首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genipin has been reported to have anti-inflammatory effect. However, its role on lipopolysaccharide (LPS)-induced acute lung injury (ALI) has not been explored. This study aimed to evaluate the effect of genipin on murine model of acute lung injury induced by LPS. The mice were treated with genipin 1 h before LPS administration. 12 h later, the myeloperoxidase (MPO) in lung tissues and lung wet/dry ratio were detected. The levels of TNF-α, IL-1β and IL-6 in bronchoalveolar lavage fluid (BALF) were measured by ELISA. Apart from this, we use western blot to detect the protein expression in the NF-κB and NLRP3 signaling pathways. The results showed that the treatment of genipin markedly attenuated the lung wet/dry ratio and the MPO activity. Moreover, it also inhibited the levels of TNF-α, IL-1β, IL-6 in the BALF. In addition, genipin significantly inhibited LPS-induced NF-κB and NLRP3 activation. In conclusion, these results demonstrate that genipin protected against LPS-induced ALI through inhibiting NF-κB and NLRP3 signaling pathways.  相似文献   

2.
Shikonin is a naphthoquinone extracted from the root of Lithospermum erythrorhizon, and has been reported to suppress allergic airway inflammation in mice. However, the underlying mechanisms are unclear and need to be further elucidated. In this study, shikonin (0.5, 2 or 4 mg/kg) was given intraperitoneally to ovalbumin (OVA)-challenged BALB/c mice. We found that the pathological airway remodeling of asthmatic mice was alleviated by shikonin, and the infiltrated inflammatory cells and collagen deposition in their lungs were reduced. Furthermore, the abnormal activation of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) pathway and the elevation of matrix metalloproteinase 9 (MMP9) in the lung of asthmatic mice were suppressed by shikonin. The inactivation of NF-κB by shikonin was at least in part via inhibiting IκBα activation. In vitro, the treatment of shikonin inhibited the platelet-derived growth factor (PDGF)-induced proliferation of primary airway smooth muscle cells (ASMCs), and induced a G0/G1 arrest in these cells. In addition, ASMCs exposed to PDGF acquired an enhanced migratory ability, and the activities of MMP9 and matrix metalloproteinase 2 (MMP2) and expression of MMP9 of these cells were significantly up-regulated. These PDGF-induced alterations were also inhibited by shikonin. The inhibitory effects of shikonin on the proliferation and migration of ASMCs were comparable to pyrrolidinedithiocarbamate (PDTC), an inhibitor of NF-κB pathway. In conclusion, the present study sheds lights on how shikonin alleviates allergic airway remodeling.  相似文献   

3.
Recently, we reported the synthesis of damaurone D (DD), originally derived from Rosa damascene, and its anti-inflammatory effect in macrophages. Here, we investigated the molecular mechanism underlying the anti-inflammatory effect of DD in macrophages and further tested whether DD is protective against lipopolysaccharide (LPS)-induced liver injury. DD inhibited LPS-stimulated expression of pro-inflammatory genes and cytokine/chemokine secretion in a concentration-dependent manner in RAW 264.7 cells and thioglycolate-elicited mouse peritoneal macrophages. DD suppressed LPS-stimulated nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, as demonstrated by reduction in IκB kinase α/β phosphorylation, IκBα degradation, and levels of phosphorylated ERK, JNK, and p38 MAPK. The luciferase reporter activity of NF-κB and activator protein 1 was also attenuated by DD pretreatment. Furthermore, DD treatment induced AMP-activated protein kinase (AMPK) activation in cells and mouse liver, although the anti-inflammatory effect of DD was similar in dominant-negative AMPK-overexpressing cells. Lastly, DD-treated mice were protected against LPS-induced acute liver injury, based on morphologic and immunohistochemical observations; reduction in the plasma levels of aspartate aminotransferase, TNF-α, and MCP-1; and a decrease in inflammatory gene expression. In summary, our findings indicate that DD can protect against LPS-stimulated inflammation and liver injury at least partly by suppression of NF-κB and MAPK signaling pathways.  相似文献   

4.
Anemoside B4 (B4) is a compound extracted from Pulsatilla chinensis(P. chinensis). Pharmacological studies have proved that it has certain anti-inflammatory activity. Acute ulcerative colitis (ulcerative colitis) is a non-specific inflammatory disease whose pathogenesis is not completely known, and there is no effective drugs. The purpose of this study was to investigate the protective effect of B4 on ulcerative colitis and its mechanism. In this study, the C57BL/6 mice model of ulcerative colitis was established by DSS [3% (w/v)] and treated with intraperitoneal injection of B4 and oral administration of mesalazine, respectively. During the experiment, the clinical symptoms of the mice were scored by the disease activity index (DAI). Histopathological changes were observed by HE staining. In addition, the effect of LPS on Raw264.7 cells was also studied. In vivo studies showed that B4 could prevent DSS-induced colitis mice from losing weight, shortening colon length and improving pathological changes of colon tissues. B4 significantly reduced levels of inflammatory cytokines IL-1β, IL-6, and TNF-α in colon tissues. In vitro experiments, B4 was almost nontoxic to Raw264.7 cells and could protect the Raw264.7 cells induced by LPS. In terms of mechanism, B4 significantly inhibited the activation of the TLR4 signaling pathway induced by DSS and down-regulate the expression of key proteins in the TLR4/NF-κB/MAPK signaling pathway in Raw264.7 cells induced by LPS. These findings suggest that the inhibition of B4 on ulcerative colitis may be through the TLR4/NF-κB/MAPK pathway. Therefore, B4 may be used as a potential drug for the treatment of ulcerative colitis.  相似文献   

5.
During the past era, small molecules derived from various plants have attracted extensive attention for their versatile medicinal benefits. Among these, one organic molecule called mangiferin from certain plant species including mangoes and honey bush tea is widely used in treating inflammation. In this study, a LPS-induced mastitis model in mouse is established to investigate the anti-inflammatory effects and mechanism of mangiferin. The result shows that mangiferin significantly alleviates LPS-induced histopathology, meanwhile, also decreases LPS-induced MPO activity. Furthermore, mangiferin treatment remarkably impeded the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, mangiferin was found to inhibit LPS-induced NF-ĸB and NLRP3 inflammasome activation. In conclusion, these results suggested that LPS-induced mastitis can be abated by mangiferin through inhibiting NF-ĸB and NLRP3 signaling pathways.  相似文献   

6.
7.
AimsThe purpose of this study was to investigate the protective effects of puerarin and elucidate the underlying mechanisms of puerarin in myocardial ischemia/reperfusion (MI/R) injury.Main methodsC57BL/6 mice were exposed to puerarin (100 mg/kg) with or without the SIRT1 inhibitor nicotinamide (500 mg/kg) and then subjected to MI/R operation. Myocardial infarct size, serum creatine kinase-MB (CK-MB) activity, apoptotic cell death, and cardiac structure and function were examined to evaluate MI/R injury. RT-PCR and western blotting were used to determine the inflammatory response and inflammasome activation, as well as activation of SIRT1/NF-κB pathway.ResultsPuerarin significantly reduced myocardial infarct size, serum CK-MB activity, and apoptotic cell death, and improved cardiac structural damage and dysfunction. Moreover, puerarin notably decreased the mRNA and protein levels of TNF-α, IL-6, and IL-1β, indicating that puerarin attenuated MI/R-induced inflammation. Furthermore, puerarin markedly decreased the protein levels of Ac-NF-κB, NLRP3, cleaved caspase-1, cleaved IL-1β, and cleaved IL-18 and increased the protein level of SIRT1. More importantly, the SIRT1 inhibitor nicotinamide prevented these puerarin-induced cardioprotective effects and regulation of the SIRT1/NF-κB pathway, as well as the NLRP3 inflammasome activation.ConclusionPuerarin protected against MI/R injury by inhibiting inflammatory responses probably via the SIRT1/NF-κB pathway, and inhibition of the NLRP3 inflammasome was also involved in puerarin-induced cardioprotective effects. These results suggest that puerarin may be a novel candidate for the treatment of ischemic heart disease.  相似文献   

8.
9.
Transforming growth factor (TGF)-β/Smad signalling plays a central role in the pathogenesis of peritoneal fibrosis related to peritoneal dialysis (PD). Parthenolide (PTL), a naturally occurring phytochemical, is isolated from the shoots of feverfew (Tanacetum parthenium) and displays analgesia, anti-inflammation and anticancer activities. In this study, we examined the therapeutic potential of PTL on PD-related peritoneal fibrosis induced by daily intraperitoneal injection of 4.25% dextrose-containing PD fluid (PDF) in vivo and TGF-β1-induced epithelial-mesenchymal transition (EMT) in vitro. PTL was administered daily before PDF injection or after 14 days of PDF injection. Both PTL treatments showed a protective effect on peritoneal fibrosis and prevented peritoneal dysfunction. Similarly, PTL suppressed the expression of fibrotic markers (fibronectin and collagen I) and restored the expression of the epithelial marker (E-cadherin) in TGF-β1-treated HMrSV5 cells. Furthermore, PTL inhibited TGF-β1-induced Smad2 and Smad3 phosphorylation and nuclear translocation but did not influence Smad1/5/9 phosphorylation or activate other downstream signalling pathways of TGF-β1, including AKT, extracellular signal-regulated kinase (ERK) or p38. In conclusion, PTL treatment may represent an effective and novel therapy for PD-associated peritoneal fibrosis by suppressing the TGF-β/Smad pathway.  相似文献   

10.
The activation of NLRP3 inflammasome and NF-κB pathway, associating with oxidative stress, have been implicated in the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). NecroX-5 has been reported to exhibit the effects of anti-oxidation and anti-stress in various diseases. However, the role of NecroX-5 in ALI has not been explicitly demonstrated. The aim of this study was to explore the therapeutic effects and potential mechanism action of NecroX-5 on ALI. Here, we found that NecroX-5 pretreatment dramatically diminished the levels of IL-1β, IL-18 and ROS in in RAW264.7 cells challenged with LPS and ATP. Furthermore, NecroX-5 suppressed the activation of NLRP3 inflammasome and NF-κB signal pathway. In addition, NecroX-5 also inhibited the thioredoxin-interacting protein (TXNIP) expression. In vivo, NecroX-5 reduced the LPS-induced lung histopathological injury, the number of TUNEL-positive cells, lung wet/dry (W/D) ratio, levels of total protein and inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) in mice. Additionally, LPS-induced upregulation of myeloperoxidase (MPO), ROS production and malondialdehyde (MDA) were inhibited by NecroX-5 administration. Thus, our results demonstrate that NecroX-5 protects against LPS-induced ALI by inhibiting TXNIP/NLRP3 and NF-κB.  相似文献   

11.
Ni  Lianli  Lu  Qian  Tang  Miao  Tao  Lu  Zhao  Hairong  Zhang  Chenggui  Yu  Yun  Wu  Xiumei  Liu  Heng  Cui  Ri 《Inflammopharmacology》2022,30(3):907-918
Inflammopharmacology - Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) with a low cure rate. Periplaneta americana is a traditional American Cockroach and reportedly has...  相似文献   

12.
Previous studies have suggested that the inflammatory response contributes to the onset of intervertebral disc degeneration (IVDD). Interleukin (IL)-38, a newly discovered cytokine of the IL-1 family, has been demonstrated to play an anti-inflammatory role in autoimmune diseases, such as Crohn’s disease, rheumatoid arthritis and psoriasis. However, whether IL-38 participates in the pathogenesis of IVDD remains unknown. In this study, human disc tissues from IVDD patients and rat disc tissues from an IVDD model were collected to measure the expression of IL-38 in the IVDD groups and the control groups by western blot and immunohistochemical staining. To further determine the role of IL-38 in IVDD, human nucleus pulposus cells (HNPCs) were stimulated with TNF-α to generate an in vitro model of inflammation to mimic the local inflammatory environment of the lumbar disc. The inflammatory response and HNPC degeneration markers were measured after stimulation with TNF-α and IL-38. IL-38 was upregulated in both the human and rat degenerated disc tissues compared with the control tissues. In vitro, IL-38 significantly decreased the TNF-α-induced expression of IL-1β, IL-6, COX-2, MMP-13 and ADAMTS-5 in the HNPCs, and IL-38 also alleviated the TNF-α-induced reductions in type II collagen and aggrecan. Moreover, IL-38 inhibited the activation of the NF-κB signaling pathway in the HNPC-based model of inflammation by reducing the expression level of the NF-κB P-P65 protein. In conclusion, IL-38 could alleviate the inflammatory response and HNPC degeneration in vitro via the inhibition of the NF-κB signaling pathway. These results suggest that IL-38 may be a new strategy for the treatment of IVDD.  相似文献   

13.
Fraxin, the effective component of the Chinese traditional medicine Cortex Fraxini, is reported to have anti-inflammatory effects. This study assessed the anti-inflammatory effect of fraxin on the lipopolysaccharide (LPS)-induced inflammatory response in A549 cells and the protective efficacy on LPS-induced acute lung injury (ALI) in mice. Fraxin reduced LPS-induced TNF-α, IL-6 and IL-1β production in A549 cells and alleviated the LPS-induced wet/dry (W/D) weight ratio and the effects observed via histopathological examination of the lung in vivo. Furthermore, fraxin reduced the protein concentrations in the broncho-alveolar lavage (BAL) fluid and cytokine production in the sera. Fraxin also clearly attenuated the oxidation index, including the activity of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH). Immunohistochemistry analysis showed that fraxin suppressed LPS-induced inflammatory damage. The expression of proteins involved in the NF-κB and NLRP3 inflammatory corpuscle signalling pathways was consistent between the lung tissues and cell samples. Overall, fraxin played a protective role in LPS-induced lung injury by inhibiting the NF-κB and NLRP3 signalling pathways.  相似文献   

14.
Aseptic prosthetic loosening is a major complication after hip joint replacement. Wear particle-induced periprosthetic osteolysis plays a key role in aseptic prosthetic loosening. Attempting to modulate receptor activator of nuclear factor-κB (RANKL) mediated signaling pathways is a promising strategy to prevent aseptic prosthetic loosening. In the present study, we determined the effect of scutellarin (SCU) on titanium (Ti) particle-induced osteolysis in a mouse calvarial model and RANKL-mediated osteoclastogenesis. We determined that SCU, the major effective constituent of breviscapine isolated from a Chinese herb, has potential effects on preventing Ti particle-caused osteolysis in calvarial model of mouse. In vitro, SCU could suppress RANKL-mediated osteoclastogenesis, the function of osteoclast bone resorption, and the expression levels of osteoclast-specific genes (tartrate-resistant acid phosphatase (TRAP), cathepsin K, c-Fos, NFATc1). Further investigation indicated that SCU could inhibit RANKL-mediated MAPK and NF-κB signaling pathway, including JNK1/2, p38, ERK1/2, and IκBα phosphorylation. Taken together, these results indicate that SCU could inhibit osteoclastogenesis and prevent Ti particle-induced osteolysis by suppressing RANKL-mediated MAPK and NF-κB signaling pathway. These results suggest that SCU is a promising therapeutic agent for preventing wear particle-induced periprosthetic osteolysis.  相似文献   

15.
Wogonin, a natural monoflavonoid extracted from Scutellariae radix, has been reported for its ability of inhibiting tumor angiogenesis. In this study, we assessed the effect of wogonin on angiogenesis induced by low level of H2O2 (10 μM) in human umbilical vein endothelial cells (HUVECs). Wogonin suppressed H2O2-induced migration and tube formation of HUVECs as well as microvessel sprouting from rat aortic rings in vitro. Meanwhile, wogonin suppressed vessel growth in chicken chorioallantoic membrane (CAM) model in vivo. Mechanistic studies showed that wogonin suppressed H2O2-activated PI3K/Akt pathway and reduced the expression of vascular endothelial growth factor (VEGF) up-regulated by H2O2 in both protein and mRNA levels. In addition, wogonin also inhibited nuclear translocation of NF-κB, and decreased the binding ability of NF-κB with exogenous consensus DNA oligonucleotide. Then we further investigated the effect of wogonin on over-activated PI3K/Akt pathway by insulin-like growth factor-1 (IGF-1) and H2O2. We found that wogonin suppressed phosphorylation of Akt, up-regulation of VEGF and angiogenesis in vitro which was further induced by IGF-1 and H2O2. Moreover, in NF-κB overexpressed HUVECs, wogonin could also reduce the expression of VEGF and inhibited the migration and tube formation. Taken together, these results suggested that wogonin was potential in inhibiting H2O2-induced angiogenesis in vitro and in vivo via suppressing PI3K/Akt pathway and NF-κB signaling.  相似文献   

16.
Previous studies have shown that baicalin,an active ingredient of the Chinese traditional medicine Huangqin,attenuates LPS-induced inflammation by inhibiting the activation of TLR4/NF-κBp65 pathway,but how it affects this pathway is unknown.It has been shown that CD14 binds directly to LPS and plays an important role in sensitizing the cells to minute quantities of LPS via chaperoning LPS molecules to the TLR4/MD-2 signaling complex.In the present study we investigated the role of CD14 in the anti-inflammatory effects of baicalin in vitro and in vivo.Exposure to LPS(1μg/mL)induced inflammatory responses in RAW264.7 cells,evidenced by marked increases in the expression of MHC II molecules and the secretion of NO and IL-6,and by activation of MyD88/NF-κB p65 signaling pathway,as well as the expression of CD14 and TLR4.These changes were dose-dependently attenuated by pretreatment baicalin(12.5–50μM),but not by baicalin post-treatment.In RAW264.7 cells without LPS stimulation,baicalin dose-dependently inhibit the protein and mRNA expression of CD14,but not TLR4.In RAW264.7 cells with CD14 knockdown,baicalin pretreatment did not prevent inflammatory responses and activation of MyD88/NF-κB p65 pathway induced by high concentrations(1000μg/mL)of LPS.Furthermore,baicalin pretreatment also inhibited the expression of CD14 and activation of MyD88/NF-κB p65 pathway in LPS-induced hepatocyte-derived HepG2 cells and intestinal epithelial-derived HT-29 cells.In mice with intraperitoneal injection of LPS and in DSS-induced UC mice,oral administration of baicalin exerted protective effects by inhibition of CD14 expression and inflammation.Taken together,we demonstrate that baicalin pretreatment prevents LPS-induced inflammation in RAW264.7 cells in CD14-dependent manner.This study supports the therapeutic use of baicalin in preventing the progression of LPS-induced inflammatory diseases.  相似文献   

17.
The aim of this study is to study the effect of betulin (BE) on myocardial injury in diabetic mice. Insulin-related indexes and inflammation-related cytokines are detected by commercial kits. The mechanism of BE on diabetic myocardial injury was studied by modern molecular biology techniques. BE significantly improved glocose tolerance, reduced lipid accumulation and reduced the content of inflammatory cytokines in diabetic mice. Furthermore, BE regulated Siti1/NLRP3/NF-κB signaling pathway in db/db mice and H9C2 cells. Siti1 inhibitor (EX-57) counteracted those changes. BE significantly protected against diabetic cardiomyopathy, which was related to the regulation of Siti1/NLRP3/NF-κB pathway.  相似文献   

18.
Soybeans, produced by Glycine max (L.) Merr., contain high levels of isoflavones, such as genistein and daidzein. However, soy leaves contain more diverse and abundant flavonol glycosides and coumestans, as compared to the soybean. This study investigated the anti-inflammatory effects of the major coumestans present in soy leaf (coumestrol, isotrifoliol, and phaseol) in lipopolysaccharide (LPS)-induced RAW264.7 cells. Coumestans significantly reduced LPS-induced nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS) production; isotrifoliol had the most potent anti-inflammatory activity. Isotrifoliol reduced LPS-mediated induction of mRNA expression of inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNFα), and chemokines, such as chemokine (C-C motif) ligand (CCL) 2, CCL3, and CCL4. Isotrifoliol prevented NF-κB p65 subunit activation by reducing the phosphorylation and degradation of the inhibitor of NF-κB. And isotrifoliol significantly suppressed phosphorylation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Furthermore, isotrifoliol suppressed LPS-induced Toll-like Receptor (TLR) signaling pathway, including mRNA expression of TNF receptor associated factor 6, transforming growth factor beta-activated kinase 1 (TAK1), TAK1 binding protein 2 (TAB2), and TAB3. These results demonstrate that isotrifoliol exerts an anti-inflammatory effect by suppressing the expression of inflammatory mediators via inhibition of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 macrophages. Therefore, isotrifoliol can be used as an anti-inflammatory agent, and coumestan-rich soy leaf extracts may provide a useful dietary supplement.  相似文献   

19.
BackgroundSialic acid-binding immunoglobulin-like lectins (Siglecs) are a superfamily of immunoreceptors recognizing sialic acid. Siglec-9 has been shown to mediate inhibitory immune responses. The aim of this study was to evaluate the effect of a soluble form of Siglec-9 (sSiglec-9) on inflamed intestinal epithelial cells (IECs), murine macrophages, and experimental murine colitis models.MethodsCOLO 205 human IECs and RAW 264.7 murine macrophages were pretreated with sSiglec-9 and then stimulated with TNF-α or lipopolysaccharides, respectively. The expression of proinflammatory cytokines such as IL-8 and TNF-α was measured using real-time RT-PCR and ELISA. To demonstrate the inhibitory effects of sSiglec-9 on the NF-κB pathway, IκBα phosphorylation/degradation was determined using western blotting and the DNA binding activity of NF-κB was evaluated using an electrophoretic mobility shift assay. Further, mouse models with dextran sulfate sodium-induced acute colitis and piroxicam-induced IL-10-/- chronic colitis were generated. Intraperitoneal injections of sSiglec-9 were performed, and body weight, colon length, and histopathologic findings were examined.ResultssSiglec-9 suppressed IL-8 and TNF-α gene expression in stimulated COLO 205 and RAW 264.7 cells. sSiglec-9 inhibited IκBα phosphorylation/degradation and the DNA binding activity of NF-κB. sSiglec-9 injections significantly ameliorated weight loss, colon shortening, and the severity of intestinal inflammation in acute and chronic colitis mouse models.ConclusionsSiglec-9 may inhibit NF-κB activation in IECs and macrophages and alleviate experimental colitis in mice, suggesting that sSiglec-9 is a potential therapeutic agent for the treatment of inflammatory bowel disease.  相似文献   

20.
Macrophage polarization plays an important role in inflammation. Regulation of the polarization has been reported to be effective therapeutics for various kinds of inflammatory diseases. The aims of the present study were to investigate the anti-inflammatory property of isomeranzin isolating from Murraya exotica as well as potential molecular mechanisms. Results showed that isomeranzin specifically reduced the M1 macrophage-associated pro-inflammatory cytokines through down-regulation of NF-κB and ERK signals. Immunoprecipitation and RNA silencing indicated suppression of isomeranzin in NF-κB activation was relying on the decreasing of TRAF6 ubiquitination. In vivo studies showed isomeranzin evidently inhibited LPS-induced sepsis for rising survival rate, improving tissue damage and lessening inflammatory cytokines. In accordance with in vitro studies, isomeranzin significantly blocked expression of p-p65 and p-ERK in lung and liver tissues. Moreover, isomeranzin ameliorated DSS and TNBS-induced colitis due to its anti-inflammatory effects. Taken together, isomeranzin suppressed inflammatory diseases by controlling M1 macrophage polarization through the NF-κB and ERK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号