首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
PURPOSE: To measure T(1) and T(2) of the fine structures of the in vivo eye. MATERIALS AND METHODS: Involuntary saccades make it difficult to obtain artifact-free images. Using a method recently reported (Bert et al, Acad Radiol 2006;12:368-378), near artifact-free spin-echo images were obtained. Both an isolated enucleated eye and eight human subjects were studied at 1.5 T. Spin-echo variable TR/TE data was acquired for T(1)/T(2) determination. Average relaxation times were calculated two ways. First, an arithmetic average over different subjects was computed. Second, all data was normalized using the fitted amplitudes of each data set and pooled to obtain a single least squares fit. RESULTS: In vivo T(1)/T(2) (msec) are: arithmetic average T(1), T(2), normalized data T(1), T(2). Anterior chamber: 6233 +/- 979, 468 +/- 149, 5053 +/- 1052, 450 +/- 49. Ciliary body: 1916 +/- 184, 80 +/- 7, 2038 +/- 114, 76 +/- 3. Chorioretina: 1717 +/- 500, 72 +/- 25, 1511 +/- 230, 78 +/- 3. Extraocular muscle: 1581 +/- 646, 41 +/- 7, 1470 +/- 231, 41 +/- 1. Iris: 3334 +/- 989, 163 +/- 63, 3376 +/- 338, 153 +/- 10. Lens cortex: 1712 +/- 466, 93 +/- 36, 1413 +/- 177, 100 +/- 5. Lens nucleus: 1133 +/- 40, 26 +/- 3, 1138 +/- 47, 25 +/- 0.4. Optic nerve: 1906 +/- 301, 68 +/- 16, 1805 +/- 244, 71 +/- 2. Posterior chamber: 7915 +/- 4897, 241 +/- 14, 3323 +/- 2154, 251 +/- 38. Vitreous humor: 5768 +/- 1190, 756 +/- 804, 4855 +/- 1846, 390 +/- 8. CONCLUSION: In vivo T(1) and T(2) for many of the fine structures of the human eye have been measured.  相似文献   

2.
This study analyzed the T2* effect of extracellularly distributed gadolinium contrast agents in arterial blood during tumor studies using T1-weighted sequences at high field strength. A saturation-prepared dual echo sequence with echo times of 1.5 and 3.5 ms was employed at 3 T to simultaneously characterize T1 and T2* of arterial blood during bolus administration of Gd-DTPA in 28 patients with body tumors. T2* effect and T1 effect of Gd-DTPA on image intensity of whole blood were calibrated in human blood samples with different concentrations of contrast agent. T2* was used to estimate concentration near the peak of the bolus. T1 was used to measure lower concentrations when T2* was not significant. T2* was measurable on calibration curves for Gd-DTPA concentrations higher than 4 mM. This concentration was exceeded in 18 patients. The mean signal intensity reduction because of T2* effect was estimated at 22±14% of the T2* compensated signal. Using T2* measurements reduced underestimations of peak arterial Gd-DTPA concentration (59±38%) and overestimation of permeability Ktrans (58%). The T2* effect of gadolinium contrast agents should therefore be accounted for when performing tumors study with T1-weighted sequences at high field strength.  相似文献   

3.
PURPOSE: To determine sodium transverse relaxation (T2*) characteristics for myocardium, blood and cartilage in humans. METHODS: T2* measurements were performed using a 3D ECG-gated spoiled gradient echo sequence. A 1.5 Tesla clinical scanner and a 23Na heart surface coil were used to examine eight healthy volunteers. In biological tissue, the sodium 23 nucleus exhibits a two-component T2 relaxation due to the spin 3/2 and its quadrupolar nature. The long T2* components of normal myocardium, blood, and cartilage were quantified. For myocardium, the T2* was determined separately for the septum, anterior wall, lateral wall, and posterior wall. RESULTS: The long T2* relaxation time components of 13.3 +/- 4.3 msec (septum 13.9 +/- 3.2 msec, anterior wall 13.8 +/- 5.4 msec, lateral wall 11.4 +/- 4.1 msec, posterior wall 14.1 +/- 3.7 msec), 19.3 +/- 3.3 msec, and 10.2 +/- 1.6 msec, were significantly different for myocardium, blood, and cartilage, respectively (P < 0.00001, Friedman's ANOVA). CONCLUSION: Measurement of 23Na T2* relaxation times is feasible for different regions of the human heart muscle, which might be useful for the evaluation of cardiac pathologies.  相似文献   

4.
The measured signal response in contrast-enhanced myocardial perfusion imaging has been shown to be affected by the rate of water exchange between the intravascular and extravascular compartments, the effect being particularly significant when intravascular contrast agents are used. In the present study, the T(1) relaxation rates were measured in eight pigs in blood and myocardium using a Look-Locker sequence after repeated injections of the intravascular contrast agent NC100150. The selection of myocardial region of interest was automated based on a minimum chi-square method. The intra- and extravascular water exchange rates and the myocardial blood volume were calculated from the measured relaxation rates by applying a two-compartment water exchange limited model that accounts for biexponential longitudinal relaxation. The following (mean +/- SD) values were obtained for the exchange frequency (f), the extravascular residence time (tau(e)), the intravascular residence time (tau(i)) and blood volume (BV), respectively: f = 1.39 +/- 0.52 s(-1), tau(e) = 708 +/- 264 ms, tau(i) = 107 +/- 63 ms, and BV = 11.2 +/- 2.1 mL/100 g. The mean value of f was found to be about 15% higher if biexponential relaxation was not accounted for, supporting the hypothesis that significant biexponential relaxation in tissues with large blood volume can lead to an overestimation of water exchange rates unless corrected for.  相似文献   

5.
Since vascular architecture differs among tissues, it was hypothesized that the change in transverse relaxation rate produced by a given tissue concentration of susceptibility contrast agent also varies by tissue. This is relevant to strategies to map regional blood volume by MRI using indicator dilution techniques. R*(2) was measured in rat organs over a range of susceptibility agent concentrations at 1.5 T. Rat red blood cells loaded with dysprosium-DTPA-BMA served as an intravascular susceptibility agent. Tissue samples were frozen in vivo and dysprosium concentrations were independently measured using inductively coupled plasma atomic emission spectroscopy. The slope (k) of R*(2) vs. tissue dysprosium concentration in sec(-1) mM(-1) for myocardium was 97.1 (95% C.I. 77. 0-117.2), liver 122.6 (108.3-136.9), spleen 22.5 (8.8-36.3), kidney 68.1 (58.6-77.6), and skeletal muscle 77.9 (4.1-151.6); k was significantly different (P < 0.05) for all pairings except those with skeletal muscle. Therefore, relative values of tissue blood volume derived from dynamic images of first pass contrast effects may be in error because k is not constant for different conditions.  相似文献   

6.
The effect of the inhalation of pure oxygen on the kidney was evaluated by measuring monoexponential T1 and T2* relaxation times in nine volunteers using a multiple-shot turbo spin echo and multiple echo gradient echo sequences, respectively. The T1 of the renal cortex decreased significantly when breathing pure oxygen as compared to normoxia (from 882 +/- 59 to 829 +/- 70 msec, P < 0.05), while that of the renal medulla was unchanged. No significant changes were seen in the T2* of either compartment. Dynamic imaging using an inversion recovery sequence with an optimized inversion time typically produced signal changes of 20% in the renal cortex. Studies to assess if oxygen-induced changes in flow contributed to this effect showed that the flow contribution was not significant. Although longer inversion times (880 ms) produced optimal contrast, acceptable contrast was also obtained at shorter inversion times (450 msec) in the renal cortex, spleen, and lung, with the latter being of opposite polarity to the other two tissues, implying a shorter parenchymal T1 than previously reported in the literature. The results are consistent with oxygen acting as an intravascular contrast agent which induces a shortening of T1 in the arterial blood volume.  相似文献   

7.
The proton NMR transverse relaxation time T(2) of glutamate (Glu) in human brain was measured by means of spectrally selective refocusing at 3.0 T in vivo. An 81.4-ms-long dual-band Gaussian 180 degrees RF pulse, designed for refocusing at 2.35 and 3.03 ppm, was employed within point-resolved spectroscopy (PRESS) to generate the Glu C4-proton target multiplet and the total creatine (tCr) singlet. Six optimal echo times (TEs) between 128 and 380 ms were selected from numerical analysis of the filtering performance for effective detection of the Glu signal with minimal contamination from glutamine (Gln), N-acetylaspartate (NAA), and glutathione (GSH). The magnetization of Glu and tCr was extracted from spectral fitting of experimental and calculated spectra. Apparent T(2) values of Glu and tCr were estimated as 201 +/- 18 and 164 +/- 12 ms for the medial prefrontal (PF) cortex, and 198 +/- 22 and 169 +/- 15 ms (mean +/- SD, N = 5) for the left frontal (LF) cortex, respectively. With water segmentation data, the magnetization values of Glu and tCr of the two adjacent voxels, calculated from the T(2) values and spectra following the thermal equilibrium magnetization, were combined to give the Glu and tCr concentrations as 10.37 +/- 1.06 and 8.87 +/- 0.56 mM for gray matter (GM), and 5.06 +/- 0.57 and 5.16 +/- 0.45 mM (mean +/- SD, N = 5) for white matter (WM), respectively.  相似文献   

8.
PURPOSE: To compare T(1) values of blood and myocardium at 1.5T and 3T before and after administration of Gd-DTPA-BMA in normal volunteers, and to evaluate the distribution of contrast media between myocardium and blood during steady state. MATERIALS AND METHODS: Ten normal subjects were imaged with either 0.1 mmol/kg (N = 5) or 0.2 mmol/kg (N = 5) of Gd-DTPA-BMA contrast agent at 1.5T and 3T. T(1) measurements of blood and myocardium were performed prior to contrast injection and every five minutes for 35 minutes following contrast injection at both field strengths. Measurements of biodistribution were calculated from the ratio of DeltaR(1) (DeltaR(1myo)/DeltaR(1blood)). RESULTS: Precontrast blood T(1) values (mean +/- SD, N = 10) did not significantly differ between 1.5T and 3T (1.58 +/- .13 sec, and 1.66 +/- .06 sec, respectively; P > 0.05), but myocardium T(1) values were significantly different (1.07 +/- .03 sec and 1.22 +/- .07 sec, respectively; P < 0.05). The field-dependent difference in myocardium T(1) postinjection (T(1)@3T - T(1)@1.5T) decreased by approximately 72% relative to precontrast T(1) values, while the field-dependent difference of blood T(1) decreased only 30% postcontrast. Measurements of DeltaR(1myo)/DeltaR(1blood) were constant for 35 minutes postcontrast, but changed between 1.5T and 3T (0.46 +/- .06 vs. 0.54 +/- .06, P < 0.10). CONCLUSION: T(1) is significantly longer for myocardium (but not blood) at 3T compared to 1.5T. The differences in T(1) due to field strength are reduced following contrast administration, which may be attributed to changes in DeltaR(1myo)/DeltaR(1blood) with field strength.  相似文献   

9.
MRI methods currently used for bolus tracking in the myocardium, such as saturation recovery turbo-fast low-angle shot (FLASH) (srTFL), are limited by signal intensity (SI) saturation at high contrast agent (CA) concentrations. By using T1 fast acquisition relaxation mapping (T1 FARM), a Gd-DTPA bolus (0.075 vs. 0.025 mmol/kg) may be injected without causing saturation. This study tested the feasibility of in vivo T1 FARM bolus tracking under rest/stress conditions in seven beagles with multiple permanently occluded branches of the left anterior descending (LAD) coronary artery. Although it underestimated the myocardial perfusion reserve (MPR) measured ex vivo using radioactive microspheres (mean +/- SEM; 3.60 +/- 0.26), the MPR determined upon application of the modified Kety model (1.86 +/- 0.10) enabled distinction between normal and infarcted tissue. The partition coefficient (lambda) estimated at rest and stress using the modified Kety model underestimated ex vivo radioactive measurements in infarcted tissue (0.25 +/- 0.01 vs. 0.26 +/- 0.01 vs. 0.79 +/- 0.08 ml/g, P < 0.0001) yet was accurate in normal tissue (0.28 +/- 0.01 vs. 0.30 +/- 0.01 vs. 0.33 +/- 0.01 ml/g, P = NS). Thus, although unsuitable for myocardial viability assessment, T1 FARM bolus tracking shows potential for assessment of myocardial perfusion.  相似文献   

10.
Signal intensity in 23Na images is altered in pathologic conditions such as ischemia and may provide information regarding tissue viability complementary to MR diffusion and perfusion imaging. However, the multicomponent transverse relaxation of 23Na (spin 3/2) complicates the determination of tissue sodium concentration from 23Na images with nonzero echo-time. The purpose of this study was to measure the long component time constant of tissue sodium T*2 relaxation in the healthy human brain at 4 T. Multiecho gradient-echo 23Na images (10 echo-times ranging from 3.8-68.7 ms) were acquired in five healthy human volunteers. T*2 was quantified on a pixel-by-pixel basis using a nonnegative least squares fitting routine using 100 equally spaced bins between 0.5-99.5 ms and parametric maps were produced representing components between 0.5-3, 3.1-50, 50.1-98, and 98.1-99.5 ms. The long T*2 component of tissue sodium (average +/- standard deviation) varied between cortex (occipital = 22.0 +/- 2.4 ms), white matter (parietal = 18.2 +/- 1.9 ms), and subcortical gray matter (thalamus = 16.9 +/- 2.4 ms). These results demonstrate considerable regional variability and establish a foundation for future characterization of 23Na T*2 in conditions such as cerebral ischemia and cancer.  相似文献   

11.
In vivo measurements of gadodiamide (Gd-DTPA-BMA) T(1) relaxivity were performed at 4.7 T in injured and normal rat brains. Cerebral lesions were induced in nine rats by a localized freezing method. T(1) maps of the lesions were generated before and after injection of Gd-DTPA-BMA (0.1-0.6 mmol/kg). Samples of normal and necrotic brain were collected postmortem; the wet and dry weights were determined, and Gd content was measured by inductively coupled plasma mass spectroscopy. The in vivo relaxivity was determined by a linear fit of a plot of the change in relaxation rate following injection of the contrast agent as a function of Gd content. This analysis yielded a relaxivity in the injured brain of 2.8 sec(-1) mmol(-1) kg tissue water at 36 degrees C. The water weight fraction was 0.90 +/- SD 0.02 wt/wt in injured brain and 0.79 +/- 0.02 in normal brain. Relaxivity measurements were also performed on solutions of Gd-DTPA-BMA (0.0-0.6 mmol) and albumin (0-30% wt/wt) in normal saline at room and physiologic temperatures. The relaxivity in the albumin/saline increased with increasing solids content with values of 4.0-4.9 sec(-1) mmol(-1)kg at 21 degrees C and 3.4-4.5 sec(-1) mmol(-1) kg at 37 degrees C. The relaxivity of the tissues differed significantly from that of the saline solutions of comparable solids content, suggesting that the solids content of a tissue is not the only factor that determines in vivo relaxivity.  相似文献   

12.
A method is described for quantifying the cellular phosphorus-31 (31P) concentration in human skeletal muscle based on RARE (rapid acquisition with relaxation enhancement) image intensities. The 31P concentrations were calculated using relaxation rates, RF coil spatial characteristics, and RARE signal intensities from foot muscle and an external 31P standard. 31P RARE and 1H T2-weighted images of the foot muscles in 11 normal subjects were acquired at 3.0 T using a double-tuned (31P/1H) birdcage coil. 31P PRESS (point-resolved spectroscopy) spectra were acquired to verify the measurable 31P concentrations in a multiecho acquisition. The mean measured concentration was 26.4 +/- 3.1 mM (mean +/- SD) from RARE signal intensities averaged over the entire imaged foot anatomy and 27.6 +/- 4.1 mM for a 3 x 3 pixel region-of-interest measurement. The 31P RARE image acquisition time was 4 min with a 0.55 cm3 voxel size. These results demonstrate that the 31P concentration can be accurately measured noninvasively in human muscle from RARE images acquired in short scan times with relatively high spatial resolution.  相似文献   

13.
The aim of this study was to implement a novel noninvasive method to derive the in vivo T1 relaxivity (R1) and T2 relaxivity (R2) in the rat kidney cortex. A two-compartment gadolinium diethylene triamine pentaacetic acid (Gd-DTPA) distribution model was established to estimate the bolus and infusion dosages of Gd-DTPA necessary for obtaining the required steady-state concentration levels. After a single bolus injection of (99m)Tc-DTPA, several blood samples were collected. Based on considerations from the applied two-compartment model, a steady-state concentration was predicted approximately 5-10 minutes after the bolus injection. The plasma concentration levels of Gd-DTPA were measured by simultaneous injection of (99m)Tc-DTPA. Three regions in the cortex (upper, central, and lower) of both rat kidneys were used. A statistical evaluation resulted in the following in vivo relaxivities found at 7 T: R1 = 1.04 +/- 0.08 mM(-1)s(-1) and R2 = 10.78 +/- 0.83 mM(-1)s(-1). Using a 95% confidence interval, no intracortical differences were detected. The relaxivities R1 and R2 calculated in the intact rat kidney cortex were distinctly different from relaxivities found in human plasma: (22 degrees C) 4.42 +/- 0.07 mM(-1)s(-1) (r2> 0.98) and R2 = 5.75 +/- 0.17 mM(-1)s(-1) (r2> 0.98), respectively. The measurements showed a marked difference between in vitro and in vivo relaxivities. Comparison of the distribution rates in pig, human, and rats shows a distinct proportionality between size and renal function.  相似文献   

14.
PURPOSE: In vitro evaluation of different materials as potential alternative oral contrast agents for small bowel MRI. MATERIALS AND METHODS: The T1 and T2 relaxation times of rose hip syrup, black currant extract, cocoa, iron-deferoxamine solution and a commonly used oral contrast material (1 mM Gd-DTPA) were determined in vitro at different concentrations on a 1.0 T clinical MR scanner. T1 values were obtained with an inversion prepared spoiled gradient echo sequence. T2 values were obtained using multiple echo sequences. Finally the materials were visualized on T1-, T2- and T2*-weighted MR images. RESULTS: The relaxation times of the undiluted rose hip syrup (T1=110+/-5 ms, T2=86+/-3 ms), black currant extract (T1=55+/-3 ms, T2=39+/-2 ms) and 5 mM iron-deferoxamine solution (T1=104+/-4 ms, T2=87+/-2 ms) were much shorter than for a 1mM Gd-DTPA solution (T1=180+/-8 ms, T2=168+/-5 ms). Dilution of black currant extract to 30% or a 3 mM iron-deferoxamine solution conducted to T1 relaxation times which are quite comparable to a 1 mM Gd-DTPA solution. Despite its much lower metal content an aqueous cocoa suspension (100 g/L) produced T2 relaxation times (T1=360+/-21 ms, T2=81+/-3 ms) more or less in the same range like the 5 mM iron-deferoxamine solution. Imaging of our in vitro model using clinical sequences allowed to anticipate the T1-, T2- and T2*-depiction of all used substances. Cocoa differed from all other materials with its low to moderate signal intensity on T1- and T2-weighted sequences. While all substances presented a linear 1/T1 and 1/T2 relationship towards concentration, rose hip syrup broke ranks with a disproportionately high increase of relaxation at higher concentrations. CONCLUSIONS: Rose hip syrup, black currant extract and iron-deferoxamine solution due to their positive T1 enhancement characteristics and drinkability appear to be valuable oral contrast agents for T1-weighted small bowel MRI. Cocoa with its differing relaxation and signal enhancement properties is a promising oral contrast agent but needs further clinical evaluation.  相似文献   

15.
PURPOSE: To demonstrate the in vivo feasibility of measuring spin-lattice relaxation time in the rotating frame (T(1rho)); and T(1rho)-dispersion in human femoral cartilage. Furthermore, we aimed to compute the baseline T(1rho)-relaxation times and spin-lock contrast (SLC) maps on healthy volunteers, and compare relaxation times and signal-to-noise ratio (SNR) with corresponding T(2)-weighted images. MATERIALS AND METHODS: All MR imaging experiments were performed on a 1.5 T GE Signa scanner (GEMS, Milwaukee, WI) using a custom built 15-cm transmit-receive quadrature birdcage radio-frequency (RF) coil. The T(1rho)-prepared magnetization was imaged with a single-slice two-dimensional fast spin-echo (FSE) pulse sequence preencoded with a three-pulse cluster consisting of two hard 90 degrees pulses and a low power spin-lock pulse. T(1rho)-dispersion imaging was performed by varying the spin-lock frequency from 100 to 500 Hz in five steps in addition to varying the length of the spin-lock pulse. RESULTS: The average T(1rho)-relaxation times in the weight-bearing (WB) and nonweight-bearing (NWB) regions of the femoral condyle were 42.2 +/- 3.6 msec and 55.7 +/- 2.3 msec (mean +/- SD, N = 5, P < 0.0001), respectively. In the same regions, the corresponding T(2)-relaxation times were 31.8 +/- 1.5 msec and 37.6 +/- 3.6 msec (mean +/- SD, N = 5, P < 0.0099). T(1rho)-weighted images have approximately 20%-30% higher SNR than the corresponding T(2)-weighted images for similar echo time. The average SLC in the WB region of femoral cartilage was 30 +/-4.0%. Furthermore, SLC maps provide better contrast between fluid and articular surface of femoral-tibial joint than T(1rho)-maps. The T(1rho)-relaxation times varied from 32 msec to 42 msec ( approximately 31%) in the WB and 37 msec to 56 msec ( approximately 51%) in NWB regions of femoral condyle, respectively, in the frequency range 0-500 Hz (T(1rho)-dispersion). CONCLUSION: The feasibility of performing in vivo T(1rho) relaxation mapping in femoral cartilage at 1.5T clinical scanner without exceeding Food and Drug Administration (FDA) limits on specific absorption rate (SAR) of RF energy was demonstrated.  相似文献   

16.
PURPOSE: To develop a multislice, first-pass perfusion imaging sequence for increasing the effective dynamic range of the contrast-enhanced blood signal and the contrast-to-noise ratio (CNR) of myocardial wall enhancement. MATERIALS AND METHODS: A hybrid echo-planar imaging (EPI) pulse sequence was modified to acquire data for both the arterial input function (AIF) and the myocardium, using two different saturation-recovery time delays (TDs) and spatial resolutions, after a single saturation pulse. Five healthy subjects were scanned at 3T in three short-axis levels of the heart per heartbeat during passage of a high-dose bolus of contrast agent. The T(1)-weighted signal-time curve of the blood was converted to AIF using empirical conversion tables derived from phantom experiments. RESULTS: In all subjects the calculated AIF was consistently less distorted and higher for the short-TD protocol than for the long-TD protocol (peak concentration: 5.0 +/- 1.0 mM vs. 3.0 +/- 0.6 mM; P < 0.01). A combination of EPI, long TD, high-dose bolus of contrast agent, and 3T imaging yielded relatively strong peak enhancement in the myocardium (CNR = 11.9 +/- 3.3). CONCLUSION: Our dual-imaging approach at 3T seems promising for acquiring both a relatively accurate AIF and a high CNR of myocardial wall enhancement in multiple slices per heartbeat.  相似文献   

17.
PURPOSE: To measure T1 and T2 relaxation times of normal human abdominal and pelvic tissues and lumbar vertebral bone marrow at 3.0 T. MATERIALS AND METHODS: Relaxation time was measured in six healthy volunteers with an inversion-recovery method and different inversion times and a multiple spin-echo (SE) technique with different echo times to measure T1 and T2, respectively. Six images were acquired during one breath hold with a half-Fourier acquisition single-shot fast SE sequence. Signal intensities in regions of interest were fit to theoretical curves. Measurements were performed at 1.5 and 3.0 T. Relaxation times at 1.5 T were compared with those reported in the literature by using a one-sample t test. Differences in mean relaxation time between 1.5 and 3.0 T were analyzed with a two-sample paired t test. RESULTS: Relaxation times (mean +/- SD) at 3.0 T are reported for kidney cortex (T1, 1,142 msec +/- 154; T2, 76 msec +/- 7), kidney medulla (T1, 1,545 msec +/- 142; T2, 81 msec +/- 8), liver (T1, 809 msec +/- 71; T2, 34 msec +/- 4), spleen (T1, 1,328 msec +/- 31; T2, 61 msec +/- 9), pancreas (T1, 725 msec +/- 71; T2, 43 msec +/- 7), paravertebral muscle (T1, 898 msec +/- 33; T2, 29 msec +/- 4), bone marrow in L4 vertebra (T1, 586 msec +/- 73; T2, 49 msec +/- 4), subcutaneous fat (T1, 382 msec +/- 13; T2, 68 msec +/- 4), prostate (T1, 1,597 msec +/- 42; T2, 74 msec +/- 9), myometrium (T1, 1,514 msec +/- 156; T2, 79 msec +/- 10), endometrium (T1, 1,453 msec +/- 123; T2, 59 msec +/- 1), and cervix (T1, 1,616 msec +/- 61; T2, 83 msec +/- 7). On average, T1 relaxation times were 21% longer (P <.05) for kidney cortex, liver, and spleen and T2 relaxation times were 8% shorter (P <.05) for liver, spleen, and fat at 3.0 T; however, the fractional change in T1 and T2 relaxation times varied greatly with the organ. At 1.5 T, no significant differences (P >.05) in T1 relaxation time between the results of this study and the results of other studies for liver, kidney, spleen, and muscle tissue were found. CONCLUSION: T1 relaxation times are generally higher and T2 relaxation times are generally lower at 3.0 T than at 1.5 T, but the magnitude of change varies greatly in different tissues.  相似文献   

18.
Accurate knowledge of relaxation times is imperative for adjustment of MRI parameters to obtain optimal signal-to-noise ratio (SNR) and contrast. As small animal MRI studies are extended to increasingly higher magnetic fields, these parameters must be assessed anew. The goal of this study was to obtain accurate spin-lattice (T(1)) relaxation times for the normal mouse brain at field strengths of 9.4 and 17.6 T. T(1) relaxation times were determined for cortex, corpus callosum, caudate putamen, hippocampus, periaqueductal gray, lateral ventricle, and cerebellum and varied from 1651 +/- 28 to 2449 +/- 150 ms at 9.4 T and 1824 +/- 101 to 2772 +/- 235 ms at 17.6 T. A field strength-dependent increase of T(1) relaxation times is shown. The SNR increase at 17.6 T is in good agreement with the expected SNR increase for a sample-dominated noise regime.  相似文献   

19.
The high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.1 T was investigated. Signal-to-noise ratio increased by 66%, slightly offset by a T(1) increase of 332 ± 15 to 521 ± 34 ms. Isotopic enrichment after long-term (13) C administration was comparable (≈ 40%) as was the nominal linewidth of glycogen C1 (≈ 50 Hz). Among the factors that contributed to the 66% observed increase in signal-to-noise ratio, the T(1) relaxation time impacted the effective signal-to-noise ratio by only 10% at a repetition time = 1 s. The signal-to-noise ratio increase together with the larger spectral dispersion at 14.1 T resulted in a better defined baseline, which allowed for more accurate fitting. Quantified glycogen concentrations were 5.8 ± 0.9 mM at 9.4 T and 6.0 ± 0.4 mM at 14.1 T; the decreased standard deviation demonstrates the compounded effect of increased magnetization and improved baseline on the precision of glycogen quantification.  相似文献   

20.
Contrast-enhanced coronary angiography has become an important technique for magnetic resonance (MR) coronary artery imaging. However, the relationship between the quality of the coronary artery images and blood T1 has not yet been fully explored. In this paper, we assessed this relationship in an animal model by using a prototypical blood pool agent. With accumulated injections of this agent, the blood T1 would be maintained at different levels. The measured blood T1 values in vivo were 147 +/- 3, 82 +/- 6, 48 +/- 4, 40 +/- 3, and 30 +/- 8 msec (N = 7). Fixed and variable flip angle schemes were used in coronary artery imaging. The signal to noise ratios (SNR) of coronary arteries were measured and the image quality was assessed. It was found that blood T1 less than 80 msec might be desired. No statistically significant difference was observed between two flip angle schemes. There was better vessel definition using variable flip angle at blood T1 lower than 50 msec. Understanding this relationship may be beneficial to optimizing image protocol and/or design of blood pool contrast agents for contrast-enhanced coronary angiography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号