首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Important targets for the prevention and treatment of diabetic complications include aldose reductase (AR) inhibitors (ARIs) and inhibitors of advanced glycation endproduct (AGE) formation. Here we evaluate the inhibitory activities of prenylated flavonoids isolated from Sophora flavescens, a traditional herbal medicine, on rat lens AR (RLAR), human recombinant AR (HRAR) and AGE formation. Among the tested compounds, two prenylated chalcones--desmethylanhydroicaritin (1) and 8-lavandulylkaempferol (2)--along with five prenylated flavanones--kurarinol (8), kurarinone (9), (2S)-2'-methoxykurarinone (10), (2S)-3beta,7,4'-trihydroxy-5-methoxy-8-(gamma,gamma-dimethylally)-flavanone (11), and kushenol E (13) were potent inhibitors of RLAR, with IC50 values of 0.95, 3.80, 2.13, 2.99, 3.77, 3.63 and 7.74 microM, respectively, compared with quercetin (IC50 7.73 microM). In the HRAR assay, most of the prenylated flavonoids tested showed marked inhibitory activity compared with quercetin (IC50 2.54 microM). In particular, all tested prenylated flavonols, such as desmethylanhydroicaritin (1, IC50 0.45 microM), 8-lavandulylkaempferol (2, IC50 0.79 microM) and kushenol C (3, IC50 0.85 microM), as well as a prenylated chalcone, kuraridin (5, IC50 0.27 microM), and a prenylated flavanone, (2S)-7,4'-dihydroxy-5-methoxy-8-(gamma,gamma-dimethylally)-flavanone (12, IC50 0.37 microM), showed significant inhibitory activities compared with the potent AR inhibitor epalrestat (IC50 0.28 microM). Interestingly, prenylated flavonoids 1 (IC50 104.3 microg mL(-1)), 2 (IC50 132.1 microg mL(-1)), 3 (IC50 84.6 microg mL(-1)) and 11 (IC50 261.0 microg mL(-1)), which harbour a 3-hydroxyl group, also possessed good inhibitory activity toward AGE formation compared with the positive control aminoguanidine (IC50 115.7 microg mL(-1)). Thus, S. flavescens and its prenylated flavonoids inhibit the processes that underlie diabetic complications and related diseases and may therefore have therapeutic benefit.  相似文献   

2.
Chung MY  Rho MC  Ko JS  Ryu SY  Jeune KH  Kim K  Lee HS  Kim YK 《Planta medica》2004,70(3):258-260
Four prenylflavonoids, kurarinone ( 1), a chalcone of 1, kuraridin ( 2), kurarinol ( 3), kushenol H ( 4) and kushenol K ( 5) isolated from the roots of Sophora flavescens were investigated for their inhibitory effects on diacylglycerol acyltransferase (DGAT). The flavonoids inhibited DGAT activity in a dose-dependent manner with IC50 values of 10.9 microM ( 1), 9.8 microM ( 2), 8.6 microM ( 3), 142.0 microM ( 4) and 250 microM ( 5). The prenylflavonoids without C3-OH ( 1, 2, 3) showed stronger inhibition than those with C3-OH ( 4, 5). On the other hand, flavonoids without side chains (hesperetin, naringenin, quercetin and kaempferol) did not inhibit the enzyme activity at a final concentration of 800 microM. These data suggest that the lavandulyl side chain and the position of the hydroxy group are important for high DGAT inhibitory activity. Compound 1 also inhibited de novo synthesis of triacylglycerol (TG) in Raji cells.  相似文献   

3.
A phytochemical study of an ethyl acetate extract of Decussocarpus rospigliosii leaves led to the isolation of six 3'-8'-biapigenin derivatives identified as amentoflavone (1), podocarpusflavone A (2), sequoiaflavone (3), podocarpusflavone B (4), 7,7'-di-O-methylamentoflavone (5) and heveaflavone (6). Biflavones 1-4 showed strong inhibitory activity on several PDE isoforms. Biflavone (5) showed selective and potent inhibition of the PDE4 isoform (IC50=1.48+/-0.21 microM) and was almost as active as the reference drug Rolipram (IC50=1.1+/-0.2 microM).  相似文献   

4.
CYP3A4 inhibitors isolated from Licorice   总被引:1,自引:0,他引:1  
The extract of licorice (Glycyrrhiza uralensis FISHER, Leguminosae) showed CYP3A4 inhibitory activity with the IC50 value of 0.022 mg/ml. Bioassay-guided purification afforded nine compounds, 3-(p-hydroxyphenyl)propionic acid (1), isoliquiritigenin (2), (3R)-vestitol (3), licopyranocoumarin (4), 4-hydroxyguaiacol apioglucoside (5), liquiritin (6), liquiritigenin 7,4'-diglucoside (7), liquiritin apioside (8), and glucoliquiritin apioside (9). Among these compounds, 3, 7, and 5 showed potent CYP3A4 inhibitory activities with IC50 values of 3.6, 17, and 20 microM, respectively. Glycyrrhizin (10), a main constituent of licorice, however, was inactive for CYP3A4 inhibition.  相似文献   

5.
Novel chalcones were found as potent inhibitors of interleukin-5 (11-5). 1-(6-Benzyloxy-2-hydroxyphenyl)-3-(4-hydroxyphenyl)propenone (2a, 78.8% inhibition at 50 microM, IC50 = 25.3 microM) was initially identified as a potent inhibitor of IL-5. This activity is comparable to that of budesonide or sophoricoside (1a). The benzyloxy group appears to be critical for the enhancement of the IL-5 inhibitory activity. To identify the role of this hydrophobic moiety, cyclohexyloxy (2d), cyclohexylmethoxy (2c), cyclohexylethoxy (2e), cyclohexylpropoxy (2f), 2-methylpropoxy (2g), 3-methylbutoxy (2h), 4-methylpentoxy (2i), and 2-ethylbutoxy (2j) analogs were prepared and tested for their effects on IL-5 bioactivity. Compounds 2c (IC50 = 12.6 microM), 2d (IC50 = 12.2 microM), and 2i (IC50 = 12.3 microM) exhibited the most potent activity. Considering the cLog P values of 2, the alkoxy group contributes to the cell permeability of 2 for the enhancement of activity, rather than playing a role in ligand motif binding to the receptor. The optimum alkoxy group in ring A of 2 should be one that provides the cLog P of 2 in the range of 4.22 to 4.67.  相似文献   

6.
All serotonin derivatives described here (1-9) inhibited BACE 1 in a dose dependent manner. The 50% Inhibition Concentration (IC50) of N-cinnamoyl serotonin (1) was 86.7 +/- 4.0 microM. The peptide conjugation of serotonin derivatives influenced the BACE 1 inhibitory activity. Among serotonin derivatives (1-8), introduction of substituents, such as hydroxyl and methoxy groups at the 4'-position decreased the inhibitory activity (N-p-coumaroyl serotonin (2), N-p-methoxy cinnamoyl serotonin (3)). With a hydroxylgroup at the 4'-position, and the meta-hydroxy function being substituted by a hydroxyl group or methoxy group (N-caffeoyl serotonin (4), N-feruloyl serotonin (5)), inhibitory activity was weakened, (IC50 >400 microM). BACE 1 inhibitory activity was effected by the substituents of the cinnamic acid moiety. This is the first report on Structure-Activity-Relationships (SAR) for the BACE 1-inhibiting activity of serotonin derivatives. These serotonin derivatives, which have anti-oxidative effects as well are expected to be useful in the study of the mechanisms of Alzheimer's disease.  相似文献   

7.
Novel isoflavones were found to be potent inhibitors of interleukin-5 (Il-5). 5-Benzyloxy-3-(4-hydroxyphenyl)-4H-chromen-4-one (2a, 87.8% inhibition at 50 microM, IC50 = 15.3 microM) was initially identified as a potent inhibitor of IL-5. Its activity was comparable to that of budesonide or sophoricoside (1a). The benzyloxy group appeared to be critical for the enhancement of the IL-5 inhibitory activity. To identify the role of this hydrophobic moiety, 5-cyclohexylmethoxy (2d), 7-cyclohexylmethoxy (2e), 5-cyclohexylethoxy (2f), 5-cyclohexylpropoxy (2g), 5-(2-methylpropoxy) (2h), 5-(3-methylbutoxy) (2i), 5-(4-methylpentoxy) (2j) and 5-(2-ethylbutoxy) (2k) analogs were prepared and tested for their effects on the bioactivity of IL-5. Compounds 2d (IC50 = 5.8 microM), 2e (IC50 = 4.0 microM) and 2j (IC50 = 7.2 microM) exhibited the most potent activities. Considering the cLog P values of compounds 2 and the different three dimensional structures of 2d and 2e, the alkoxy group on ring A contributed to their cell permeability for the enhancement of activity, rather than playing a role in the ligand motif binding to the receptor. The optimum alkoxy group should be one that provides cLog P values of compounds 2 in the range of 4.13 to 4.39.  相似文献   

8.
From the rhizomes of Atractylodes lancea, 2-[(2'E)-3',7'-dimethyl-2',6'-octadienyl]-4-methoxy-6-methylphenol (1) was isolated as a new natural product. The compound showed strong inhibitory effects on 5-lipoxygenase (5-LOX) and cyclooxygenase-1 (COX-1), but exhibited only weak antioxidative activities [IC50 = 0.1 microM (5-LOX), 2 microM (COX-1), 9 microM (PMN/FMLP), 28 microM (PMNIOZ)]. Moreover, five new acetylenes were isolated and elucidated as (3Z,5E,11E)-tridecatriene-7,9-diynyl-1-O-(E)-ferulate (2), erythro-(1,3Z,11E)-tridecatriene-7,9-diyne-5,6-diyl diacetate (3), (1Z)-atractylodin (4), (1Z)-atractylodinol (5), (1Z)-acetylatractylodinol (6) plus the known (4E,6E,12E)-tetradecatriene-8,10-diyne-1,3-diyl diacetate (7). Among the acetylenes, only 2 showed strong inhibition of 5-LOX and COX-1 activity (IC50 (5-LOX) = 3 microM, IC50 (COX-1) = 1 microM). In addition, the fatty acids linoleic acid, oleic acid and palmitic acid with previously established 5-LOX-/COX-1 inhibitory actions were identified as major constituents of the n-hexane extract and thus seem to contribute to the plant's in vitro activity.  相似文献   

9.
Synthesis and antimalarial activity of sulfonamide chalcone derivatives   总被引:1,自引:0,他引:1  
A series of sulfonamide chalcone derivatives were synthesized and investigated for their abilities to inhibit beta-hematin formation in vitro and their activity against cultured Plasmodium falciparum parasites. Inhibition of beta-hematin formation was minimal in the aromatic ring of the chalcone moiety as it appeared for compounds 4b, 4d-f, and greatest with compounds 4g (IC50 0.48 microM) and 4k (IC50 0.50 microM) with a substitution of 3,4,5-trimethoxyl and 3-pyridinyl, respectively. In this study, the most active compound resulted 1[4'-N(2',5'-dichlorophenyl) sulfonyl-amidephenyl]-3-(4-methylphenyl)-2-propen-1-one 4i, effective as antimalarial by the inhibition of cultured P. falciparum parasites (1 microM). These studies open up the novel possibility of development of sulfonamide derivatives as antimalarials that target beta-hematin formation and the inhibition of the development of cultured P. falciparum parasites, which should help delay the rapid onset of resistance to drugs acting at only a single site. Results with these assays suggest that chalcones exert their antimalarial activity via multiple mechanisms.  相似文献   

10.
Recent interest in site-selective cAMP analogs has focused on the role of 8-chloro-adenosine (8-Cl-adenosine) in the inhibition of tumor cell growth by 8-chloro-cAMP (8-Cl-cAMP) (Van Lookeren Campagne, et al. Cancer Res 1991; 51: 1600-5). We have evaluated 8-Cl-cAMP and 8-Cl-adenosine for their growth inhibitory activity against two human colon adenocarcinoma cell lines, HCT116 and FET. Because these cell lines have been adapted to grow in chemically defined medium we were able to evaluate the effect of serum on 8-Cl-cAMP's growth inhibitory activity. In addition, cells grown in serum-free medium were tested for their sensitivity to 8-Cl-cAMP, serum-activated 8-Cl-cAMP and 8-Cl-adenosine. IC50 values, determined by measuring cell growth using a MTT colorimetric assay, showed that 'serum activation' of 8-Cl-cAMP was required to achieve inhibition of HCT116 (IC50 = 1.3 +/- 0.1 microM) and FET (IC50 = 2.0 +/- 0.1 microM) cell growth. IC50 values were not reached at the highest concentrations tested (IC50 > 500 microM) in the absence of serum, permitting us to conclude that 8-Cl-cAMP does not have growth inhibitory activity between 1.0 and 500 microM doses. HCT116 and FET cells grown in media containing serum and in the presence of 8-Cl-adenosine had IC50 values of 0.6 +/- 0.1 and 0.9 +/- 0.2 microM, respectively. HCT116 and FET cells grown in chemically defined medium containing 8-Cl-adenosine exhibited IC50 values of 1.0 +/- 0.1 and 3.1 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Seven flavonoids were isolated from the whole plants and fruits of Cayratia japonica through the activity-guided isolation of a methanol extract using a monoamine oxidase (MAO) inhibition assay as a monitor. The chemical structures of the isolates were assigned as apigenin-7-O-beta-D-glucuronopyranoside (1), apigenin (2), luteolin (3), luteolin-7-O-beta-D-glucopyranoside (4), (+)-dihydroquercetin (taxifolin) (5), (+)-dihydrokaempferol (aromadendrin) (6) and quercetin (7). Among the isolated compounds, flavones such as apigenin (2) and luteolin (3), as well as the flavonol, quercetin (7) showed potent inhibitory effects against the MAO activity with IC50 values of 6.5, 22.6, and 31.6 microM, respectively. However, the flavone glycosides, apigenin-7-O-beta-D-glucuronopyranoside (1) and luteolin-7-O-beta-D-glucopyranoside (4), showed mild MAO inhibition (IC50 values: 81.7 and 118.6 microM, respectively). The flavanonol derivatives, taxifolin (5) and aromadendrin (6), also showed weak inhibition (IC50 values: 154.7 and 153.1 microM, respectively). Furthermore, quercetin (7) had a more potent inhibitory effect on MAO-A (IC50 value: 2.8 microM) than MAO-B (IC50 value: 90.0 microM). Apigenin (2) and luteolin (3) also preferentially inhibited MAO-A (IC50 values: 1.7 and 4.9 microM, respectively) compared with MAO-B (IC50 values: 12.8 and 59.7 microM, respectively).  相似文献   

12.
The N-substituted tricyclic 2-aminochromone derivatives 1a, 2a, and 2b were obtained by treating the corresponding (methylthio) or (methylsulfinyl) derivatives 10, 11, or 12, respectively, with an excess of the proper amines. Compound 2c was synthesized through the reaction of 2-naphthol with the ethyl N,N-diphenylmalonamate/POCl(3) reagent 14. The N-substituted 4-aminocoumarin bicyclic and tricyclic derivatives 5-8 were prepared by treating the corresponding chloro derivatives with the excess suitable amines. Compounds 1, 2, 5-8 were tested in vitro for their antiproliferative activity (DNA synthesis inhibition in Ehrlich cells) and cytotoxicity (MTT test in HeLa cells). The inhibitory properties of three selected compounds (5c, 5e, 7c) on protein and RNA syntheses in Ehrlich cells were also evaluated. Among the 27 compounds tested, 10 4-aminocoumarin derivatives (5-8) and two 2-aminochromone derivatives (1a and 2a) showed an appreciable antiproliferative activity (IC(50) range: 1.74-13.8 microM), whereas only four compounds 5-8 exhibited a comparable cytotoxic activity (IC(50) range: 4.95-12.9 microM).  相似文献   

13.
The process of degranulation of mast cells and neutrophils contributes to inflammatory disorders. Activation of microglial cells and macrophages is believed to be involved in inflammatory, infectious and degenerative diseases of the CNS. Combining the potent inhibition of chemical mediators released by the degranulation of mast cells or neutrophils and from the activated microglial cells or macrophages, would lead to a promising anti-inflammatory agent for the treatment of peripheral and central inflammation. A series of chalcone derivatives have been reported to have potent anti-inflammatory activity. In an effort to continually develop potent anti-inflammatory agents, novel series of chalcones, 2'-hydroxy- and 2',5'-dihydroxychalcones were synthesized and their inhibitory effects on the activation of mast cells, neutrophils, microglial cells and macrophages were evaluated in-vitro. The chalcones were prepared by Claisen-Schmidt condensation of appropriate acetophenones with an appropriate aromatic aldehyde. The alkoxychalcones were prepared with appropriate hydroxychalcones and alkyl iodide and the dihydroxychalcones were prepared by hydrogenation of an appropriate chalcone with Pd/C. Almost all of the hydroxychalcones exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe/cytochalasin B (fMLP/CB). Of the hydroxychalcones, compound 1 was the most potent inhibitor of the release of beta-glucuronidase (IC50=1.6+/-0.2 microM) and lysozyme (IC50=1.4+/-0.2 microM) from rat neutrophils stimulated with fMLP/CB. Almost all of the 2',5'-dialkoxychalcones exhibited potent inhibitory effects on nitric oxide (NO) formation from murine microglial cell lines N9 stimulated with lipopolysaccharide (LPS). Of these, compound 11 showed the greatest effect (IC50=0.7+/-0.06 microM). The present results demonstrated that most of the chalcone derivatives have an anti-inflammatory effect. The inhibitory effects of dialkoxychalcones, 10-12 on inflammation are probably not due to the inhibition of mast cells and neutrophil degranulation, but are mediated through the suppression of NO formation from N9 cells.  相似文献   

14.
Park WS  Son ED  Nam GW  Kim SH  Noh MS  Lee BG  Jang IS  Kim SE  Lee JJ  Lee CH 《Planta medica》2003,69(5):459-461
The methanolic extract of the fruits of Torilis japonica showed a potent inhibition against 5 alpha-reductase activity in vitro. Bioassay-guided fractionation of the methanol extract of the fruits followed by repeated silica gel chromatography led to the isolation of an active principle and its structure was identified as torilin on the basis of spectroscopic data. Torilin (IC50 = 31.7 +/- 4.23 microM) showed a stronger inhibition of 5 alpha-reductase than alpha-linolenic acid (IC50 = 160.3 +/- 24.62 microM) but was weaker than finasteride. (IC50 = 0.38 +/- 0.06 microM). Simple guaiane-type compounds, such as (-)-guaiol and guaiazulene showed weak inhibitory effects on the 5 alpha-reductase activity with IC50 values of f 81.6 microM and 100.8 microM, respectively, while azulene was not active. These results suggest that both degrees of unsaturation and the side-chain in the guaiane skeleton are important for the manifestation of 5 alpha-reductase inhibition.  相似文献   

15.
A group of 1,3-diarylprop-2-yn-1-ones (13, 17, 23, 26 and 27) possessing a C-3 p-SO2Me COX-2 pharmacophore were designed, synthesized and evaluated as potential dual inhibitors of cyclooxygenase-1/2 (COX-1/2) and 5/15-lipoxygenases (5/15-LOX) that exhibit vivo antiinflammatory and analgesic activities. Among this class of compounds, 3-(4-methanesulfonylphenyl)-1-(4-fluorophenyl)prop-2-yn-1-one (13h) was identified as a potent and selective inhibitor of COX-2 (COX-2 IC50 = 0.1 microM; SI = 300), being 5-fold more potent than rofecoxib (COX-2 IC50 = 0.5 microM; SI > 200). In a rat carrageenan-induced paw edema assay 13h exhibited moderate antiinflammatory activity (26% inhibition of inflammation) at 3 h after administration of a 30 mg/kg oral dose. A related dual COX-1/2 and 5/15-LOX inhibitor 3-(4-methanesulfonylphenyl)-1-(4-cyanophenyl)prop-2-yn-1-one (13g, COX-1 IC50 = 31.5 microM; COX-2 IC50 = 1.0 microM; SI = 31.5; 5-LOX IC50 = 1.0 microM; 15-LOX IC50 = 3.2 microM) exhibited more potent antiinflammatory activity (ED50 = 90 mg/kg), being superior to the reference drug aspirin (ED50 = 129 mg/kg). Within this group of compounds 3-(4-methanesulfonylphenyl)-1-(4-isopropylphenyl)prop-2-yn-1-one (13e) emerged as having an optimal combination of in vitro COX-1/2 and 5/15-LOX inhibitory effects (COX-1 IC50 = 9.2 microM; COX-2 IC50 = 0.32 microM; SI = 28; 5-LOX IC50 = 0.32 microM; 15-LOX IC50 = 0.36 microM) in conjunction with a good antiinflammatory activity (ED50 = 35 mg/kg) compared to the reference drug celecoxib (ED50 = 10.8 mg/kg) when administered orally. A molecular modeling study where 13e was docked in the COX-2 binding site indicated the C-1 p-i-Pr group was positioned within a hydrophobic pocket (Phe205, Val344, Val349, Phe381 and Leu534), and that this positioning of the i-Pr group facilitated orientation of the C-3 p-SO2Me COX-2 pharmacophore such that it inserted into the COX-2 secondary pocket (His90, Arg513, Ile517 and Val523). A related docking study of 13e in the 15-LOX binding site indicates that the C-3 p-SO2Me COX-2 pharmacophore was positioned in a region closer to the catalytic iron site where it undergoes a hydrogen bonding interaction with His541 and His366, and that the C-1 p-i-Pr substituent is buried deep in a hydrophobic pocket (Ile414, Ile418, Met419 and Ile593) near the base of the 15-LOX binding site.  相似文献   

16.
Seven diterpenes, four polyacetylenes, a lipid glycerol, and two sterols were isolated from the methylene chloride fraction of the root of Aralia cordata. Their chemical structures were determined as (-)-pimara-8(14),15-dien-19-oic acid (2), pimaric acid (3), (-)-kaur-16-en-19-oic acid (4), 17-hydroxy-ent-kaur-15-en-19-oic acid (9), 7alpha-hydroxy-(-)-pimara-8(14),15-dien-19-oic acid (10), 16alpha,17-dihydroxy-(-)-kauran-19-oic acid (11), 16-hydroxy-17-isovaleroyloxy-ent-kauran-19-oic acid (12), falcarindiol (5), dehydrofalcarindiol (6), dehydrofalcarindiol-8-acetate (7), falcarindiol-8-acetate (8), alpha-mono palmitin (13), stigmasterol (1), and daucosterol (14) by the spectral evidences. These compounds were tested with COX-1 and COX-2 inhibition assays. This study found that compounds 2, 4, 5, 6, 7, 8, and 10 inhibited COX-1 dependent conversion of the exogenous arachidonic acid to PGE2 in a dose-dependent manner with IC50 values of 134.2 microM, 121.6 microM, 170 microM, 50.4 microM, 11.7 microM, 99.6 microM, and 69.6 microM, respectively. But, most of these compounds weakly inhibited COX-2 dependent PGE2 generation. Among them, only compound 4 showed relatively significant inhibitory activity (IC50: 127.6 microM).  相似文献   

17.
The structure-activity relationships of flavonoids with regard to their inhibitory effects on phosphodiesterase (PDE) isozymes are little known. The activities of PDE1-5 were measured by a two-step procedure using cAMP with [(3)H]-cAMP or cGMP with [(3)H]-cGMP as substrates. In the present results, PDE1, 5, 2, and 4 isozymes were partially purified from guinea pig lungs in that order, and PDE3 was from the heart. The IC(50) values of PDE1-5 were greater than those reported previously for the reference drugs, vinpocetin, EHNA, milrinone, Ro 20-1724, and zaprinast, by 5-, 5-, 7-, 5-, and 3-fold, respectively. As shown in Table 2, luteolin revealed non-selective inhibition of PDE1-5 with IC(50) values in a range of 10-20 microM, as did genistein except with a low potency on PDE5. Daidzein, an inactive analogue of genistein in tyrosine kinase inhibition, showed selective inhibition of PDE3 with an IC(50) value of around 30 microM, as did eriodictyol with an IC(50) value of around 50 microM. Hesperetin and prunetin exhibited more-selective inhibition of PDE4 with IC(50) values of around 30 and 60 microM, respectively. Luteolin-7-glucoside exhibited dual inhibition of PDE2/PDE4 with an IC(50) value of around 40 microM. Diosmetin more-selectively inhibited PDE2 (IC(50) of 4.8 microM) than PDE1, PDE4, or PDE5. However, biochanin A more-selectively inhibited PDE4 (IC(50) of 8.5 microM) than PDE1 or PDE2. Apigenin inhibited PDE1-3 with IC(50) values of around 10-25 microM. Myricetin inhibited PDE1-4 with IC(50) values of around 10-40 microM. The same was true for quercetin, but we rather consider that it more-selectively inhibited PDE3 and PDE4 (IC(50) of < 10 microM). In conclusion, it is possible to synthesize useful drugs through elucidating the structure-activity relationships of flavonoids with respect to inhibition of PDE isozymes at concentrations used in this in vitro study.  相似文献   

18.
The inhibitory effect of etafenone hydrochloride (etafenone) on platelet aggregation in rabbit platelet rich plasma and the involvement of the arachidonic acid (AA) cascade in the inhibitory mechanism for etafenone on platelet aggregation were studied. 1) Etafenone exhibited a dose-dependent inhibitory effect on collagen (15--20 micrograms/ml)-induced platelet aggregation, and its median inhibitory concentration (IC50) was 1.7 X 10(-5)M. 2) In ADP (20 microM)-induced aggregation, etafenone also exhibited a dose-dependent inhibitory effect, but its IC50 was 2.7 X 10(-4)M and was significantly higher than that in the case of collagen. 3) Etafenone inhibited AA (0.3--0.5mM)-induced platelet aggregation dose-dependently. Its IC50 was 2.8 X 10(-5)M. 4) In thromboxane (TX) A2-induced aggregation, etafenone exhibited a dose-dependent inhibition, and the IC50 was 3.2 X 10(-4)M. 5) Trapidil which was reported to inhibit platelet aggregation via phosphodiesterase (PDE) inhibition had a similar IC50 on ADP- and TXA2-induced platelet aggregation to that of etafenone, but in collagen- and AA-induced aggregation, its IC50 was higher than that of etafenone. 6) Etafenone (3 X 10(-6)--3 X 10(-4)M) dose-dependently inhibited the production of TXB2 in PRP induced by collagen. 7) Etafenone scarcely affected TXA2 synthetase activity in rabbit platelet homogenate. 8) The correlation between the inhibitory effect of etafenone on platelet aggregation and inhibition of AA metabolism activation and PDE inhibition was discussed.  相似文献   

19.
20.
Xanthine oxidase inhibitory activity of Vietnamese medicinal plants   总被引:3,自引:0,他引:3  
Among 288 extracts, prepared from 96 medicinal plants used in Vietnamese traditional medicine to treat gout and related symptoms, 188 demonstrated xanthine oxidase (XO) inhibitory activity at 100 microg/ml, with 46 having greater than 50% inhibition. At 50 microg/ml, 168 of the extracts were active, with 21 possessing more than 50% inhibition. At 25 microg/ml, 146 extracts exhibited inhibitory activity, with 8 showing over 50% inhibition, while 126 extracts presented activity at 10 microg/ml, with 2 having greater than 50% inhibition. The MeOH extracts of Artemisia vulgaris, Caesalpinia sappan (collected at the Seven-Mountain area), Blumea balsamifera (collected in Lam Dong province), Chrysanthemum sinense and MeOH-H(2)O extract of Tetracera scandens (Khanh Hoa province) exhibited strong XO inhibitory activity with IC(50) values less than 20 microg/ml. The most active extract was the MeOH extract of the flower of C. sinense with an IC(50) value of 5.1 microg/ml. Activity-guided fractionation of the MeOH extract led to the isolation of caffeic acid (1), luteolin (2), eriodictyol (3), and 1,5-di-O-caffeoylquinic acid (4). All these compounds showed significant XO inhibitory activity in a concentration-dependent manner, and the activity of 2 was more potent (IC(50) 1.3 microM) than the clinically used drug, allopurinol (IC(50) 2.5 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号