首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SSAO/VAP-1 is a multifunctional enzyme depending on in which tissue it is expressed. SSAO/VAP-1 is present in almost all adult mammalian tissues, especially in highly vascularised ones and in adipocytes. SSAO/VAP-1 is an amine oxidase able to metabolise various endogenous or exogenous primary amines. Its catalytic activity can lead to cellular oxidative stress, which has been implicated in several pathologies (atherosclerosis, diabetes, and Alzheimer's disease). The aim of this work is to achieve a study of SSAO/VAP-1 protein expression during mouse embryogenesis. Our results show that SSAO/VAP-1 appears early in the development of the vascular system, adipose tissue, and smooth muscle cells. Moreover, its expression is strong in several epithelia of the sensory organs, as well as in the development of cartilage sites. Altogether, this suggests that SSAO/VAP-1 enzyme could be involved in the differentiation processes that take place during embryonic development, concretely in tissue vascularisation. Developmental Dynamics 237:2585-2593, 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

2.
Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflammatory therapy. In this study we have constructed mouse-human chimeric antibodies by genetic engineering in order to circumvent the potential problems involved in using murine antibodies in man. Our chimeric anti-VAP-1 antibodies, which were designed to lack Fc-dependent effector functions, bound specifically to cell surface-expressed recombinant human VAP-1 and recognized VAP-1 in different cell types in tonsil. Furthermore, the chimeric antibodies prevented leukocyte adhesion and transmigration in vitro and in vivo. Hence, these chimeric antibodies have the potential to be used as a new anti-inflammatory therapy.  相似文献   

3.
Neutrophils mediate the damage caused by ischemia-reperfusion both at the site of primary injury and in remote organs. Vascular adhesion protein-1 (VAP-1) is an ectoenzyme expressed on endothelial cells and it has been shown to regulate leukocyte extravasation. Here we show for the first time using VAP-1-deficient mice that VAP-1 plays a significant role in the intestinal damage and acute lung injury after ischemia-reperfusion. Separate inhibition of VAP-1 by small molecule enzyme inhibitors and a function-blocking monoclonal antibody in WT mice revealed that the catalytic activity of VAP-1 is responsible for its pro-inflammatory action. The use of transgenic humanized VAP-1 mice also showed that the enzyme inhibitors alleviate both the ischemia-reperfusion injury in the gut and neutrophil accumulation in the lungs. These data thus indicate that VAP-1 regulates the inflammatory response in ischemia-reperfusion injury and suggest that blockade of VAP-1 may have therapeutic value.  相似文献   

4.
Human vascular adhesion protein-1 in smooth muscle cells   总被引:5,自引:0,他引:5       下载免费PDF全文
Human vascular adhesion protein-1 (VAP-1) is a dual-function molecule with adhesive and enzymatic properties. In addition to synthesis in endothelial cells, where it mediates lymphocyte binding, VAP-1 is expressed in smooth muscle cells. Here we studied the expression, biochemical structure, and function of VAP-1 in muscle cells and compared it to those in endothelial cells. VAP-1 is expressed on the plasma membrane of all types of smooth muscle cells, but it is completely absent from cardiac and skeletal muscle cells. In tumors, VAP-1 is retained on all leiomyoma cells, whereas it is lost in half of leiomyosarcoma samples. In smooth muscle VAP-1 predominantly exists as a approximately 165-kd homodimeric glycoprotein, but a trimeric (approximately 250 kd) form of VAP-1 is also found. It contains N-linked oligosaccharide side chains and abundant sialic acid decorations. In comparison, in endothelial cells dimeric VAP-1 is larger, no trimeric forms are found, and VAP-1 does not have N-glycanase-sensitive oligosaccharides. Unlike endothelial VAP-1, VAP-1 localized on smooth muscle cells does not support binding of lymphocytes. Instead, it deaminates exogenous and endogenous primary amines. In conclusion, VAP-1 in smooth muscle cells is structurally and functionally distinct from VAP-1 present on endothelial cells.  相似文献   

5.
Vascular endothelium plays a pivotal role in controlling leukocyte extravasation from the blood into the tissues. Vascular adhesion protein-1 (VAP-1) is a novel endothelial cell molecule which mediates lymphocyte binding to the vascular lining (Salmi, M., and Jalkanen, S., Science 1992. 257: 1407). In this study, we analyzed endothelial cell type-specific differences of VAP-1. In vivo, VAP-1 is a 90/170-kDa molecule which is mainly expressed on the lumenal surface and in cytoplasmic granules of peripheral lymph node-type postcapillary venules (high endothelial venules, HEV). In tonsil HEV, VAP-1 is modified with abundant sialic acids. VAP-1 is also detectable in the cytoplasm of human umbilical vein endothelial cells (HUVEC) and in an endothelial cell hybrid EaHy-926, although both cell types lack detectable surface VAP-1. Cultured endothelial cells do not express MECA-79-defined peripheral lymph node addressins either. VAP-1 was not translocated onto the endothelial cell surface after stimulation with multiple cytokines, mitogens or secretagogues which induced expression of other known endothelial adhesion molecules. Biochemical analyses revealed that VAP-1 is a ~ 180-kDa protein in these endothelial cell types. Digestions with neuraminidase, O-glycanase and N-glycanase, as well as treatment of cells with tunicamycin and benzyl-N-acetylgalactosaminide, did not alter the molecular mass of VAP-1 in EaHy-926. Pulse-chase experiments showed that VAP-1 is directly synthesized as a 180-kDa molecule without any detectable precursors. Thus, in cultured endothelial cells, VAP-1 is a 180-kDa protein which is devoid of post-translational modifications, and in particular, lacks the sialic acids crucial for the function of VAP-1 in tonsil vessels. Notably, the endothelial cell types commonly used as a model in studying lymphocyte-endothelial cell interactions lack surface expression of VAP-1 and peripheral node addressins, and hence are inherently of limited use in analyses of the initial adhesion of lymphocytes.  相似文献   

6.
A cell surface amine oxidase directly controls lymphocyte migration   总被引:9,自引:0,他引:9  
Lymphocytes leave the blood using a sequential adhesion cascade. Vascular adhesion molecule-1 (VAP-1) is a surface-expressed endothelial glycoprotein, which belongs to a distinct subgroup of monoamine oxidases. We show here that catalytic activity of VAP-1 on primary endothelial cells directly regulates lymphocyte rolling under defined laminar shear. VAP-1 seems to bind to a primary amino group presented on the lymphocyte surface and oxidatively deaminate it in a reaction, which results in the formation of a transient covalent bond between the two cell types. Instead, soluble reaction products (aldehydes and hydrogen peroxide) are not needed for the VAP-1-dependent rolling. Enzymatic regulation of lymphocyte adhesion to endothelium provides a previously unrecognized rapid way of controlling the extravasation process.  相似文献   

7.
Vascular adhesion protein-1 (VAP-1) is an endothelial molecule that possesses both adhesive and enzymatic properties in vitro. So far, however, elucidation of its in vivo function has suffered from the lack of function-blocking reagents that are suitable for use in animal models. In this work we produced monoclonal antibodies against murine VAP-1 and characterized them using in vitro binding assays. We then examined whether the antibodies could prevent leukocyte migration in in vivo inflammation models, including two acute models (peritonitis induced with proteose peptone and interleukin-1 and air pouch inflammation enhanced by CCL21) and one chronic model (autoimmune diabetes in nonobese diabetic mice). Antibodies 7-88 and 7-106 inhibited migration of granulocytes and monocytes in both acute models of inflammation. Strikingly, antibody 7-88 significantly prevented diabetes in a subset of nonobese diabetic mice. The results show for the first time that in mouse models of inflammation, VAP-1 mediates leukocyte trafficking to sites of inflammation and thus is a potential target for anti-inflammatory therapies.  相似文献   

8.
Vascular adhesion protein 1 (VAP-1) is an endothelial adhesion molecule with an enzymatic activity. It deaminates biogenic amines, resulting in the formation of aldehydes and hydrogen peroxide. During the enzymatic reaction a transient Schiff base is formed between endothelial VAP-1 and its leukocytic ligand, and this interaction is important for lymphocyte adhesion. VAP-1 monomer has six potential N-linked, and three putative O-linked glycosylation sites and an SSSS sequence potentially forming an attachment site for an adjacent O-linked site. In this work we modeled the carbohydrate decorations on a structural model of VAP-1, and studied which of those potential glycosylation sites are utilized, and whether those decorations accessible to a lymphocyte ligand are important in lymphocyte adhesion and enzymatic activity of VAP-1. We show that, unlike the O-linked attachment sites, all six N-linked glycosylation sites are in use. Furthermore, mutation of the N-linked attachment sites strategically located on the top of the molecule reduces lymphocyte adhesion in non-static conditions, and enhances the catalytic activity of membrane-bound human VAP-1 in static conditions, suggesting that glycosylation regulates the functional properties of VAP-1.  相似文献   

9.
The pathogenesis of chronic kidney rejection characterized by persistent low-level inflammation and intimal thickening of the arteries in the graft remains poorly understood. We studied whether two important endothelial adhesion molecules, vascular adhesion molecule-1 (VAP-1) and peripheral node addressin (PNAd), would contribute to the lymphocyte recruitment into the rejected organ. VAP-1 was found to be present both in the normal kidney and prominently also in the chronically rejected kidneys. In the kidney VAP-1 was a homodimeric sialoglycoprotein expressed in peritubular capillaries, but not on glomerular endothelium or on tubular cells. In contrast, PNAd was absent from all kidney samples, indicating that kidney inflammation differs from other sites of chronic inflammation. Blocking of VAP-1 with mAbs abolished > 50 % of lymphocyte binding to renal vessels in rejected kidney in in vitro adhesion assays. Levels of circulating soluble VAP-1 (sVAP-1) decreased back to normal levels in patients with well-functioning transplants. These results are the first evidence that VAP-1 is able to mediate leukocyte binding into a rejected organ. Thus, anti-adhesive therapies targeting VAP-1 may be useful in controlling chronic kidney graft rejection.  相似文献   

10.
VAP-1: an adhesin and an enzyme   总被引:8,自引:0,他引:8  
Leukocyte extravasation from the blood into tissues is of paramount importance for normal immunosurveillance and in mounting adequate inflammatory responses. Multiple traditional adhesion molecules and chemoattractants on leukocytes and endothelial cells are involved in the emigration process. Vascular adhesion protein 1 (VAP-1) is a nonclassical inflammation-inducible endothelial molecule involved in leukocyte-subtype-specific rolling under physiological shear. Molecularly, VAP-1 belongs to a special class of cell surface amino oxidases. The enzymatic reaction itself and the biologically active end products can potentially regulate the adhesive status of the vessel wall. Thus, VAP-1 is an ectoenzyme that has inter-related adhesive and enzymatic functions in regulating physiological trafficking and inflammation.  相似文献   

11.
The continuous recirculation of lymphocytes requires an adequate expression and function of the molecules mediating the cellular interactions between endothelium and lymphocytes. Human vascular adhesion protein 1 (hVAP-1) is an endothelial cell adhesion molecule that mediates the binding of lymphocytes to venules in peripheral lymph nodes as well as at sites of inflammation. Recently the mouse homologue of hVAP-1 has been cloned. It is a previously unknown molecule with a significant sequence identity to copper-containing amine oxidases. Besides the sequence, very little is known about the expression, structure, and function of mouse VAP-1 (mVAP-1). In this study we demonstrate that mVAP-1 is prominently expressed in endothelial and smooth muscle (but not in other types of muscle cells), as well as in adipocytes. mVAP-1 is a 220-kd homodimeric sialoglycoprotein that displays cell-type-specific differences in glycosylation. The expression of mVAP-1 is induced on inflammation in the vessels of the endocrine pancreas during the development of insulitis, and the up-regulation correlates with the extent of the lymphocytic infiltrate. In general, different mouse strains displayed very similar VAP-1 expression, but the small differences seen in liver and gut suggest that immunostimulation may modulate VAP-1 synthesis in extrapancreatic organs as well. Finally, we show that mVAP-1 has a monoamine oxidase activity against naturally occurring substrates, implying a role in the development of vasculopathies. These data show that mVAP-1 and hVAP-1 are very similar molecules that nevertheless have certain marked differences in expression, biochemical structure, and substrate specificity. Thus mVAP-1 is a novel inflammation-inducible mouse molecule that has a dual adhesive and enzymatic function.  相似文献   

12.
Vascular adhesion protein-1 (VAP-1) contributes to inflammatory and angiogenic diseases, including cancer and age-related macular degeneration. It is expressed in blood vessels and contributes to inflammatory leukocyte recruitment. The cytokines IL-1β and vascular endothelial growth factor A (VEGF-A) modulate angiogenesis, lymphangiogenesis, and leukocyte infiltration. The lymphatic endothelium expresses intercellular adhesion molecule-1 and vascular adhesion molecule-1, which facilitate leukocyte transmigration into the lymphatic vessels. However, whether lymphatics express VAP-1 and whether they contribute to cytokine-dependent lymph- and angiogenesis are unknown. We investigated the role of VAP-1 in IL-1β- and VEGF-A-induced lymph- and angiogenesis using the established corneal micropocket assay. IL-1β increased VAP-1 expression in the inflamed cornea. Our in vivo molecular imaging revealed significantly higher VAP-1 expression in neovasculature than in the preexisting vessels. VAP-1 was expressed in blood but not lymphatic vessels in vivo. IL-1β-induced M2 macrophage infiltration and lymph- and angiogenesis were blocked by VAP-1 inhibition. In contrast, VEGF-A-induced lymph- and angiogenesis were unaffected by VAP-1 inhibition. Our results indicate a key role for VAP-1 in lymph- and angiogenesis-related macrophage recruitment. VAP-1 might become a new target for treatment of inflammatory lymph- and angiogenic diseases, including cancer.  相似文献   

13.
Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial glycoprotein which mediates leukocyte-endothelial cell interactions. To study the pathogenetic significance of VAP-1 in inflammatory disorders, an in vivo immunodetection method was used to detect the regulation of luminally expressed VAP-1 in experimental skin and joint inflammation in the pig and dog. Moreover, VAP-1 was studied as a potential target to localize inflammation by radioimmunoscintigraphy. Up-regulation of VAP-1 in experimental dermatitis and arthritis could be visualized by specifically targeted immunoscintigraphy. Moreover, the translocation of VAP-1 to the functional position on the endothelial surface was only seen in inflamed tissues. These results suggest that VAP-1 is both an optimal candidate for anti-adhesive therapy and a potential target molecule for imaging inflammation.  相似文献   

14.
Leukocyte migration from the blood to tissues is a prerequisite for normal immune responses. We produced mice deficient in an endothelial cell-surface oxidase (amine oxidase, copper containing-3 [AOC3], also known as vascular adhesion protein-1 [VAP-1]) and found that this enzyme is needed for leukocyte extravasation in vivo. Real-time imaging shows that AOC3 mediates slow rolling, firm adhesion, and transmigration of leukocytes in vessels at inflammatory sites and lymphoid tissues. Absence of AOC3 results in reduced lymphocyte homing into lymphoid organs and in attenuated inflammatory response in peritonitis. These data alter the paradigm of leukocyte extravasation cascade by providing the first physiological proof for the concept that endothelial cell surface enzymes regulate the development of inflammatory reactions in vivo and suggest that this enzyme should be useful as an anti-inflammatory target.  相似文献   

15.
Recently, vascular adhesion protein-1 (VAP-1) was implicated in adhesion and transmigration of lymphocytes across endothelial cells in liver and other organs. There is very little information on VAP-1 expression in normal and inflamed lungs. Therefore, we conducted a study to localize VAP-1 in normal mice and human lungs and in two distinct murine models of lung inflammation. Normal mice and human lungs revealed VAP-1 expression in the endothelium of large and mid-sized pulmonary vessels but not in alveolar septae, airway epithelium or blood cells. Mice that lack the lpr(-/-) gene and develop extensive lymphocytic infiltration in their lungs showed VAP-1 expression similar to the normal mice lungs. Mice subjected to cecal ligation and puncture developed acute lung inflammation and showed VAP-1 not only in endothelial cells but also in inflammatory cells in perivascular areas at 72 h after the procedure. We concluded that VAP-1 expression may contribute to the functional heterogeneity of endothelial cells within the lung to create distinct sites for the recruitment of inflammatory cells. Furthermore, since VAP-1 is expressed over a longer period of time in inflamed lungs, it may even be a suitable target for drug delivery and therapeutic manipulations.  相似文献   

16.
The binding of leukocytes to vascular endothelium and their migration into tissues is mediated by adhesion molecules on the endothelial cells and leukocytes. Vascular adhesion protein-1 (VAP-1) is a 170–180/90-kDa endothelial molecule expressed most prominently in high endothelial venules in peripheral lymph node (PLN) type lymphatic tissues. VAP-1 mediates lymphocyte binding to PLN, tonsil and synovium. The expression of VAP-1 is induced in inflammatory diseases such as arthritis and gut inflammation. We examined the expression, structure and function of VAP-1 in normal and inflamed skin and compared it to those of other adhesion molecules implicated in skin homing. In psoriasis, lichen ruber planus, pemphigoid and allergic lesions, VAP-1 was markedly up-regulated. The expression of VAP-1 was also increased in biopsies of healthy skin of the patients. The VAP-1 molecule induced in skin is decorated with abundant sialic acids. VAP-1 in inflamed skin is functional, since inhibition with anti-VAP-1 monoclonal antibodies caused a 60% reduction in lymphocyte adhesion to vascular endothelium. Antibodies against E-selectin, which has been regarded as the major vascular addressin directing cutaneous lymphocyte traffic, and, surprisingly, against peripheral lymph node addressin (PNAd), caused inhibitions of 30% and 60%, respectively, in the frozen section adhesion assay. These findings suggest important roles also for VAP-1 and PNAd in lymphocyte homing into inflamed skin.  相似文献   

17.
Endothelialization of expanded polytetrafluoroethylene (ePTFE) has the potential to improve long-term patency for small-diameter vascular grafts. Successful endothelialization requires ePTFE surface modification to permit cell attachment to this otherwise non-adhesive substrate. We report here on a peptide fluorosurfactant polymer (FSP) biomimetic construct that promotes endothelial cell (EC)-selective attachment, growth, shear stability, and function on ePTFE. The peptide FSP consists of a flexible poly(vinyl amine) backbone with EC-selective peptide ligands for specific cell adhesion and pendant fluorocarbon branches for stable anchorage to underlying ePTFE. The EC-selective peptide (primary sequence: Cys-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys, CRRETAWAC) has demonstrated high binding affinity for the alpha(5)beta(1) integrin found on ECs. Here, we demonstrate low affinity of CRRETAWAC for platelets and platelet integrins, thus providing it with EC-selectivity. This EC-selectivity could potentially facilitate rapid in vivo endothelialization and healing without thrombosis for small-diameter ePTFE vascular grafts.  相似文献   

18.
Vascular adhesion protein-1 (VAP-1) is one of the molecules on the endothelial cell membrane, which may guide inflammatory cells into atherosclerotic lesions. This dual function molecule may also contribute to the pathogenesis of atherosclerosis and other vasculopathies via its enzymatic activity that oxidizes primary amines to produce their corresponding aldehydes, hydrogen peroxide, and ammonium. Because VAP-1 also exists in a soluble form, we analyzed its potential usefulness as a biomarker to monitor and predict the extent of ongoing atherosclerotic processes. Soluble VAP-1 (sVAP-1) levels were determined from the sera of 136 Finnish men with established coronary heart disease and in 275 controls using sandwich enzyme immunoassays and correlated to multiple risk factors for coronary events. Intriguingly, sVAP-1 showed a statistically significant correlation with diabetes in both cohorts. We then collected patients with type 1 diabetes and observed that sVAP-1 levels were highly elevated when the patients were metabolically compromised. On normalization of their blood glucose and ketone body levels by exogenous insulin, their sVAP-1 concentration rapidly decreased to control levels. Intravenous glucose tolerance and hyperinsulinemic clamp tests further showed that elevation of blood glucose per se did not increase sVAP-1 levels, but rather, sVAP-1 was inversely correlated with circulating insulin concentrations. In conclusion insulin appears to regulate shedding or clearance of VAP-1, and an increase in sVAP-1 because of absolute or relative insulin deficiency may be directly involved in the pathogenesis of diabetic angiopathy.  相似文献   

19.
Semicarbazide-sensitive amine oxidase (SSAO) resides on the vascular endothelium and smooth muscle cell surface and is capable of deaminating short chain aliphatic amines and producing toxic aldehydes and hydrogen peroxide. The enzyme, also known as a vascular adhesion protein-1, is involved in the inflammation process. This intriguing protein with dual functions is increased in the serum of diabetic and heart failure patients. In the present study we assessed the involvement of SSAO in a lipopolysaccharide-induced pulmonary inflammation model using transgenic mice that overexpress human vascular adhesion protein-1. Overexpression of SSAO activity increased the formation of protein-formaldehyde deposits in tissues. Lysine residues of proteins were the primary targets for cross-linkage with formaldehyde derived from deamination of methylamine. Lipo-polysaccharide-induced increases in inflammatory cells in the bronchoalveolar lavage (BAL) fluid were significantly higher in the transgenic than in the nontransgenic mice. BAL cell counts were also higher in the untreated transgenic than in nontransgenic mice. Blocking SSAO activity with a selective inhibitor significantly reduced the number of neutrophils as well as levels of macrophage inflammatory protein-1alpha, granulocyte colony-stimulating factor, tumor necrosis factor-alpha, and interleukin-6 in the BAL fluid. Inhalation of methylamine also increased BAL neutrophil counts. Together, these results suggest a role for SSAO-mediated deamination in pulmonary inflammation.  相似文献   

20.
Rafat M  Rotenstein LS  You JO  Auguste DT 《Biomaterials》2012,33(15):3880-3886
Cell adhesion molecules govern leukocyte-endothelial cell (EC) interactions that are essential in regulating leukocyte recruitment, adhesion, and transmigration in areas of inflammation. In this paper, we synthesized hydrogel matrices modified with antibodies against vascular cell adhesion molecule-1 (VCAM1) and endothelial leukocyte adhesion molecule-1 (E-Selectin) to mimic leukocyte-EC interactions. Adhesion of human umbilical vein ECs to polyvinyl alcohol (PVA) hydrogels was examined as a function of the relative antibody ratio (anti-VCAM1:anti-E-Selectin) and substrate elasticity. Variation of PVA backbone methacrylation was used to affect hydrogel matrix stiffness, ranging from 130 to 720 kPa. Greater EC adhesion was observed on hydrogels presenting 1:1 anti-VCAM1:anti-E-Selectin than on gels presenting either arginine-glycine-asparagine (RGD) peptide, anti-VCAM1, or anti-E-Selectin alone. Engineered cell adhesion - based on complementing the EC surface presentation - may be used to increase the strength of EC-matrix interactions. Hydrogels with tunable and synergistic adhesion may be useful in vascular remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号