首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The purpose of this study was to determine oxygen uptake O2) at various water flow rates and maximal oxygen uptake ( O2max) during swimming in a hypobaric hypoxic environment. Seven trained swimmers swam in normal [N; 751 mmHg (100.1 kPa)] and hypobaric hypoxic [H; 601 mmHg (80.27 kPa)] environments in a chamber where atmospheric pressure could be regulated. Water flow rate started at 0.80 m · s–1 and was increased by 0.05 m· s–1 every 2 min up to 1.00 m · s–1 and then by 0.05 m · s–1 every minute until exhaustion. At submaximal water flow rates, carbon dioxide production ( CO2), pulmonary ventilation ( E) and tidal volume (V T) were significantly greater in H than in N. There were no significant differences in the response of submaximal O2, heart rate (f c) or respiratory frequency (f R) between N and H. Maximal E,f R,V T,f c blood lactate concentration and water flow rate were not significantly different between N and H. However, VO2max under H [3.65 (SD 0.11) l · min–1] was significantly lower by 12.0% (SD 3.4) % than that in N [4.15 (SD 0.18) l · min–1] . This decrease agrees well with previous investigations that have studied centrally limited exercise, such as running and cycling, under similar levels of hypoxia.  相似文献   

2.
The effect of power output increment, based on an increase in pedal rate, on blood lactate accumulation during graded exercise is unknown. Therefore, in the present study, we examined the effect of two different rates of power output increments employing two pedal rates on pulmonary ventilation and blood lactate responses during graded cycle ergometry in young men. Males (n=8) with an mean (SD) peak oxygen uptake of 4.2 (0.1) 1·min–1 served as subjects. Each subject performed two graded cycle ergometer tests. The first test, conducted at 60 rev· min–1, employed 4 min of unloaded pedaling followed by a standard power output step increment (SI) of 60 W every 3rd min. The second test, conducted at 90 rev·min–1, employed 4 min of unloaded pedaling followed by a high power output step increment (HI) of 90 W every 3rd min. Venous blood was sampled from a forearm vein after 5 min of seated rest, 4 min of unloaded pedaling, and every 3rd min of graded exercise. Peak exercise values for heart rate, oxygen uptake ( O2), and ventilation ( E) were similar (P > 0.05) for SI and HI exercise, as was the relationship between E and O2, and between E and carbon dioxide production ( CO2). However, the relationship between blood lactate concentration and O2 was dissimilar between SI and HI exercise with blood lactate accumulation beyond the lowest ventilatory equivalent of oxygen, and peak exercise blood lactate concentration values significantly higher (P < 0.05) for SI [12.8 (2.6) mmol·l–1] compared to HI [8.0(1.9) mmol·l–1] exercise. Our findings demonstrate that blood lactate accumulation and E during graded exercise are dissociated. Blood lactate accumulation is influenced by the rate of external power output increment, while E is related to O2 and CO2.  相似文献   

3.
Summary To investigate the effect of endurance training on physiological characteristics during circumpubertal growth, eight young runners (mean starting age 12 years) were studied every 6 months for 8 years. Four other boys served as untrained controls. Oxygen uptake ( O 2) and blood lactate concentrations were measured during submaximal and maximal treadmill running. The data were aligned with each individual's age of peak height velocity. The maximal oxygen uptake ( O 2max; ml · kg–1 · min–1) decreased with growth in the untrained group but remained almost constant in the training group. The oxygen cost of running at 15 km · h–1 ( O 215, ml · kg–1 · min–1) was persistently lower in the trained group but decreased similarly with age in both groups. The development of O 2max and O 215 (1 · min–1) was related to each individual's increase in body mass so that power functions were obtained. The mean body mass scaling factor was 0.78 (SEM 0.07) and 1.01 (SEM 0.04) for O 2max and 0.75 (SEM 0.09) and 0.75 (SEM 0.02) for O 215 in the untrained and trained groups, respectively. Therefore, expressed as ml · kg–0.75 · min–1, O 215 was unchanged in both groups and O 2max increased only in the trained group. The running velocity corresponding to 4 mmol · 1–1 of blood lactate ( la4) increased only in the trained group. Blood lactate concentration at exhaustion remained constant in both groups over the years studied. In conclusion, recent and the present findings would suggest that changes in the oxygen cost of running and O 2max (ml · kg–1 · min–1) during growth may mainly be due to an overestimation of the body mass dependency of O 02 during running. The O 2 determined during treadmill running may be better related to kg0.75 than to kg1.  相似文献   

4.
Oxygen consumption ( O2), heart rate, ventilation and central rating of perceived exertion (RPE) in repetitive lifting while executing squat and stoop techniques were investigated in ten male forestry workers. In all five mass/frequency combinations studied, O2 was significantly higher for the squat than for the stoop technique. No differences were found in RPE between the techniques. The O2 and RPE recordings were also related to those obtained during maximal repetitive lifting (same lifting technique) and maximal treadmill running. The O2 expressed as a percentage of that obtained during maximal repetitive lifting with the same lifting technique was defined as relative aerobic intensity (% O2max, lifting). The % O2max, lifting was not significantly different between the techniques except for the lowest mass lifted (1 kg). This study therefore would support the hypothesis that RPE is more closely related to % O2max, lifting than to absolute aerobic intensity. Related to maximal treadmill running, it was demonstrated for both lifting techniques that relative RPE (percentage of the RPE during maximal running) was more accurate than relative O2 (percentage of maximal O2 during maximal running) for determining the % O2max, lifting in repetitive lifting. The study showed that the higher O2 during squat. lifting compared to stoop lifting was caused by the O2 expended in lifting and lowering the body rather than the O2 expended lifting and lowering the external mass. It was concluded that the stoop technique was not superior to the squat technique in terms of central RPE. Based on % O2max, lifting, there may be a rationale for choosing the stoop technique during repetitive lifting with light masses, but not with heavy masses.  相似文献   

5.
Summary Fourteen Subjects (6 male, 8 female) participated in a training program upon a bicycle ergometer for 7 weeks. Group CT followed a continuous training regimen 4 days per week at 70% O2 max. Group IT trained by an interval method at 100% O2 max. The duration of each training session was assigned so that each subject would complete 10,000 kpm of work per session during the first week. Each subsequent week, the work load was increased 3000 kpm. Pretraining tests included O2 max, standard 7 min tests at 80% O2 and 90% O2, an endurance test at 90%, and an intense anaerobic work bout at 2400 kpm. Variables assessed were O2, HR, and blood lactic acid concentrations. The mean increase in O2 max was 5.1 ml/kg min (15%) for both groups with a corresponding increase in maximal lactate of 20 mg-%. The response to the post-training tests was nearly identical for both groups: submaximal heart rate at the same absolute work load declined 17 beats/min (CT) and 15 beats/min (IT), submaximal lactate levels declined significantly, endurance ride duration increased 26 min. Continuous and interval training at 70% and 100% O2 max respectively produce identical changes in heart rate response, blood lactic acid concentration and O2 max when the total work load is equated per training session.  相似文献   

6.
To establish whether or not hypoxia influences the training-induced adaptation of hormonal responses to exercise, 21 healthy, untrained subjects [26 (2) years, mean (SE)] were studied in three groups before and after 5 weeks' training (cycle ergometer, 45 min· day–1, 5 days· week–1). Group 1 trained at sea level at 70% maximal oxygen uptake ( O2max), group 2 in a hypobaric chamber at a simulated altitude of 2500 m at 70% of altitude O2max, and group 3 at a simulated altitude of 2500 m at the same absolute work rate as group 1. Arterial blood was sampled before, during and at the end of exhaustive cycling at sea level (85% of pretraining of O2max). O2 increased by 12 (2)% with no significant difference between groups, whereas endurance improved most in group 1 (P < 0.05). Training-induced changes in response to exercise of noradrenaline, adrenaline, growth hormone, -endorphin, glucagon, and insulin were similar in the three groups. Concentrations of erythropoietin and 2,3-diphosphoglycerate at rest did not change over the training period. In conclusion, within 5 weeks of training, no further adaptation of hormonal exercise responses takes place if intensity is increased above 70% O2max. Furthermore, hypoxia per se does not add to the training-induced hormonal responses to exercise.  相似文献   

7.
Summary Cardiopulmonary and metabolic variables were investigated at maximal and submaximal bicycle ergometer exercises in 41 swimmers of both sexes, 8–18 years old. O2 max and O2 max·HR–1 were higher in boys than in girls and increased with maturity, while O2 max·kg–1 and HVE were not influenced by this. The HV increased clearly during this growth period, the pubertal and postpubertal subjects showing 16 and 17% higher values for HV and HV·kg–1 than those reported in normal schoolchildren populations. During the submaximal exercise at 70% O2 max the highest HR values were found in the prepubertal group, whilst the lowest were observed in the postpubertal subjects. These findings suggest that a given percentage of O2 max as a reference unit, is more reliable than a certain HR to obtain comparable results in subjects with different ages.Blood samples were collected before, during, and after the submaximal exercise. Blood glucose and FFA did not differ in relation to the stages of maturity. During exercise, insulin decreased in prepubertal children, did not alter in pubertal adolescents, and increased in postpubertal subjects. The lactate concentration, during exercise, increased in relation to maturity. The same results were found for HGH, but no differences were found with regard to sex. Since the pattern of HGH secretion during exercise is similar to that found after arginine and insulin administration it is assumed that the same mechanism (i.e., sex hormones) triggers the HGH release.Abbreviations HV heart volume - HV·kg–1 heart volume per kg body weight - HR heart rate - average heart rate during the submaximal exercise - WL work load - W·kg–1 watts per kg body weight - O2 max maximal oxygen consumption - 70% O2 max 70% of maximal oxygen consumption - O2 max·HR–1 oxygen pulse - HVE heart volume equivalent (HV/ O2 max·HR–1) - FFA free fatty acids - HGH human growth hormone  相似文献   

8.
Summary Cerebral blood flow has been reported to increase during dynamic exercise, but whether this occurs in proportion to the intensity remains unsettled. We measured middle cerebral artery blood flow velocity (m) by transcranial Doppler ultrasound in 14 healthy young adults, at rest and during dynamic exercise performed on a cycle ergometer at a intensity progressively increasing, by 50 W every 4 min until exhaustion. Arterial blood pressure, heart rate, end-tidal, partial pressure of carbon dioxide (P ETCO2), oxygen uptake ( O2) and carbon dioxide output were determined at exercise intensity. Mean vM increased from 53 (SEM 2) cm · s–1 at rest to a maximum of 75 (SEM 4) cm · s–1 at 57% of the maximal attained O2( O2max), and thereafter progressively decreased to 59 (SEM 4) cm · s–1 at O2max. The respiratory exchange ratio (R) was 0.97 (SEM 0.01) at 57% of O2maxand 1.10 (SEM 0.01) at O2max. The P ETCO2 increased from 5.9 (SEM 0.2) kPa at rest to 7.4 (SEM 0.2) kPa at 57% of O2maxand thereafter decreased to 5.9 (SEM 0.2) kPa at O2max. Mean arterial pressure increased from 98 (SEM 1) mmHg (13.1 kPa) at rest to 116 (SEM 1) mmHg (15.5 kPa) at 90% of O2max, and decreased slightly to 108 (SEM 1) mmHg (14.4 kPa) at O2max. In all the subjects, the maximal value of v m was recorded at the highest attained exercise intensity below the anaerobic threshold (defined by R greater than 1). We concluded that cerebral blood flow as evaluated by middle cerebral artery flow velocity increased during dynamic exercise as a function of exercise intensity below the anaerobic threshold. At higher intensities, cerebral blood flow decreased, without however a complete return to baseline values, and it is suggested that this may have been at least in part explained by concomitant changes in arterial PCO2.  相似文献   

9.
Summary The purpose of this investigation was to compare cardiac output ( c ) in paraplegic subjects (P) with wheelchair-confined control subjects (C) at high intensities of arm exercise. At low and moderate exercise intensity c was the same at a given oxygen uptake ( O2) in P and C. A group of 11 athletic male P with complete spinal-cord lesions between T6 and T12 and a group of 5 well-matched athletic male C performed maximal arm-cranking exercise and submaximal exercise at 50%, 70% and 80% of each individual's maximal power output (Wmax) . Maximal O2 ( O2max) was significantly lower, O2max per kilogram body mass was equal and maximal heart rate (f c) was significantly higher in P compared to C. At O2 of 1.3, 1.5 and 1.7 1-min–1, and for P 65%–90% of the O2max, c was not significantly different between the groups, although, c in P was achieved with a significantly lower stroke volume (SV) and a significantly higherf c. Although the SV was lower in P, it followed the same pattern as SV in C during incremental exercise, i.e. an increase in SV until about 45%W max and thereafter a stable SV. The similar c at a given O2 in both groups indicated that, even at high exercise intensities, circulation in P can be considered isokinetic with a complete compensation byf c for a lower SV.  相似文献   

10.
Summary To investigate the effect of hyperthyroidism on the pattern and time course of O2 uptake ( O2) following the transition from rest to exercise, six patients and six healthy subjects performed cycle exercise at an average work rate (WR) of 18 and 20 W respectively. Cardiorespiratory variables were measured breath-by-breath. The patients also performed a progressively increasing WR test (1-min increments) to the limit of tolerance. Two patients repeated the studies when euthyroid. Resting and exercise steady-state (SS) O2 (ml·kg–1·min–1) were higher in the patients than control (5.8, SD 0.9 vs 4.0, SD 0.3 and 12.1, SD 1.5 vs 10.2, SD 1.0 respectively). The increase in O2 during the first 20 s exercise (phase I) was lower in the patients (mean 89 ml·min, SD 30) compared to the control (265 ml·min–1, SD 90), while the difference in half time of the subsequent (phase 11) increase to the SS O2 (patient 26 s, SD 8; controls 17 s, SD 8) were not significant (P = 0.06). The OZ cost per WR increment ( O2/WR) in ml·min–1·–1, measured during the incremental period (mean 10.9; range 8.3–12.2), was always within two standard deviations of the normal value (10.3, SD 1). In the two patients who repeated the tests, both the increment of O2 from rest to SS during constant WR exercise and the O2/WRs during the progressive exercise were higher in the hyperthyroid state than during the euthyroid state. While both resting and exercise O2 are increased in the hyperthyroid patients, the O2 cost of a given increment of WR is within the normal range. However, a small reduction in the O2 requirement to perform exercise following treatment of the hyperthyroid state suggests a subtle change O2 cost of muscle work in this disease.  相似文献   

11.
Summary To determine the effects of wearing heavy footwear on physiological responses five male and five female subjects were measured while walking on a treadmill (4, 5.25, and 6.5 km·h–1) with different external loads (barefooted, combat boots, and waist pack). While walking without an external load the oxygen uptake, as a percentage of maximal oxygen uptake (% O2max) of the men increased from 25% O2max at 4 km·h–1 to 31% O2max at 5.25 km·h–1 and to 42% O2max at 6.5 km·h–1. The women had a significantly higher oxygen uptake of 30%, 40%, and 55% O2max, respectively. In the most strenuous condition, walking at 6.5 km·h–1 with combat boots and waist pack (12 kg), the oxygen uptake for the men and women amounted to 53% and 75% O2max, respectively. The heart rate showed a similar response to the oxygen uptake, the women having a heart rate which was 15–40 beats·min–1 higher than that of the men, depending on the experimental condition. The perceived exertion was shown to be greatly dependent on the oxygen uptake. From the results a regression formula was calculated predicting the oxygen uptake depending on the mass of the footwear, walking speed and body mass. It was concluded that the mass of footwear resulted in an increase in the energy expenditure which was a factor 1.9–4.7 times greater than that of a kilogram of body mass, depending on sex and walking speed.  相似文献   

12.
Aerobic performance capacity in paraplegic subjects   总被引:1,自引:1,他引:0  
Summary To determine adaptation to prolonged exercise in paraplegics, maximal O2 uptake ( ) and lactate threshold (LT) were evaluated during an arm cranking exercise in nine patients (P) and nine able-bodied (AB) subjects.Mean averaged 25.1 and 31.6 ml · min–1 · kg–1 in P and AB groups respectively. in P was found to be directly related to the level of spinal injury: the higher the lesion the lower the uptake. Lactate threshold expressed as a percentage of was higher in P (59%) than in AB (43%), and close to that observed in armtrained athletes.Since training has less effect on in paraplegics than in able-bodied subjects, attributable to a deficiency in the circulatory adaptation of paraplegics to exercise, the observed differences between AB and P in lactate threshold and submaximal exercise indicate that the possible effect of training in paraplegics is located at the level of intracellular chemistry, with a diminution in glycogenolysis (higher LT) and a higher rate of lipid utilization (lower RQ).  相似文献   

13.
Summary The effect of severe acute hypoxia (fractional concentration of inspired oxygen equalled 0.104) was studied in nine male subjects performing an incremental exercise test. For power outputs over 125 W, all the subjects in a state of hypoxia showed a decrease in oxygen consumption ( O2) relative to exercise intensity compared with normoxia (P < 0.05). This would suggest an increased anaerobic metabolism as an energy source during hypoxic exercise. During submaximal exercise, for a given O2, higher blood lactate concentrations were found in hypoxia than in normoxia (P < 0.05). In consequence, the onset of blood lactate accumulation (OBLA) was shifted to a lower O2 ( O2 1.77 l·min–1 in hypoxia vs 3.10 l·min–1 in normoxia). Lactate concentration increases relative to minute ventilation ( E) responses were significantly higher during hypoxia than in normoxia (P < 0.05). At OBLA, E during hypoxia was 25% lower than in the normoxic test. This study would suggest that in hypoxia subjects are able to use an increased anaerobic metabolism to maintain exercise performance.  相似文献   

14.
Summary The purpose of this study was to evaluate metabolic and circulatory responses to interval training of legs or arms during steady-state, submaximal cycling. 15 college males cycled on a bicycle ergometer twice with arms (63 and 83 W) and twice with legs (100 and 125 W) before and following 5 weeks of daily interval training. Seven subjects trained with arm cycling and eight with leg cycling. Significant post-training decreases in submaximal oxygen consumption ( O2), heart rate (HR), and venous blood lactate (LAv) were noted when cycling with trained and untrained muscles with the magnitude of change significantly greater with trained muscles. These results indicate metabolic and circulatory adaptations to interval training that are mediated centrally and peripherally. With respect to HR, but not O2, training a larger muscle mass (legs) produced a greater central but lesser peripheral effect whereas the opposite was true for the smaller arm muscles. The data also suggested that the peripheral adaptation involves a common mechanism controlling both HR and LAv changes with a separate mechanism controlling O2.Supported by a grant from the Central Ohio Heart Chapter  相似文献   

15.
Summary Twelve male and female subjects (eight trained, four untrained) exercised for 30 min on a treadmill at an intensity of maximal O2 consumption (% O2max) 90.0%, SD 4.7 greater than the anaerobic threshold of 4 mmol ·1–1 (Than =83.6% O2max, SD 8.9). Time-dependent changes in blood lactate concentration ([lab]) during exercise occurred in two phases: the oxygen uptake ( O2) transient phase (from 0 to 4 min) and the O2 steady-state phase (4–30 min). During the transient phase, [lab] increased markedly (l.30 mmol · l –1 · min –1, SD 0.13). During the steady-state phase, [lab] increased slightly (0.02 mmol · 1–1 · min–1, SD 0.06) and when individual values were considered, it was seen that there were no time-dependent increases in [lab] in half of the subjects. Following hyperlacticaemia (8.8 mmol -l–1, SD 2.0) induced by a previous 2 min of supramaximal exercise (120% O2max), [lab] decreased during the O2 transient (–0.118 mmol · 1–1 · min–1, SD 0.209) and steady-state (–0.088 mmol · 1–1 · min –1, SD 0.103) phases of 30 min exercise (91.4% O2max, SD 4.8). In conclusion, it was not possible from the Than to determine the maximal [lab] steady state for each subject. In addition, lactate accumulated during previous supramaximal exercise was eliminated during the O2 transient phase of exercise performed at an intensity above the Than. This effect is probably largely explained by the reduction in oxygen deficit during the transient phase. Under these conditions, the time-course of changes in [lab] during the O2 steady state was also affected.  相似文献   

16.
Summary The purpose of the present study was to assess the relationship between the rapidity of increased gas exchange (i.e. oxygen uptake ) and increased cardiac output ( ) during the transient phase following the onset of exercise. Five healthy male subjects performed multiple rest-exercise or light exercise (25 W)-exercise transitions on an electrically braked ergometer at exercise intensities of 50, 75, or 100 W for 6 min, respectively. Each transition was performed at least eight times for each load in random order. The was obtained by a breath-by-breath method, and was measured by an impedance method during normal breathing, using an ensemble average. On transitions from rest to exercise, rapidly increased during phase I with time constants of 6.8–7.3 s. The also showed a similar rapid increment with time constants of 6.0–6.8 s with an apparent increase in stroke volume (SV). In this phase I, increased to about 29.7%–34.1% of the steady-state value and increased to about 58.3%–87.0%. Thereafter, some 20 s after the onset of exercise a mono-exponential increase to steady-state occurred both in and with time constants of 26.7–32.3 and 23.7–34.4 s, respectively. The insignificant difference between and time constants in phase I and the abrupt increase in both and SV at the onset of exercise from rest provided further evidence for a cardiodynamic contribution to following the onset of exercise from rest.  相似文献   

17.
Increased working capacity with hyperoxia in humans   总被引:4,自引:0,他引:4  
Summary The purpose of the study was to examine the influence of oxygen-breathing on maximal oxygen uptake ( O2max) and submaximal endurance performance. Six young women and five men rode a cycle-ergometer while breathing compressed air (normoxia, NOX) or a 55% O2 in N2 mixture (hyperoxia, HOX). The O2max increased significantly by 12% (P<0.01) with HOX in the women but not in the men (+4%; nonsignificant). Maximal heart rate was also increased with HOX in the women but not in the men. Endurance time during work to -exhaustion at 80% of normoxic O2max was 41% longer in HOX than in NOX (P<0.025) with no significant difference between the men and the women. The variation among individuals was large. The oxygen uptake and respiratory quotient were not different in the two endurance tests, but pulmonary ventilation ( E) and blood lactate concentration were lower in HOX than in NOX, especially during the latter part of the task. Plasma base deficit (BDpi) increased initially by 3.5 mmol · l–1 during HOX and then stabilized. In NOX, a continuous increase was seen and the change was more than twice as large. Relative to BDpl, E was higher in HOX than in NOX indicating a more efficient ventilatory compensation of the metabolic acidosis. The reduced ventilatory demand and lower metabolic acidosis in HOX in combination with lower relative exercise intensity may have contributed to the longer time to exhaustion. However, the pattern of individual variation suggested that other mechanisms were also involved.  相似文献   

18.
Summary The purpose of this study was to compare the relationship of ventilation ( E) with pH, arterial concentrations of potassium ([K+]a), bicarbonate ([HCO3 ]a), lactate ([la]a), and acid-base parameters which would affect hyperpnoea during exercise and recovery. To assess this relationship, ten healthy male subjects exercised with intensity increasing as a ramp function of 20 W · min–1 until voluntary exhaustion and they were then allowed a 5-min recovery period. Breath-by-breath gas exchange data, [HCO3 ]a, pH, [1a]a, [K+]a and blood gases were determined during both exercise and recovery. Using a linear regression method, the E/[K+]a relationship was analysed during both exercise and recovery. Several interesting results were obtained: a significant relationship between [K+]a and E was observed during recovery as well as during exercise; the E at any given values of [K+]a was significantly higher during recovery than during exercise and out of those factors affecting exercise hyperpnoea, only [K+]a had a similar time-course to E during recovery. Changes in [K+]a during recovery were shown to occur significantly faster than E with an [K+]a time constant of 70.0 s, SD 16.2 as opposed to 105.5 s, SD 10.0 for E (P < 0.01). These results provided further evidence that [K+]a might play an important role as a substance which can stimulate exercise hyperpnoea as has been suggested by other workers. The present study also showed that during recovery [K+]a contributed significantly to the control of E.  相似文献   

19.
Summary The interrelationship between whole body maximum O2 uptake capacity ( O2 max), skeletal muscle respiratory capacity, and muscle fiber type were examined in 20 physically active men. The capacity of homogenates of vastus lateralis muscle biopsy specimes to oxidize pyruvate was significantly related to O2 max (r=0.81). Correlations of 0.75 and 0.74 were found between % slow twitch fibers (%ST) and O2 max, and between % ST fibers and muscle respiratory capacity, respectively (P<0.01). Multiple correlation analysis (R=0.85) indicated that 72% (R 2=0.72) of the variance in CO2 max could be accounted for by the combined effect of muscle respiratory capacity and the % ST fibers. When the % ST fibers was correlated with O2 max, with the effect of respiratory capacity statistically removed, the relationship became insignificant (r=0.38). These data suggest that muscle respiratory capacity plays an important role in determining O2 max, and that the relationship between % ST fibers and O2 max is due primarily to the high oxidative capacity of this muscle fiber type.This research was supported by NIH grant (HL 20408-02)  相似文献   

20.
A group of 18 well-trained white-water kayakers performed maximal upper body exercise in the laboratory and during.a field test. Laboratory direct peak oxygen uptake ( ) values were compared, firstly by a backward extrapolation estimation and secondly by an estimation calculated from measured during the first 20 s of exercise recovery. Direct peak correlated with backward extrapolation (r=0.89), but the results of this study showed that the backward extrapolation method tended to overestimate significantly peak by [0.57 (SD 0.31) 1·min–1 in the laboratory, and 0.66 (SD 0.33) 1·min–1 in the field,P<0.001]. The measured during the first 20 s of recovery, whether the exercise was performed in the laboratory or in the field, correlated well with the laboratory direct peak (r=0.92 andr=0.91, respectively). The use of the regression equation obtained from field data 2f20s, that is peak 2=0.23+1.08 2f20s, gave an estimated peak 2, the mean difference of which compared with direct peak was 0.22 (SD 0.13) 1·min–1. In conclusion, we propose the use of a regression equation to estimate peak from a single sample of the gas expired during the first 20 s of recovery after maximal exercise involving the upper part of the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号