首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4+ T helper (Th) clones can be divided into interleukin 2 (IL-2)-secreting Th1 and IL-4-secreting Th2 cells. We show in the present report that these two Th subsets have different activation requirements for lymphokine production and proliferation: namely, cholera toxin (CT) as well as forskolin inhibit T cell receptor (TCR)-mediated IL-2 production and proliferation in Th1 cells, while the same reagents fail to block IL-4 production and proliferation in Th2 cells. In addition, CT and forskolin differentially influence the proto-oncogene mRNA expression in Th1 vs. Th2 cells after stimulation with Con A. Since both reagents lead to elevated levels of intracellular cAMP, it is likely that Th1 and Th2 cells differ in their sensitivity to an increase in cAMP. Our results indicate that the two Th subsets use different transmission signal pathways upon TCR-mediated activation.  相似文献   

2.
Antigen-specific, Ia-restricted helper/inducer T lymphocytes consist of subsets that can be distinguished by lymphokine secretion. One, called Th1, secretes IL-2 and the other, termed Th2, produces BSF-1/IL-4 in response to stimulation by lectin or antigen receptor signals, and each uses the respective lymphokine as its autocrine growth factor. Cloned lines representing Th2 cells proliferate in response to both IL-2 and their autocrine lymphokine, BSF-1/IL-4, but this proliferation is dependent on the synergistic costimulator activity of the monokine, IL-1. In contrast, Th1 clones proliferate only in response to IL-2, are unresponsive to BSF-1/IL-4, and their growth is unaffected by IL-1. These response patterns are not attributable to variations in culture conditions but apparently reflect intrinsic properties of the two T cell subsets. Moreover, the unresponsiveness of Th1 cells to BSF-1/IL-4 may be related to lower levels of expression of surface receptors for this lymphokine. These results may explain the observed heterogeneity among bulk populations of T cells in terms of lymphokine responsiveness and requirement for accessory factors (costimulators). In addition, our findings suggest that IL-2, unlike BSF-1/IL-4, is a fully competent growth factor that is potentially involved in antigen-independent expansion of bystander T cells present at sites of immune stimulation.  相似文献   

3.
A transmembrane pump for organic anions was identified in resting murine T helper (Th) 2, but not Th1 lymphocyte cell clones, as revealed by extrusion of a fluorescent dye. Dye extrusion inhibition studies suggested that the pump may be the multidrug-resistance protein (MRP). The different expression of the pump in resting Th1 and Th2 cell clones correlated with their respective levels of MRP mRNA. The pump was inducible in Th1 cells by antigenic stimulation in vitro leading to equal expression in activated Th1 and Th2 cell clones. This suggested that dye extrusion might allow the detection of Th2 (resting or activated) or of activated Th1 cells ex vivo based on a functional parameter. To test this, mice were infected with Leishmania major parasites to activate L. major-specific T cells of either Th1 (C57BL/6 mice) or Th2 (BALB/c mice) phenotype: 2-3% of CD4+ lymph node T cells of both strains of mice extruded the dye, defining a cell subset that did not coincide with subsets defined by other activation markers. Fluorescence-activated cell-sorting revealed that the lymphokine response (Th1 or Th2, respectively) to L. major antigens was restricted to this dye-extruding subset.  相似文献   

4.
Lymphokine synthesis patterns of a panel of 19 T cell clones have been evaluated, using mRNA hybridization methods to examine 11 different mRNAs induced by Con A. The two types of CD4+ Th cell clone described previously were clearly distinguished by this procedure, and the differences between the two types have now been extended to six induced products. With minor exceptions, only Th1 clones synthesized mRNA for IL-2, IFN-gamma, and lymphotoxin, and only Th2 clones synthesized mRNA for IL-4, IL-5, and another induced gene, P600. Four more induced products were expressed preferentially but not uniquely by one or another type of clone: mRNAs for GM-CSF, TNF, and another induced, secreted product (TY5) were produced in larger amounts by Th1 clones, whereas preproenkephalin was preferentially expressed by Th2 clones. IL-3 was produced in similar amounts by both types of clone. mAbs were used to establish three bioassays that were functionally monospecific for IL-2, IL-3, and IL-4, and a new anti-IFN gamma mAb, XMG1.2, was used to establish an ELISA for IFN-gamma. These four assays were used to show that secreted protein and mRNA levels correlated well for all cell lines. The implications of these findings for normal T cells are discussed.  相似文献   

5.
6.
The liver is the major site of clearance and degradation of foreign antigens from the portal circulation. Despite the presence of hepatic accessory cells, antibody responses to orally administered antigens are uncommon. To ascertain if hepatic accessory cells are incapable of stimulating specific subsets of T lymphocytes, freshly isolated hepatic nonparenchymal and splenic cells were cultured with a panel of antigen-specific, H-2-restricted Th1 and Th2 HTL clones. Whereas spleen cells stimulated the proliferation of both Th1 and Th2 clones, hepatic nonparenchymal cells (NPC) stimulated the proliferation of only Th1 and not Th2 clones. Adding rIL-1, rIL-6, and rIL-7, alone or in combination, to the cultures did not result in proliferation of the Th2 clones. Despite the absence of Th2 proliferation, NPC were able to stimulate the secretion of IL-3 and IL-4 by Th2 clones in the presence of antigen. Moreover, adding hepatic NPC did not inhibit spleen cells from stimulating Th2 clones in the presence of antigen. Thus, the inability of liver cells to stimulate the proliferation of Th2 helper T lymphocytes appears to be secondary to an absence of either an unknown accessory cell cofactor or an accessory cell that preferentially presents antigen to Th2 cells. The selective activation of Th1 and not Th2 cells by liver accessory cells may result in suppression of antibody responses to orally administered antigens.  相似文献   

7.
Traditionally, CD4(+) T cells have been separated into two different subsets named T helper (Th)1 and Th2. A new IL-23-driven subset of Th cells called Th(IL-17) has now been described. The data suggest that IL-23 plays an important role in the differentiation of autoreactive pathogenic T cells. Whether these IL-23-induced Th(IL-17) cells are a unique subset or are related to other Th subsets is discussed.  相似文献   

8.
Clonal analysis of functionally distinct human CD4+ T cell subsets   总被引:7,自引:3,他引:7       下载免费PDF全文
A large number of CD4+ T cell clones, obtained from peripheral blood T lymphocytes by direct limiting dilution, allowed us to address the question whether functional heterogeneity exists within the human CD4+ T cell subset. Cytotoxic capacity of cloned T cells was analyzed with the use of anti-CD3 antibodies and target cells bearing FcR for murine IgG. 6 of 12 CD4+ clones obtained were able to lyse Daudi or P815 cells in the presence of anti-CD3 antibodies. The remaining six CD4+ T cell clones tested did not display anti-CD3-mediated cytotoxic activity and did not acquire this cytotoxic capacity during a culture period of 20 wk. In the absence of anti-CD3 mAb, no lytic activity against Daudi, P815, and K562 target cells was observed under normal culture conditions. Phenotypic analysis of these two distinct types of CD4+ T cells did not reveal differences with regard to reactivity with CDw29 (4B4) and CD45R (2H4) mAbs that have been described to recognize antigens associated with helper suppressor/inducer (respectively) CD4+ cells. The CD4+ clones without anti-CD3-mediated cytotoxic activities (Th2) consistently showed a high expression level of CD28 antigens, whereas the cytotoxic clones (Th1) expressed low amounts of CD28. Th1 CD4+ clones did produce IL-2, IFN-gamma, and TNF-alpha/beta, whereas the Th2 T cell clones produced minimal amounts of IL-2 and only low levels of INF-gamma and TNF-alpha/beta in response to anti-CD3 mAbs and PMA. Although not all CD4+ clones did release IL-4, there was no correlation with cytotoxic activity. Moreover, as compared with the Th1 CD4+ clones, Th2 CD4+ T cell clones proliferated moderately in response to immobilized anti-CD3 mAbs. However, proliferation reached the level of the cytotoxic clones when anti-CD28 mABs were present during culture. Both CD4+ subsets provided help for B cell differentiation upon stimulation with anti-CD3 mAbs. Our data suggest that the human CD4+ subset, in analogy to the murine system, comprises two functionally distinct T cell subpopulations, both of which are able to exert helper activity for polyclonal B cell differentiation, but which differ in cytotoxic capacity, lymphokine production, and requirements for proliferation. A function for these two types of T cells in the immune response is discussed.  相似文献   

9.
The subset of dendritic cells (DCs) and the nature of the signal inducing DC maturation determine the capacity of DCs to generate polarized immune responses. In this study, we show that the ability of human monocyte-derived DCs (myeloid DC(1)) to promote T helper type 1 (Th1) or Th2 differentiation was also found to be critically dependent on stimulator/responder ratio. At a low ratio (1:300), mature DCs that have been differentiated after inflammatory (Staphylococcus aureus Cowan 1 or lipopolysaccharide) or T cell-dependent (CD40 ligand) stimulation induced naive T cells to become Th2 (interleukin [IL]-4(+), IL-5(+), interferon gamma) effectors. Th2 differentiation was dependent on B7-CD28 costimulation and enhanced by OX40-OX40 ligand interactions. However, high DC/T cell ratio (1:4) favored a mixed Th1/Th2 cell development. Thus, the fact that the same DC lineage stimulates polarized Th1 or Th2 responses may be relevant since it allows the antigen-presenting cells to initiate an appropriate response for the signal received at the peripheral sites. Controlling the number and the rate of DC migration to the T cell areas in lymphoid tissues may be important for the therapeutic use of DCs.  相似文献   

10.
T cells secreting interleukin (IL)-4 and IL-5 (T helper cell type 2 [Th2] cells) play a detrimental role in a variety of diseases, but specific methods of regulating their activity remain elusive. T1/ST2 is a surface ligand of the IL-1 receptor family, expressed on Th2- but not on interferon (IFN)-gamma-producing Th1 cells. Prior exposure of BALB/c mice to the attachment (G) or fusion (F) protein of respiratory syncytial virus (RSV) increases illness severity during intranasal RSV challenge, due to Th2-driven lung eosinophilia and exuberant Th1-driven pulmonary infiltration, respectively. We used these polar models of viral illness to study the recruitment of T1/ST2 cells to the lung and to test the effects of anti-T1/ST2 treatment in vivo. T1/ST2 was present on a subset of CD4(+) cells from mice with eosinophilic lung disease. Monoclonal anti-T1/ST2 treatment reduced lung inflammation and the severity of illness in mice with Th2 (but not Th1) immunopathology. These results show that inhibition of T1/ST2 has a specific effect on virally induced Th2 responses and suggests that therapy targeted at this receptor might be of value in treating Th2-driven illness.  相似文献   

11.
The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1- like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.  相似文献   

12.
Committed T helper type 1 (Th1) and Th2 effector cells, resulting from chronic antigenic stimulation in interleukin (IL)-12 and IL-4, are implicated in the pathology of autoimmune and allergic diseases. Committed Th1 cells cannot be induced to change their cytokine profiles in response to antigenic stimulation and Th2 cytokine-inducing conditions. Here, we report that ectopic expression of GATA-3 induced Th2-specific cytokine expression not only in developing Th1 cells but also in otherwise irreversibly committed Th1 cells and a Th1 clone, HDK1. Moreover, cAMP, an inhibitor of cytokine production by Th1 cells, markedly augmented Th2 cytokine production in GATA-3-expressing Th1 cells. Ectopic expression of GATA-3 in developing Th1 cells, but not in Th1 clone HDK1, induced endogenous GATA-3, suggesting an autoregulatory mechanism for maintenance of GATA-3 expression in Th2 cells. Structure-function analyses of GATA-3 revealed that the NH(2)-terminal transactivation domain and the COOH-terminal zinc finger domain of GATA-3 were critical, whereas the NH(2)-terminal zinc finger domain was dispensable for the induction of IL-4. Both zinc fingers, however, were required for IL-5 induction. A Th2-specific DNaseI-hypersensitive site of the IL-4 locus was detected in GATA-3-expressing Th1 cells. Thus, GATA-3 can change the phenotype of committed Th1 cells, previously considered to be irreversible.  相似文献   

13.
14.
Interleukin (IL)-18 induces interferon (IFN)-γ synthesis and synergizes with IL-12 in T helper type 1 (Th1) but not Th2 cell development. We report here that IL-18 receptor (IL-18R) is selectively expressed on murine Th1 but not Th2 cells. IL-18R mRNA was expressed constitutively and consistently in long-term cultured clones, as well as on newly polarized Th1 but not Th2 cells. IL-18 sustained the expression of IL-12Rβ2 mRNA, indicating that IL-18R transmits signals that maintain Th1 development through the IL-12R complex. In turn, IL-12 upregulated IL-18R mRNA. Antibody against an IL-18R–derived peptide bound Th1 but not Th2 clones. It also labeled polarized Th1 but not Th2 cells derived from naive ovalbumin–T cell antigen receptor-αβ transgenic mice (D011.10). Anti–IL-18R antibody inhibited IL-18– induced IFN-γ production by Th1 clones in vitro. In vivo, anti–IL-18R antibody reduced local inflammation and lipopolysaccharide-induced mortality in mice. This was accompanied by shifting the balance from Th1 to Th2 responses, manifest as decreased IFN-γ and proinflammatory cytokine production and increased IL-4 and IL-5 synthesis. Therefore, these data provide a direct mechanism for the selective effect of IL-18 on Th1 but not Th2 cells. They also show that the synergistic effect of IL-12 and IL-18 on Th1 development may be due to the reciprocal upregulation of their receptors. Furthermore, IL-18R is a cell surface marker distinguishing Th1 from Th2 cells and may be a therapeutic target.  相似文献   

15.
Antigen-specific B cell responses to mucosally delivered proteins are dependent upon CD4-positive T helper (Th) cells, and the frequency of Th1 and Th2 cell responses after oral immunization may determine the level and isotype of mucosal antibody responses. We have used a protein- based vaccine, tetanus toxoid (TT), together with the mucosal adjuvant cholera toxin (CT), for oral immunization of mice to study the nature of antigen-specific Th cell subsets induced in Peyer's patches (PP) of the gastrointestinal (GI) tract and in the spleen (SP) during peak antibody responses. Mice orally immunized with TT and CT responded with antigen-specific secretory immunoglobulin A (S-IgA) antibodies in the GI tract, and with both IgG and IgA antibody responses in serum. PP and SP CD4+ T cells from mice orally immunized with TT plus CT were cultured with antigen-coated latex microspheres for induction of proliferative responses and for enumeration of cytokine producing CD4+ T cells. Interestingly, both PP and SP CD4+ T cell cultures showed increased numbers of IL-4- and IL-5 (Th2-type)-producing, spot-forming cells (SFCs) after 21 d of immunization, while essentially no interferon-gamma (IFN-gamma) or IL-2 (Th1-type) SFCs were noted. Cytokine-specific Northern blots and RT-PCR also revealed that significant IL-4 and IL-5 mRNA levels, but not IFN-gamma or IL-2 mRNA, were present in CD4+ T cells isolated from antigen-stimulated cultures. However, systemic immunization with TT and CT induced antigen-specific IgG and IgM but not IgA antibodies in serum. Further, both IL-2 and IFN- gamma-producing Th1-type cells as well as IL-4- and IL-5-secreting Th2- type cells were generated in SP. Our results show that oral immunization with TT and the mucosal adjuvant CT selectively induced antigen-specific Th2-type responses which may represent the major helper cell phenotype involved in mucosal IgA responses in the GI tract.  相似文献   

16.
Interleukin 12 (IL-12) facilitates the generation of a T helper type 1 (Th1) response, with high interferon gamma (IFN-gamma) production, while inhibiting the generation of IL-4-producing Th2 cells in polyclonal cultures of both human and murine T cells and in vivo in the mouse. In this study, we analyzed the effect of IL-12, present during cloning of human T cells, on the cytokine profile of the clones. The culture system used allows growth of clones from virtually every T cell, and thus excludes the possibility that selection of precommitted Th cell precursors plays a role in determining characteristics of the clones. IL-12 present during the cloning procedures endowed both CD4+ and CD8+ clones with the ability to produce IFN-gamma at levels severalfold higher than those observed in clones generated in the absence of IL-12. This priming was stable because the high levels of IFN-gamma production were maintained when the clones were cultured in the absence of IL-12 for 11 d. The CD4+ and some of the CD8+ clones produced variable amounts of IL-4. Unlike IFN-gamma, IL-4 production was not significantly different in clones generated in the presence or absence of IL-12. These data suggest that IL-12 primes the clone progenitors, inducing their differentiation to high IFN-gamma-producing clones. The suppression of IL-4-producing cells observed in polyclonally generated T cells in vivo and in vitro in the presence of IL-12 is not observed in this clonal model, suggesting that the suppression depends more on positive selection of non-IL-4-producing cells than on differentiation of individual clones. However, antigen- specific established Th2 clones that were unable to produce IFN-gamma with any other inducer did produce IFN-gamma at low but significant levels when stimulated with IL-12 in combination with specific antigen or insoluble anti-CD3 antibodies. This induction of IFN-gamma gene expression was transient, because culture of the established clones with IL-12 for up to 1 wk did not convert them into IFN-gamma producers when stimulated in the absence of IL-12. These results suggest that Th clones respond to IL-12 treatment either with a stable priming for IFN- gamma production or with only a transient low level expression of the IFN-gamma gene, depending on their stage of differentiation.  相似文献   

17.
The effect of a cloned allospecific human Th cell, termed 86, on the in vitro generation of altered self-reactive cytolytic T lymphocytes (CTL) was investigated. Utilizing the induction of hapten altered self-reactive CTL as a model for virus or tumor-specific cell-mediated immunity, we determined that the presence of small numbers of clone 86 cells markedly amplified the generation of hapten altered self-reactive CTL. The killer cells induced belong to the CD4-, CD8+ subset, are specific for the hapten-modified autologous stimulator cells present in culture, and are MHC class I restricted. The CTL induced under these culture conditions are readily expanded in the presence of IL-2 with maintenance of efficient and specific altered self-killing. Of interest, clone 86 cells preferentially enhance the growth of CD8+ T cells and selectively amplify altered self-cytolysis but not NK cell activity. Although in vitro clone 86 cells mediate help for CTL generation via the production of lymphokines (IL-4 but little IL-2), one can envision immunotherapeutic strategies for human disease that involve the adoptive transfer of Th cells functionally analogous to clone 86.  相似文献   

18.
In the dark ages of T cell biology, we considered two fates for differentiated CD4+ T cells: T helper (Th)1 and Th2 cells. Now we know that the reality is much more complex and interesting. The newest Th cell subset produces the cytokine IL-17. New evidence shows that the IL-17-related cytokine IL-25 is essential for Th2 responses in two infectious disease models.  相似文献   

19.
Type 1 and type 2 cloned T helper (Th) cells are believed to require different antigen-presenting cell (APC)-derived costimuli for proliferation. In the case of Th1-cloned T cells, CD28 signaling costimulates production of autocrine interleukin 2 (IL-2). Th2 cells produce their autocrine growth factor, IL-4, without costimulation, but require APC-derived costimuli, or IL-1, to respond to IL-4. Here we demonstrate that engagement of CD28 on Th2 cells with anti-CD28 antibody or with APC-associated B7 costimulates Th2 responsiveness to IL-4 but does not affect IL-4 or IL-2 production by Th2 cells. Costimulation of Th2 cells via CD28 appears to involve the induction of IL-1 production by Th2 cells, which acts in an autocrine fashion to induce IL-4 responsiveness. These results suggest that CD28-induced costimulation plays an important role in responses mediated by both types of Th cells.  相似文献   

20.
The differentiation of antigen-stimulated naive CD4 T cells into T helper (Th)1 or Th2 effector cells can be prevented in vitro by transforming growth factor (TGF)-beta and anti-interferon (IFN)-gamma. These cells proliferate and synthesize interleukin (IL)-2 but not IFN-gamma or IL-4, and can differentiate into either Th1 or Th2 cells. We have now used two-color Elispots to reveal substantial numbers of primed cells producing IL-2 but not IL-4 or IFN-gamma during the Th1- or Th2-biased immune responses induced by soluble proteins or with adjuvants. These cells were CD4(+)CD44(high) and were present during immediate and long-term immune responses of normal mice. Naive T cell receptor for antigen (TCR) transgenic (DO11.10) T cells were primed in vivo after adoptive transfer into normal hosts and FACS((R)) cloned under conditions that did not allow further differentiation. After clonal proliferation, aliquots of each clone were cultured in Th1- or Th2-inducing conditions. Many in vivo-primed cells were uncommitted, secreting IL-2 but not IL-4 or IFN-gamma at the first cloning step, but secreting either IL-4 or IFN-gamma after differentiation in the appropriate conditions. These in vivo-primed, uncommitted, IL-2-producing cells may constitute an expanded pool of antigen-specific cells that provide extra flexibility for immune responses by differentiating into Th1 or Th2 phenotypes later during the same or subsequent immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号