首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Radiation therapy for squamous cell carcinoma of the oral cavity may be curative, but carries a risk of permanent damage to bone, salivary glands, and other soft tissues. We studied the potential of intensity modulated radiotherapy (IMRT) to improve target volume coverage, and normal tissue sparing for advanced oral cavity carcinoma (OCC). Six patients with advanced OCC requiring bilateral irradiation to the oral cavity and neck were studied. Standard 3D conformal radiotherapy (3DCRT) and inverse-planned IMRT dose distributions were compared by using dose-volume histograms. Doses to organs at risk, including spinal cord, parotid glands, and mandible, were assessed as surrogates of radiation toxicity. PTV1 mean dose was 60.8 ± 0.8 Gy for 3DCRT and 59.8 ± 0.1 Gy for IMRT (p = 0.04). PTV1 dose range was 24.7 ± 6 Gy for 3DCRT and 15.3 ± 4 Gy for IMRT (p = 0.001). PTV2 mean dose was 54.5 ± 0.8 Gy for 3DCRT and for IMRT was 54.2 ± 0.2 Gy (p = 0.34). PTV2 dose range was improved by IMRT (7.8 ± 3.2 Gy vs. 30.7 ± 12.8 Gy, p = 0.006). Homogeneity index (HI) values for PTV2 were closer to unity using IMRT (p = 0.0003). Mean parotid doses were 25.6 ± 2.7 Gy for IMRT and 42.0 ± 8.8 Gy with 3DCRT (p = 0.002). The parotid V30 in all IMRT plans was <45%. The mandible V50, V55, and V60 were significantly lower for the IMRT plans. Maximum spinal cord and brain stem doses were similar for the 2 techniques. IMRT provided superior target volume dose homogeneity and sparing of organs at risk. The magnitude of reductions in dose to the salivary glands and mandible are likely to translate into reduced incidence of xerostomia and osteoradionecrosis for patients with OCC.  相似文献   

3.
PURPOSE: To explore the potential of helical tomotherapy (HT) in the treatment of nasopharynx cancer. PATIENTS AND METHODS: Six T1-4 N1-3 patients were considered. A simultaneous integrated boost (SIB) technique was planned with inversely optimized conventional intensity-modulated radiotherapy (IMRT; dynamic multileaf collimator using the Eclipse-Helios Varian system) and HT. The prescribed (median) doses were 54 Gy, 61.5 Gy, and 64.5 Gy delivered in 30 fractions to PTV1 (planning target volume), PTV2, and PTV3, respectively. The same constraints for PTV coverage and for parotids, spinal cord, mandible, optic structures, and brain stem were followed in both modalities. The planner also tried to reduce the dose to other structures (mucosae outside PTV1, larynx, esophagus, inner ear, thyroid, brain, lungs, submental connective tissue, bony structures) as much as possible. RESULTS: The fraction of PTV receiving >95% of the prescribed dose (V95%) increased from 97.6% and 94.3% (IMRT) to 99.6% and 97% (HT) for PTV1 and PTV3, respectively (p<0.05); median dose to parotids decreased from 30.1 Gy for IMRT to 25.0 Gy for HT (p<0.05). Significant gains (p<0.05) were found for most organs at risk (OARs): mucosae (V30 decreased from 44 cm(3) [IMRT] to 18 cm(3) [HT]); larynx (V30: 25 cm(3) vs. 11 cm(3)); thyroid (mean dose: 48.7 Gy vs. 41.5 Gy); esophagus (V45: 4 cm(3) vs. 1 cm(3)); brain stem (D1%: 45.1 Gy vs. 37.7 Gy). CONCLUSION: HT improves the homogeneity of dose distribution within PTV and PTV coverage together with a significantly greater sparing of OARs compared to linac five-field IMRT.  相似文献   

4.
To create a concave dose distribution, a partial shielding radiation technique or intensity-modulated radiation therapy (IMRT) is usually required. However, in the present study we focused on how to create a concave dose distribution using conventional irradiation techniques. A treatment plan was experimentally created using planning CT scans of the neck. Two target volumes were predefined: planning target volume (PTV) 1, which included macroscopic tumor volume, tonsil, and bilateral retropharyngeal node, and PTV2, which included macroscopic and microscopic tumor volume. The prescribed doses for PTV1 and PTV2 were 66 Gy and 50 Gy, respectively. Nine isocenters, 7 in PTV2 and 2 on the sides of PTV2 were arranged equally spaced. Seven of the 9 arcs were divided in two arcs in order to avoid irradiating the spinal cord and salivary glands. Thus, 9 arcs were used in combination with a field size of 4-5 cm x 9-13 fields. Sixteen Gy was given to each isocenter with 10 MV photons. The plan was compared with a conventional plan (lateral opposing fields with electron boost) by analyzing the dose-volume histogram and dose distributions. The horseshoe-like distribution exceeding 66 Gy becomes conformal to PTV1, and the V95 of PTV1 (volume receiving 95% of the prescribed dose) was compatible with the conventional plan. On the other hand, maximum spinal cord dose decreased from 51 Gy with the conventional plan to 40 Gy with the 9-arc plan, and parotid gland volume (%) irradiated with > 32 Gy was reduced from 99% with the conventional plan to 72% with the 9-arc therapy. Lower normal tissue doses to the spinal cord and salivary gland, while maintaining the target dose, are achieved using the multiple arc plan, and the technique presented may be convenient and useful for facilities that do not yet have full access to IMRT.  相似文献   

5.
目的 评价脑胶质瘤调强放射治疗较三维适形放射治疗的剂量学优势.方法 本研究采用10例脑胶质瘤患者,针对所有患者分别进行3D CRT和IMRT的计划设计,利用剂量体积直方图评价不同照射技术中靶区和正常组织照射剂量、适形度指数和不均匀性指数.处方剂量为60 Gy.结果 IMRT计划脑干最大剂量和受照体积、患侧腮腺平均剂量和脊髓最大剂量均低于3D CRT计划.对于靶区适形度指数,IMRT计划优于3D CRT计划;对于不均匀性指数,两种计划模式的差异没有统计学意义.结论 在脑胶质瘤放疗中应用IMRT可以明显降低脑干的剂量和受照体积,为靶区剂量的提高提供了可能性.  相似文献   

6.
PURPOSE: To compare helical tomotherapy (HT) and conventional intensity-modulated radiotherapy (IMRT) using a variety of dosimetric and radiobiologic indexes in patients with locally advanced non-small cell lung cancer (LA-NSCLC). PATIENTS AND METHODS: A total of 20?patients with LA-NSCLC were enrolled. IMRT plans with 4-6 coplanar beams and HT plans were generated for each patient. Dose distributions and dosimetric indexes for the tumors and critical structures were computed for both plans and compared. RESULTS: Both modalities created highly conformal plans. They did not differ in the volumes of lung exposed to >?20?Gy of radiation. The average mean lung dose, volume receiving ≥?30?Gy, and volume receiving ≥?10?Gy in HT planning were 18.3?Gy, 18.5%, and 57.1%, respectively, compared to 19.4?Gy, 25.4%, and 48.9%, respectively, with IMRT (p?=?0.004, p?相似文献   

7.
Our purpose in this study was to implement three-dimensional (3D) gamma analysis for structures of interest such as the planning target volume (PTV) or clinical target volume (CTV), and organs at risk (OARs) for intensity-modulated radiation therapy (IMRT) dose verification. IMRT dose distributions for prostate and head and neck (HN) cancer patients were calculated with an analytical anisotropic algorithm in an Eclipse (Varian Medical Systems) treatment planning system (TPS) and by Monte Carlo (MC) simulation. The MC dose distributions were calculated with EGSnrc/BEAMnrc and DOSXYZnrc user codes under conditions identical to those for the TPS. The prescribed doses were 76 Gy/38 fractions with five-field IMRT for the prostate and 33 Gy/17 fractions with seven-field IMRT for the HN. TPS dose distributions were verified by the gamma passing rates for the whole calculated volume, PTV or CTV, and OARs by use of 3D gamma analysis with reference to MC dose distributions. The acceptance criteria for the 3D gamma analysis were 3/3 and 2 %/2 mm for a dose difference and a distance to agreement. The gamma passing rates in PTV and OARs for the prostate IMRT plan were close to 100 %. For the HN IMRT plan, the passing rates of 2 %/2 mm in CTV and OARs were substantially lower because inhomogeneous tissues such as bone and air in the HN are included in the calculation area. 3D gamma analysis for individual structures is useful for IMRT dose verification.  相似文献   

8.
For early-stage glottic cancers, intensity-modulated radiation therapy (IMRT) has been shown to have comparable local control to 3D-conformal radiotherapy with the advantage of decreased dose to the carotid arteries. The planning target volume (PTV) for early glottic cancers typically includes the entire larynx, plus a 3 to 5 mm uniform margin. The air cavity within the larynx creates a challenge for the inverse optimization process as the software attempts to “build up” dose within the air. This unnecessary attempt at dose build-up in air can lead to hot spots within the rest of the PTV and surrounding soft tissue. We hypothesized that removal of the air from the PTV would decrease hot spots and allow for a more homogeneous plan while still maintaining adequate coverage of the PTV.We analyzed 20 consecutive patients with early-stage glottic cancer, T1-2N0, who received IMRT at our institution from April 2015 to December 2016. Each patient received 63 to 65.25 Gy in 2.25 Gy per fraction. Two plans were created for each case: one in which the PTV included the laryngeal air cavity and one in which the air cavity was subtracted from the PTV to create a new PTV-air structure. Dosimetric variables were collected for PTV-air structure from both IMRT plans, including V100%, D98% D2%, and D0.2%. Dosimetric variables for spinal cord and the carotid arteries were also recorded. Homogeneity index (HI) defined as D98/D2 was calculated. Two-sided t-tests were used to compare dosimetric variables.The median PTV volume was 69.9 cc (standard deviation [SD] ± 28.7 cc) and the median air cavity volume removed was 11.0 cc (SD ± 3.4 cc). A 2-sided t-test revealed a statistically significant decrease in max dose (112.7% vs 108.8%, p value = 0.0002) and improvement of HI (0.93 vs 0.91, p value = 0.0023) for the PTV air in the IMRT plan optimized for PTV air, which had air excluded, compared to the IMRT plan optimized for PTV with air included. There was no significant worsening of PTV-air coverage or significant increase in doses to the organs at risk (OARs).The removal of the air cavity from the PTV for early-stage glottic cancers does not compromise PTV coverage or sparing of OARs and can result in a more homogeneous IMRT plan. A more homogeneous plan has the potential to reduce treatment morbidity, although further study is warranted to investigate the clinical impact of air cavity removal from the PTV.  相似文献   

9.
We compare different radiotherapy techniques-helical tomotherapy (tomotherapy), step-and-shoot IMRT (IMRT), and 3-dimensional conformal radiotherapy (3DCRT)-for patients with mid-distal esophageal carcinoma on the basis of dosimetric analysis. Six patients with locally advanced mid-distal esophageal carcinoma were treated with neoadjuvant chemoradiation followed by surgery. Radiotherapy included 50 Gy to gross planning target volume (PTV) and 45 Gy to elective PTV in 25 fractions. Tomotherapy, IMRT, and 3DCRT plans were generated. Dose-volume histograms (DVHs), homogeneity index (HI), volumes of lung receiving more than 10, 15, or 20 Gy (V(10), V(15), V(20)), and volumes of heart receiving more than 30 or 45 Gy (V(30), V(45)) were determined. Statistical analysis was performed by paired t-tests. By isodose distributions and DVHs, tomotherapy plans showed sharper dose gradients, more conformal coverage, and better HI for both gross and elective PTVs compared with IMRT or 3DCRT plans. Mean V(20) of lung was significantly reduced in tomotherapy plans. However, tomotherapy and IMRT plans resulted in larger V(10) of lung compared to 3DCRT plans. The heart was significantly spared in tomotherapy and IMRT plans compared to 3DCRT plans in terms of V(30) and V(45). We conclude that tomotherapy plans are superior in terms of target conformity, dose homogeneity, and V(20) of lung.  相似文献   

10.
11.
The purpose of this work was to develop a robust technique for planning intensity-modulated radiation therapy (IMRT) for prostate cancer patients who are to be entered into a proposed hypofractionated dose escalation study. In this study the dose escalation will be restricted to the prostate alone, which may be regarded as a concurrent boost volume within the overall planning target volume (PTV). The dose to the prostate itself is to be delivered in 3 Gy fractions, and for this phase of the study the total prostate dose will be 57 Gy in 19 fractions, with 50 Gy prescribed to the rest of the PTV. If acute toxicity results are acceptable, the next phase will escalate doses to 60 Gy in 20 x 3 Gy fractions. There will be 30 patients in each arm. This work describes the class solution which was developed to create IMRT plans for this study, and which enabled the same set of inverse planning parameters to be used during optimization for every patient with minimal planner intervention. The resulting dose distributions were compared with those that would be achieved from a 3D conformal radiotherapy (3DCRT) technique that used a multileaf collimator (MLC) but no intensity modulation to treat the PTV, followed by a sequential boost to raise the prostate to 57 Gy. The two methods were tested on anatomical data sets for a series of 10 patients who would have been eligible for this study, and the techniques were compared in terms of doses to the target volumes and the organs at risk. The IMRT method resulted in much greater sparing of the rectum and bladder than the 3DCRT technique, whilst still delivering acceptable doses to the target volumes. In particular, the volume of rectum receiving the minimum PTV dose of 47.5 Gy was reduced from a mean value of 36.9% (range 23.4% to 61.0%) to 18.6% (10.3% to 29.0%). In conclusion, it was found possible to use a class solution approach to produce IMRT dose escalated plans. This IMRT technique has since been implemented clinically for patients enrolled in the hypofractionated dose escalation study.  相似文献   

12.
目的 评价脑胶质瘤调强放射治疗较三维适形放射治疗的剂量学优势。方法 本研究采用10例脑胶质瘤患者,针对所有患者分别进行3D CRT和IMRT的计划设计,利用剂量体积直方图评价不同照射技术中靶区和正常组织照射剂量、适形度指数和不均匀性指数。处方剂量为60 Gy。结果 IMRT计划脑干最大剂量和受照体积、患侧腮腺平均剂量和脊髓最大剂量均低于3D CRT计划。对于靶区适形度指数,IMRT计划优于3D CRT计划;对于不均匀性指数,两种计划模式的差异没有统计学意义。结论 在脑胶质瘤放疗中应用 IMRT可以明显降低脑干的剂量和受照体积,为靶区剂量的提高提供了可能性。  相似文献   

13.
Purpose: To assess the potential benefit of proton–beam therapy in comparison to 3–D conformal photon therapy and photon– based intensity–modulated radiotherapy (IMRT) in prostate carcinoma for various stages of disease.Material and Methods: In five patients a 3–D conformal proton–based (two lateral beams) irradiation technique was compared with 3–D conformal photon–beam radiotherapy (four–field box) and IMRT (seven beams). For each patient different target volumes (CTVs) were defined according to early, intermediate and advanced stages of disease: CTV I consisted of the prostate gland, CTV II encompassed prostate and basis of seminal vesicles, and CTV III the prostate and seminal vesicles. Corresponding planning target volumes PTV I–III were defined by uniformly adding a margin of 5 mm to CTV I–III. Dose–volume histograms (DVHs) were analyzed for the different PTVs and various organs at risk (OARs), i.e., rectal wall, bladder, both femoral heads. In addition, maximum and mean doses were derived for the various structures and irradiated non–target tissue volumes were compared for PTV I–III and the different irradiation techniques. Finally, dose conformity and target dose homogeneity were assessed.Results: With photon– and proton–based radiotherapy techniques similar dose distributions were determined for PTV I–III: mean and maximum PTV dose values were between 99–104% and 102–107% of the normalized total doses (70 Gy), respectively. Conformity indices varied from 1.4 to 1.5 for the photon techniques, whereas for proton–beam radiotherapy values ranged from 1.1 to 1.4. Both the 3–D conformal and the IMRT photon treatment technique resulted in increased mean doses (~ 40–80%) for OARs when compared to protons. With both photon techniques non–target tissue volumes were irradiated to higher doses (mean dose difference ≥ 70%) compared to proton–beam radiotherapy. Differences occurred mainly at the low and medium dose levels, whereas in high dose levels similar values were obtained. In comparison to conformal 3–D treatments IMRT reduced doses to OARs in the medium dose range, especially for the rectal wall.Conclusion: IMRT enabled dose reductions to OARs in the medium dose range compared to 3–D conformal radiotherapy. A rather simple two–field proton–based treatment technique further reduced doses to OARs compared to photon–beam radiotherapy. The advantageous dose distribution of proton–beam therapy for prostate cancer may result in reduced side effects, which needs to be confirmed in clinical studies.  相似文献   

14.
《Medical Dosimetry》2014,39(3):256-260
Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.  相似文献   

15.
Some patients with gastric cancer benefit from post-operative chemo-radiotherapy, but adequately irradiating the planning target volume (PTV) whilst avoiding organs at risk (OAR) can be difficult. We evaluate 3-dimensional conformal radiotherapy (CRT), conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy (TT). TT, 2 and 5-field (F) CRT and IMRT treatment plans with the same PTV coverage were generated for 5 patients and compared. Median values are reported. The volume of left/right kidney receiving at least 20Gy (V20) was 57/51% and 51/60% for 2 and 5F-CRT, and 28/14% for TT and 27/19% for IMRT. The volume of liver receiving at least 30Gy (V30) was 45% and 62% for 2 and 5F-CRT, and 37% for TT and 35% for IMRT. With TT, 98% of the PTV received 95-105% of the prescribed dose, compared with 45%, 34% and 28% for 2F-CRT, 5F-CRT and IMRT respectively. Using conventional metrics, conventional IMRT can achieve comparable PTV coverage and OAR sparing to TT, but at the expense of PTV dose heterogeneity. Both irradiate large volumes of normal tissue to low doses. Additional studies are needed to demonstrate the clinical impact of these technologies.  相似文献   

16.
17.
PURPOSE: To describe a new intensity-modulated radiotherapy (IMRT) technique using helical tomotherapy for whole abdominal irradiation (WAI) in patients with advanced ovarian cancer. MATERIAL AND METHODS: A patient with radically operated ovarian cancer FIGO stage IIIc was treated in a prospective clinical trial with WAI to a total dose of 30 Gy in 1.5-Gy fractions as an additional therapy after adjuvant platinum-based chemotherapy. The planning target volume (PTV) included the entire peritoneal cavity. PTV was adapted according to breathing motion as detected in a four-dimensional respiratory-triggered computed tomography (4D-CT). Inverse treatment planning was done with the Hi-Art tomotherapy planning station. Organs at risk (OARs) were kidneys, liver, bone marrow, spinal cord, thoracic and lumbosacral vertebral bodies, and pelvic bones. Daily control of positioning accuracy was performed with megavoltage computed tomography (MV-CT). RESULTS: Helical tomotherapy enabled a very homogeneous dose distribution with excellent sparing of OARs and coverage of the PTV (V90 of 93.1%, V95 of 86.9%, V105 of 1.9%, and V110 of 0.01%). Mean liver dose was 21.57 Gy and mean kidney doses were 9.75 Gy and 9.14 Gy, respectively. Treatment could be performed in 18.1 min daily and no severe side effects occurred. CONCLUSION: Helical tomotherapy is feasible and fast for WAI. Tomotherapy enabled excellent coverage of the PTV and effective sparing of liver, kidneys and bone marrow.  相似文献   

18.
BACKGROUND AND PURPOSE: Intensity-modulated radiotherapy (IMRT) is used in most reported techniques for bilateral neck irradiation that aim at parotid gland sparing. A relatively simple conformal parotid-sparing technique (ConPas) was developed that uses no beam-intensity modulation. The purpose of this paper is to demonstrate, in patients with larynx or hypopharynx carcinoma, that ConPas enables adequate coverage of the primary tumor and the bilateral neck nodes, while keeping the mean parotid dose (MPD) < 26 Gy. PATIENTS AND METHODS: Treatment plans using ConPas and the conventional technique (using one anteroposterior supraclavicular and two lateral beams) were computed for ten consecutive patients with T1-4 N0-1 larynx or hypopharynx carcinoma (not T1 glottic). A dose of 46 Gy was prescribed to the primary tumor and the bilateral neck nodes, planned either with the conventional technique or ConPas, followed by a boost up to 70 Gy with a simple two-field technique. The target coverage of both techniques was compared using the V(95), the percentage of the planning target volume (PTV) of the primary tumor and nodal regions receiving at least 95% of the prescribed elective dose. The MPDs and the normal-tissue complication probabilities (NTCPs) of the parotid glands were compared using either technique including the boost up to 70 Gy. Dosimetric verification of the technique has been carried out, using ionization chamber measurements and film dosimetry. RESULTS: The mean V(95) was 85.2% and 91.2% (p = 0.08), the mean MPD 38.7 Gy and 25.4 Gy (p < 0.001), and the mean NTCP for the parotid glands 0.87 and 0.22 (p < 0.001) for the conventional technique and ConPas, respectively. The dosimetric verification shows a good agreement between dose calculation and measurement. CONCLUSION: ConPas enables adequate target coverage and clinically relevant parotid sparing in bilateral neck irradiation without beam-intensity modulation.  相似文献   

19.
目的探讨不同鼻咽癌束流调强放疗计划对腮腺剂量分布的影响。方法在相同的剂量要求和限制下,比较鼻咽癌常规束流调强放射治疗计划与仅保护一侧腮腺时或腮腺扩大计划靶区(加2或3mm边缘)时的束流调强放射治疗计划。结果仅保护一侧腮腺的调强计划与常规计划比较,PTV70在靶区覆盖情况、均匀指数和适形指数方面均相似。PTV59.4的最小剂量大于常规计划(P〈0.01),D95也得到提高(P〈0.01)。两个计划需保护的腮腺D50%VOL和Dmean相似。扩大腮腺计划靶区(加2或3mm边缘)的调强计划与常规计划比较:PTV70在靶区覆盖情况、均匀指数和适形指数方面均相似。然而从常规计划到腮腺加2mm边缘的调强计划再到加3mm边缘的调强计划,PTV59.4的Dmin和Dmean有下降的趋势,而脑干和脊髓的受量有增加的趋势。结论调强计划中腮腺保护困难时,可仅做保护一侧腮腺的束流调强放疗计划;估计腮腺可能产生明显的位置变化时,可考虑加大腮腺的计划靶区,以保证治疗过程腮腺始终能得到较好的保护。  相似文献   

20.
BACKGROUND AND PURPOSE: The recent RTOG guidelines for future clinical developments in gynecologic malignancies included the investigation of dose escalation in the paraaortic (PO) region which is, however, very difficult to target due to the presence of critical organs such as kidneys, liver, spinal cord, and digestive structures. The aim of this study was to investigate intensity-modulated radiotherapy's (IMRT) possibilites of either increasing, in a safe way, the dose to 50-60 Gy in case of macroscopic disease or decreasing the dose to organs at risk (OR) when treatment is given in an adjuvant setting. MATERIAL AND METHODS: The dosimetric charts of 14 patients irradiated to the PO region at the Department of Radiation Oncology, University Hospital of Liege, Belgium, in 2000 were analyzed in order to compare six-field conformal external-beam radiotherapy (CEBR) and five-beam IMRT approaches. Both CEBR and IMRT investigations were planned to theoretically deliver 60 Gy to the PO region in the safest way possible. Dose-volume histograms (DVHs) were calculated for clinical target volume (CTV), planning target volume (PTV), and OR. Student's t-test was used to compare the paired DVH data issued from CEBR and IMRT planning. RESULTS: The IMRT approach allowed to cover the PTV at a higher level as compared to CEBR. Using IMRT, the maximal dose to the spinal cord was reduced from 42.5 Gy to 26.2 Gy in comparison with CEBR (p < 0.00001). Doses to the kidneys were significantly reduced, with < 20% receiving >or= 20 Gy in the IMRT approach (p < 0.00001). Irradiation of digestive structures was not different, with < 25% receiving 35 Gy. Doses to the liver remained low regardless of the method used. CONCLUSION: At 60 Gy, IMRT is largely sparing the spinal cord and kidneys as compared to CEBR and represents an interesting approach not only for dose escalation up to 50-60 Gy (probably facilitating the radiochemotherapy approaches) but also in an adjuvant setting at lower doses. The dosimetric data of this study are in the same range as those published recently with a dynamic arc conformal approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号