARB (45, 90, and 180 mg·kg−1·d−1) or the neuraminidase inhibitor oseltamivir (22.5 mg·kg−1·d−1) via oral gavage once a day for 5 d. Body-weight, median survival time, viral titer, and lung index of the mice were measured. The levels of inflammatory cytokines were examined using real-time RT-PCR and ELISA.

Results:

Both H1N1 stains were equally sensitive to ARB as tested in vitro. In the infected mice, ARB (90 and 180 mg·kg−1·d−1) significantly decreased the mortality, alleviated virus-induced lung lesions and viral titers. Furthermore, ARB suppressed the levels of IL-1β, IL-6, IL-12, and TNF-α, and elevated the level of IL-10 in the bronchoalveolar lavage fluids and lung tissues. However, ARB did not significantly affect the levels of IFN-α and IFN-γ, but reduced the level of IFN-β1 in lung tissues at 5 dpi. In peritoneal macrophages challenged with A/FM/1/47 (H1N1) or poly I:C, ARB (20 μmol/L) suppressed the levels of IL-1β, IL-6, IL-12, and TNF-α, and elevated the level of IL-10. Oseltamivir produced comparable alleviation of virus-induced lung lesions with more reduction in the viral titers, but less effective modulation of the inflammatory cytokines.

Conclusion:

ARB efficiently inhibits both H1N1 stains and diminishes both viral replication and acute inflammation through modulating the expression of inflammatory cytokines.  相似文献   

12.

Background and purpose:

Naringin, a flavanone glycoside in citrus fruits, has been recently reported to stimulate bone formation in vitro and in vivo. The present study was designed to determine if naringin could exert oestrogen-like protective actions in bone.

Experimental approach:

Young C57/BL6J mice were ovariectomized (OVX) and treated orally with naringin (0.2 or 0.4 mg·g−1·day−1), 17β-oestradiol (2 µg·g−1·day−1) or its vehicle for 6 weeks. Bone mineral densities (BMD) and polar stress-strain index (SSI) were measured by peripheral quantitative computed tomography. Rat osteoblast-like UMR-106 cells were co-incubated with the oestrogen receptor (ER) antagonist ICI 182780 to determine if the effects of naringin on osteoblastic functions were ER dependent. Functional transactivation of ERα and ERβ as well as ERα phosphorylation by naringin were also studied.

Key results:

Naringin at 0.4 mg·g−1·day−1 increased BMD at trabecular-rich bone in OVX mice. Naringin (at both doses) significantly increased SSI at distal femur and lumbar spine and increased biomechanical strength (ultimate load and energy for breaking) at tibia diaphysis in OVX mice. The stimulatory effects of naringin on osteoblastic functions could be abolished by co-incubation with ICI 182780 in UMR-106 cells. Naringin failed to stimulate ERα- or ERβ-mediated oestrogen response element-dependent luciferase activity but could significantly induce ERα phosphorylation at serine 118, in UMR-106 cells.

Conclusions and implications:

Naringin was effective in protecting against OVX-induced bone loss in mice and its actions might be mediated through ligand-independent activation of ER in osteoblastic cells.  相似文献   

13.
14.

Aim:

To investigate the anticancer mechanisms of triptolide, a diterpenoid isolated from the plant Tripterygium wilfordii Hook F, against human breast cancer cells and the involvement of the estrogen receptor-α (ERα)-mediated signaling pathway in particular.

Methods:

Human breast cancer ERα-positive MCF-7 cells and ERα-negative MDA-MB-231 cells were tested. PrestoBlue assay was used to evaluate the cell viability. The levels of ERα mRNA and protein were detected with real-time PCR and immunoblotting, respectively. Mouse models of MCF-7 or MDA-MB-231 xenograft tumors were treated with triptolide (0.4 mg·kg−1·d−1, po) or a selective estrogen receptor modulator tamoxifen (mg·kg−1·d−1, po) for 3 weeks, and the tumor weight and volume were measured.

Results:

Triptolide (5–200 nmol/L) dose-dependently inhibited the viability of both MCF-7 and MDA-MB-231 cells, with a more potent inhibition on MCF-7 cells. Knockdown of ERα in MCF-7 cells by siRNA significantly attenuated the cytotoxicity of triptolide, whereas overexpression of ERα in MDA-MB-231 cells markedly enhanced the cytotoxicity. Triptolide dose-dependently decreased the expression of ERα in MCF-7 cells and MCF-7 xenograft tumors. Furthermore, treatment of MCF-7 cells with triptolide inhibited the phosphorylation of ERK1/2 in dose- and time-dependent manners. In the mice xenografted with MCF-7 cells, treatment with triptolide or tamoxifen resulted in significant reduction in the tumor weight and volume. Similar effects were not obtained in the mice xenografted with MDA-MB-231 cells.

Conclusion:

The anticancer activity of triptolide against ERα-positive human breast cancer is partially mediated by downregulation of the ERα-mediated signaling pathway.  相似文献   

15.

BACKGROUND AND PURPOSE

3-Iodothyroacetic acid (TA1) is an end product of thyroid hormone metabolism. So far, it is not known if TA1 is present in mouse brain and if it has any pharmacological effects.

EXPERIMENTAL APPROACH

TA1 levels in mouse brain were measured by HPLC coupled to mass spectrometry. After i.c.v. administration of exogenous TA1 (0.4, 1.32 and 4 μg·kg−1) to mice, memory acquisition-retention (passive avoidance paradigm with a light-dark box), pain threshold to thermal stimulus (51.5°C; hot plate test) and plasma glucose (glucorefractometer) were evaluated. Similar assays were performed in mice pretreated with s.c. injections of the histamine H1 receptor antagonist pyrilamine (10 mg·kg−1) or the H2 receptor antagonist zolantidine (5 mg·kg−1). TA1 (1.32 and 4 μg·kg−1) was also given i.c.v. to mice lacking histidine decarboxylase (HDC−/−) and the corresponding WT strain.

KEY RESULTS

TA1 was found in the brain of CD1 but not of HDC mice. Exogenous TA1 induced amnesia (at 0.4 μg·kg−1), stimulation of learning (1.32 and 4 μg·kg−1), hyperalgesia (0.4, 1.32 and 4 μg·kg−1) and hyperglycaemia (1.32 and 4 μg·kg−1). All these effects were modulated by pyrilamine and zolantidine. In HDC−/− mice, TA1 (1.32 and 4 μg·kg−1) did not increase plasma glucose or induce hyperalgesia.

CONCLUSIONS AND IMPLICATIONS

Behavioural and metabolic effects of TA1 disclosed interactions between the thyroid and histaminergic systems.  相似文献   

16.

Aim:

To investigate whether alpha-lipoic acid (ALA) could attenuate the insulin resistance and metabolic disorders in high fat diet-fed mice.

Methods:

Male mice were fed a high fat diet (HFD) plus ALA (100 and 200 mg·kg−1·d−1) or HFD plus a positive control drug metformin (300 mg·kg−1·d−1) for 24 weeks. During the treatments, the relevant physiological and metabolic parameters of the mice were measured. After the mice were euthanized, blood samples and livers were collected. The expression of proteins and genes related to glucose metabolism in livers were analyzed by immunoblotting and real time-PCR.

Results:

HFD induced non-alcoholic fatty liver disease (NAFLD) and abnormal physiological and metabolic parameters in the mice, which were dose-dependently attenuated by ALA. ALA also significantly reduced HFD-induced hyperglycemia and insulin resistance in HFD-fed mice. Furthermore, ALA significantly upregulated the glycolytic enzymes GCK, HK-1 and PK, and the glycogen synthesis enzyme GS, and downregulated the gluconeogenic enzymes PEPCK and G6Pase, thus decreased glucose production, and promoted glycogen synthesis and glucose utilization in livers. Moreover, ALA markedly increased PKB/Akt and GSK3β phosphorylation, and nuclear carbohydrate response element binding protein (ChREBP) expression in livers. Metformin produced similar effects as ALA in HFD-fed mice.

Conclusion:

ALA is able to sustain glucose homeostasis and prevent the development of NAFLD in HFD-fed mice.  相似文献   

17.

Background and Purpose

The glycoprotein IIb/IIIa receptor is the final common pathway of platelet aggregation, regardless of the agonist, and thus represents an ideal therapeutic target for blocking coronary thrombosis. In this study, the anti-platelet and antithrombotic actions of Z4A5, a new glycoprotein IIb/IIIa receptor inhibitor, were evaluated in a canine model of acute unstable angina.

Experimental Approach

Z4A5 was given i.v. as a bolus followed by 60 min of continuous infusion at doses of 30 μg·kg−1 + 1 μg·kg−1·min−1, 30 μg·kg−1 + 5 μg·kg−1·min−1 or 300 μg·kg−1 + 5 μg·kg−1·min−1. Its antithrombotic effect was evaluated in a model of coronary thrombosis, the injured, stenosed left circumflex coronary artery, in which platelet-dependent cyclic flow reductions (CFRs) were induced by vascular compression and constriction to simulate clinical acute unstable angina. Platelet aggregation and coagulation parameters were determined in platelet-rich plasma and platelet poor plasma respectively.

Key Results

The Z4A5 infusion induced a dose-dependent reduction in CFR frequency, which returned to baseline levels after the termination of the infusion at low doses. At medium dose that inhibited most part of platelet aggregation, it increased tongue bleeding time marginally with no dramatic changes in haemodynamic and coagulation parameters. Furthermore, the inhibition of ADP-induced platelet aggregation and prolonged bleeding time observed during Z4A5 infusion reverted to baseline levels after the termination of the infusion.

Conclusions and Implications

Z4A5 is an effective antithrombotic agent for coronary artery thrombosis with a rapid-on and rapid-off pharmacological profile, and could be used as an alternative treatment of coronary artery ischaemic syndromes.  相似文献   

18.

Aim:

Apolipoprotein E (ApoE) plays an important role in the transport and metabolism of lipids. Recent studies show that bone mass is increased in young apoE−/− mice. In this study we investigated the bone phenotype and metabolism in aged apoE−/− mice.

Methods:

Femurs and tibias were collected from 18- and 72-week-old apoE−/− mice and their age-matched wild-type (WT) littermates, and examined using micro-CT and histological analysis. Serum levels of total cholesterol, oxidized low-density lipoprotein (ox-LDL) and bone turnover markers were measured. Cultured bone mesenchymal stem cells (BMSCs) from tibias and femurs of 18-week-old apoE−/− mice were used in experiments in vitro. The expression levels of Sirt1 and Runx2 in bone tissue and BMSCs were measured using RT-PCR and Western blot analysis.

Results:

Compared with age-matched WT littermates, young apoE−/− mice exhibited high bone mass with increased bone formation, accompanied by higher serum levels of bone turnover markers OCN and TRAP5b, and higher expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. In contrast, aged apoE−/− mice showed reduced bone formation and lower bone mass relative to age-matched WT mice, accompanied by lower serum OCN levels, and markedly reduced expression levels of Sirt1, Runx2, ALP and OCN in bone tissue. After BMSCs were exposed to ox-LDL (20 μg/mL), the expression of Sirt1 and Runx2 proteins was significantly increased at 12 h, and then decreased at 72 h. Treatment with the Sirt1 inhibitor EX527 (10 μmol/L) suppressed the expression of Runx2, ALP and OCN in BMSCs.

Conclusion:

In contrast to young apoE−/− mice, aged apoE−/− mice showe lower bone mass than age-matched WT mice. Long-lasting exposure to ox-LDL decreases the expression of Sirt1 and Runx2 in BMSCs, which may explain the decreased bone formation in aged apoE−/− mice.  相似文献   

19.

Background and purpose

Itch is associated with increased sensitization to nociceptive stimuli. We investigated whether 3-iodothyroacetic acid (TA1), by releasing histamine, induces itch and increases sensitization to noxious and painful heat stimuli.

Experimental Approach

Itch was evaluated after s.c. administration of TA1 (0.4, 1.32 and 4 μg·kg−1). Mice threshold to noxious (NHT) and to painful heat stimuli were evaluated by the increasing-temperature hot plate (from 45.5 to 49.5°C) or by the hot plate (51.5°C) test, respectively, 15 min after i.p. injection of TA1 (0.4, 1.32 and 4 μg·kg−1). Itch, NHT and pain threshold evaluation were repeated in mice pretreated with pyrilamine. Itch and NHT were also measured in HDC+/+ and HDC−/− following injection of saline or TA1 (1.32, 4 and 11 μg·kg−1; s.c. and i.p.). pERK1/2 levels were determined by Western blot in dorsal root ganglia (DRG) isolated from CD1 mice 15 min after they received (i.p.): saline, saline and noxious heat stimulus (46.5°C), TA1 (0.1, 0.4, 1.32, 4 μg·kg−1) or TA1 1.32 μg·kg−1 and noxious heat stimulus.

Key Results

TA1 0.4 and 1.32 μg·kg−1 induced itch and reduced NHT; pyrilamine pretreatment prevented both of these effects. TA1 4 μg·kg−1 (i.p.) reduced pain threshold without inducing itch or modifying NHT. In HDC−/− mice, TA1 failed to induce itch and to reduce NHT. In DRG, pERK1/2 levels were significantly increased by noxious heat stimuli and by TA1 0.1, 0.4 and 1.32 μg·kg−1; i.p.

Conclusions and Implications

Increased TA1 levels induce itch and an enhanced sensitivity to noxious heat stimuli suggesting that TA1 might represent a potential cause of itch in thyroid diseases.  相似文献   

20.

Aim:

To examine the effects of β3-adrenoceptor (β3-AR) activation on atherosclerotic plaque development in ApoE−/− mice.

Methods:

Thirty six week-old male ApoE−/− mice on a high-fat diet were treated with atorvastatin (10 mg·kg-1·d-1, po), BRL37344 (β3-AR agonist, 1.65 or 3.30 μg/kg, ip, twice a week) or SR52390A (β3-AR antagonist, 50 μg/kg, ip, twice a week) for 12 weeks. Wild-type C57BL/6J mice receiving a normal diet were taken as healthy controls. At the end of the treatments, serum levels of triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), non-high density lipoprotein cholesterol (nHDL-C), glucose and insulin were measured. The thoracic aortas were dissected out, the area of atherosclerotic plaques and extent of fibrosis in the plaques were examined using HE and Masson''s trichome staining, respectively.

Results:

Compared to wild-type mice, ApoE−/− mice fed on a high-fat diet exhibited prominent hyperlipidemia and insulin resistance, associated with large area of atherosclerotic plaques and great extent of fibrosis in aortas. Atorvastatin significantly decreased the serum levels of TC and nHDL-C, and reduced the plaque area and collagen content in aortas. BRL37344 significantly decreased the serum levels of TG, TC, nHDL-C, glucose and insulin, and increased HDL-C and the insulin sensitivity, and dose-dependently reduced the plaque area and collagen content in aortas. SR52390A treatment did not affect any parameters studied.

Conclusion:

The β3-AR agonist impedes the progression of atherosclerosis in ApoE−/− mice, through improvement of the lipid and glucose profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号