首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preterminal branching pattern of nerve fibers from the chorda tympani nerve was examined in the tongues of rats using a normal silver stain. The lingual branch of the trigeminal nerve was sectioned unilaterally proximal to where it is joined by the chorda tympani and these fibers were allowed to degenerate from eight to ten days prior to sacrifice of the animals. Termination of the chorda tympani fibers in the anterior tongue was found to be limited to the taste bud region of the fungiform papillae. The control side of the tongue showed ubiquitous fiber terminations in the basal layers of the common epithelium of the filiform papillae as well as in the lateral walls of the fungiform papillae. These fibers were assumed to be of trigeminal origin. Seventy-nine percent of the fungiform papillae on the experimental side of the tongue received fibers from a branched nerve bundle. Branch points within the nerve bundles were located deep within the tongue 300–500 μ below the taste bud in 43% of the papillae, at the base of 36% of the fungiform papillae about 125 μ below the taste bud, and within the papilla. These data corroborate electrophysiological observations that single chorda tympani fibers receive input from more than one taste bud. Lateral inhibition observed among adjacent taste buds has been postulated to result from interaction of fiber inputs at branch points in the afferent fiber. From a theoretical consideration of the morphology of chorda tympani nerve fibers it is concluded that modification of the neural response may be feasible at branch points.  相似文献   

2.
Peripheral nerves undulate together, giving them a wavelike appearance. This axonal pattern is also found in one region of the central nervous system, the optic nerve. Undulations provide a degree of compliance, as when a nerve is stretched, they are pulled straight. In the peripheral nervous system, undulations are thought to be conditional on the presence of extrafascicular collagen, which is also present between fascicles in the mammalian optic nerve. The pattern of undulations is described in the rat optic nerve and is related to the nerve's fascicular configuration and the regions between the fascicles, the extrafascicular matrix. The stage at which the undulations appear is determined to ascertain whether they are an intrinsic feature of optic axons or whether they emerge in association with the development of other events. The waves could be traced across the width of the nerve. Their pattern was not altered at fascicular boundaries, where axon groups are segregated. The periodicity of the undulations was constant between the eye and the middle of the nerve's length. Here fascicular divisions are present. Close to the chiasm, where the glial organisation changes and fascicles disappear, the periodicity of the undulations lengthened. They disappeared in the chiasm. Although collagen is a major component of the mammalian optic nerve's extrafascicular matrix, it was not present in the rat. Hence, the wavelike trajectory is independent of connective tissue. The waves are not present during early development and hence not an intrinsic feature of these axons. They appear behind the eye at late prenatal stages, emerging in association with glia in the extrafascicular matrix. They develop caudally, mirroring glial maturation. It is probable that the glia are maturing astrocytes that provide a scaffold for this feature of optic axon trajectory. © 1996 Wiley-Liss, Inc.  相似文献   

3.
The authors suggest that kin selection theory offers a different perspective from which to examine social interactions among rodent conspecifics. Paradigms designed to investigate various interactions among rodent conspecifics are presented, and include simple affiliative behaviors, social facilitation, and cooperation. It is established that many species of rodents are appropriately social to use as subjects under investigation in research which focuses on topics such as kin selection. Studies reporting positive results as well as some reporting negative or inconclusive results have been presented for the purpose of informing the reader under which conditions we might expect specific social behaviors to occur. It is concluded that a combined method of a sociobiological perspective using established experimental procedures will offer unique opportunities for the investigation of specific predictions suggested by kin selection theory.  相似文献   

4.
5.
Recent findings suggest that synaptic-type glutamate signaling operates between axons and their supporting glial cells. Glutamate reuptake will be a necessary component of such a system. Evidence for glutamate-mediated damage of oligodendroglia somata and processes in white matter suggests that glutamate regulation in white matter structures is also of clinical importance. The expression of glutamate transporters was examined in postnatal Day 14-17 (P14-17) mouse and in mature mouse and rat optic nerve using immuno-histochemistry and immuno-electron microscopy. EAAC1 was the major glutamate transporter detected in oligodendroglia cell membranes in both developing and mature optic nerve, while GLT-1 was the most heavily expressed transporter in the membranes of astrocytes. Both EAAC1 and GLAST were also seen in adult astrocytes, but there was little membrane expression of either at P14-17. GLAST, EAAC1, and GLT-1 were expressed in P14-17 axons with marked GLT-1 expression in the axolemma, while in mature axons EAAC1 was abundant at the node of Ranvier. Functional glutamate transport was probed in P14-17 mouse optic nerve revealing Na+-dependent, TBOA-blockable uptake of D-aspartate in astrocytes, axons, and oligodendrocytes. The data show that in addition to oligodendroglia and astrocytes, axons represent a potential source for extracellular glutamate in white matter during ischaemic conditions, and have the capacity for Na(+)-dependent glutamate uptake. The findings support the possibility of functional synaptic-type glutamate release from central axons, an event that will require axonal glutamate reuptake.  相似文献   

6.
Naturally occurring ganglion cell death has been attributed to competitive interactions among axons at their targets during development of the retinofugal pathways. The present study is concerned with the hypothesis that interocular interactions leading to ganglion cell death are restricted to binocularly conjugate terminals in the optic nuclei. We tested this hypothesis in newborn rats by making localized retinal lesions, which denervate a restricted portion of the contralateral optic targets. When these rats reached adulthood, the ipsilaterally projecting ganglion cells of the intact eye were then studied following retrograde labeling with horseradish peroxidase. Results were compared with those from a normal, control group and from rats that had one eye removed on the day of birth. In those retinal loci binocularly conjugate to the lesion in the opposite eye, no localized cell rescue could be found among the ipsilaterally projecting ganglion cells. The same retinal loci, however, showed clear cell rescue after contralateral enucleation. Independent, anterograde, studies of the ipsilateral retino-collicular projection verified that lesions of equivalent size to those used in the retrograde study reliably create aberrant expanded uncrossed terminal fields. The present data suggest that the interocular interactions involved in the diminished ganglion cell loss which follows monocular enucleation are not dependent on topographically specific binocular matching. The phenomena of naturally occurring cell loss and of retinotopically specific interocular interactions may therefore be independent during normal development.  相似文献   

7.
8.
9.
The lipophilic carbocyanine fluorescent label DiI was injected in one eye of aldehyde-fixed embryonic or postnatal hamsters and the brains were examined using flat-mounts of the chiasm region, of the lateral surface of the brainstem, or of the midbrain tectum. Single axons could be discerned within the optic nerves and along the optic tract. Many fibers were tipped by growth cones, ending at various levels of the brainstem. Fine details of retinofugal axon morphology, including varicosities, branch-points and filopodial extensions on growth cones were visible in the flat-mounts. Such preparations allow a high-resolution view of labeled axons which course near the surface of the brain. It is possible, with this method, to simultaneously examine the morphogenesis of multiple collateral arbors on single fibers which project to more than one terminal zone.  相似文献   

10.
The purpose of the present study was to characterize the transmitter content of structures in presynaptic apposition to the central terminals of cutaneous afferent fibers in the dorsal horn of the spinal cord. Axons in the Aalphabeta conduction velocity range were identified in adult cats, stained intra-axonally with horseradish peroxidase, and prepared for combined light and electron microscopy. In total, we labeled two slowly adapting (Type 1) axons, two hair-follicle afferents, and one rapidly adapting (Krause) afferent. Ninety-nine labeled boutons were examined through complete series of serial sections. Approximately 80% of boutons originating from rapidly adapting and hair-follicle afferents were postsynaptic to other axons, but only 50% of boutons from slowly adapting axons were associated with this type of arrangement. Postembedding immunogold reactions revealed that between 80% (for slowly adapting axons) and 100% (for rapidly adapting axons) of boutons presynaptic to primary afferents were immunoreactive for gamma-aminobutyric acid (GABA). The vast majority of these terminals (in excess of 80%) were also enriched with glycine. Therefore, presynaptic inhibition of these three functional classes of Aalphabeta cutaneous primary afferents is mediated principally by the subgroup of GABAergic interneuron that also contains glycine.  相似文献   

11.
High voltage electron microscopy and conventional transmission electron microscopy were used to examine the ultrastructure of foliate taste buds of mice. Computer-assisted, three-dimensional reconstructions from serial sections were used to visualize regions of interaction between taste cells and nerve fibers. Based on criteria previously established for murine vallate taste buds (Kinnamon et al., '85), foliate taste cells were classified as dark, light, or intermediate depending on their cytoplasmic content and the characteristics of their nuclei. Cells of foliate taste buds display a continuous range of morphologies, from "typical" dark cells to "typical" light cells. Cells of dark, intermediate, and light morphologies all make afferent synapses onto nerve processes, suggesting that cells of all 3 types are sensory in function. Synapses between taste cells and nerve processes may be either macular or fingerlike in shape. No efferent synapses were found. In addition to conventional synapses, taste cells exhibit 2 other types of specializations at sites of apposition with nerve fibers: subsurface cisternae and atypical mitochondria. Subsurface cisternae are narrow sacs of endoplasmic reticulum that are closely apposed to the inner leaflet of the taste cell membrane. Possible functions of subsurface cisternae include synthesis of synaptic membrane components, modification of the electrical or adhesive properties of the taste cell membrane, and exchange of trophic factors with nerve processes. Atypical mitochondria are usually much larger than typical taste cell mitochondria, and their cristae often display a swollen, twisted configuration. These mitochondria are closely apposed to the inside of the taste cell membrane adjacent to nerve fibers. Atypical mitochondria may be providing unusual amounts of energy for metabolic reactions in their vicinities or participating in calcium buffering in the taste cell. Within taste cells, presynaptic specializations, subsurface cisternae, and mitochondria are often clustered together to form "synaptic ensembles." We hypothesize that the functions served by the subsurface cisternae and mitochondria, as well as synaptic transmission, may be important in interactions between taste cells and nerve fibers.  相似文献   

12.
Galanin is a 29-amino-acid neuropeptide that is widely distributed in the mammalian central nervous system. Galanin-immunoreactive cell bodies, fibres and terminals, and galanin binding sites, are located in the basal forebrain of rats, monkeys and humans. Galanin fibres hyperinnervate the surviving cholinergic cell bodies in patients with Alzheimer's disease (AD). In rats, galanin inhibits acetylcholine release and produces deficits in learning and memory. These findings suggest that overexpressed galanin may contribute to the cognitive impairments exhibited by patients with AD. This paper reviews the literature on galanin distribution and function in light of its putative role in the mnemonic deficits in patients with AD, the effects of galanin on tests of learning and memory, and preliminary experiments with galanin antagonists in animal models of AD.  相似文献   

13.
We report evidence that ephaptic interactions may occur between intact mammalian myelinated nerve fibres and not only between demyelinated or damaged mammalian nerve fibres or nerve cells as analysed in previous studies. The ephaptic interactions were investigated between nerve fibres traversing the lumbar dorsal roots and between bundles of fibres in the sciatic nerve in anaesthetized rats in vivo. The interactions were estimated by comparing the excitability of nerve fibres originating from one of the hindlimb nerves (peroneal or sural) under control conditions and when the stimulation of these fibres was combined with stimulation of another nerve (tibial). An increase in nerve volleys recorded from group I muscle afferents in the peroneal nerve and of the fastest skin afferents in the sural nerve was used as a measure of the increase in the excitability. The excitability of these fibres was increased during a fraction of a millisecond, coinciding with the period of passage of nerve impulses evoked by the conditioning stimulation of the tibial nerve. The degree of the increase was comparable to the increases in the excitability evoked by 1–2 min lasting fibre polarization. Ephaptic interactions were found to be more potent and with longer lasting after‐effects within the dorsal roots than within the sciatic nerve. We postulate that ephaptic interactions may result in the synchronization of information forwarded via neighbouring afferent nerve fibres prior to their entry into the spinal cord and thereby securing the propagation of nerve impulses across branching points within the spinal grey matter.  相似文献   

14.
The interaction between anaesthetics and protein kinase C activation was studied in unclamped field currents from unmyelinated axons which give rise to en passant synapses. Electrical responses could be resolved into Na, K and Ca components revealed by electrode polarisation pretreatment with blockers of K-conductances. In the presence of phorbol dibutyrate, there was an increase in the potency of lignocaine, pentobarbitone and tetrodotoxin: for the Na current, the potency increased by 2.67 +/- 0.64, 2.35 and 2.47 fold respectively. The potentiation does not appear to be any indirect result of changed membrane potential. It is suggested that protein kinase C phosphorylation of membrane channel proteins increases the effectiveness of these substances.  相似文献   

15.
The C-type lectin chondrolectin (chodl) represents one of the major gene products dysregulated in spinal muscular atrophy models in mice. However, to date, no function has been determined for the gene. We have identified chodl and other novel genes potentially involved in motor axon differentiation, by expression profiling of transgenically labeled motor neurons in embryonic zebrafish. To enrich the profile for genes involved in differentiation of peripheral motor axons, we inhibited the function of LIM-HDs (LIM homeodomain factors) by overexpression of a dominant-negative cofactor, thereby rendering labeled axons unable to grow out of the spinal cord. Importantly, labeled cells still exhibited axon growth and most cells retained markers of motor neuron identity. Functional tests of chodl, by overexpression and knockdown, confirm crucial functions of this gene for motor axon growth in vivo. Indeed, knockdown of chodl induces arrest or stalling of motor axon growth at the horizontal myoseptum, an intermediate target and navigational choice point, and reduced muscle innervation at later developmental stages. This phenotype is rescued by chodl overexpression, suggesting that correct expression levels of chodl are important for interactions of growth cones of motor axons with the horizontal myoseptum. Combined, these results identify upstream regulators and downstream functions of chodl during motor axon growth.  相似文献   

16.
The cat's retinogeniculate pathway is largely composed of X and Y axons, which represent two distinct neuronal streams organized in parallel. Our earlier data, summarized in the previous paper, suggest that the postnatal development of retinogeniculate axon arbors is characterized by competitive interactions between the X and Y axons. Thus, during development, X arbors in lamina A or A1 are initially broad or exuberant before the Y arbors begin to develop adultlike arbors; the X arbors then shrink to their adult form as the Y arbors grow and establish their mature complement of connections; monocular lid suture prevents the rapid growth of Y arbors, which in turn prevents the pruning of X arbors; and monocular enucleation at birth allows X arbors from the remaining eye to retain their exuberance although completely confined to their appropriate lamina A or A1, whereas the Y arbors develop aberrant extensions into adjacent, previously denervated laminae. We now provide additional evidence for the role of competition between retinogeniculate X and Y axons during development. The addition of visual deprivation by lid suture of the remaining eye to monocular enucleation at birth causes no apparent change in the morphology of X arbors in laminae A and A1. In contrast, the Y arbors of such cats continue to form extensive translaminar sprouts in the previously denervated laminae despite severely reduced terminations in the lamina A or A1 normally innervated by the remaining eye. We interpret these new data, in conjunction with our earlier data, as follows. If retinogeniculate X and Y arbors complete for synaptic space during postnatal development, terminations of Y axons can be affected by lid suture only in geniculate laminae where terminations of X axons are also present. Thus, Y axon arbors are severely reduced in deprived lamina A or A1 following lid suture whether or not the other eye is removed. Where X arbors are not present, such as in lamina C or the laminae inappropriate for the remaining eye after removal of the other, the lid suture has no obvious effect on development of the Y arbors.  相似文献   

17.
18.
Simultaneous intracellular recordings were made from pairs of spiking and nonspiking local interneurons in the metathoracic ganglion of the locust to search for interactions that might underlie tactile and proprioceptive reflexes of a leg. A spike in a spiking local interneuron is followed after a consistent latency (0.6 +/- 0.12 msec, mean +/- SD) by an IPSP in a particular nonspiking interneuron. The connection appears to be direct and chemically mediated. By contrast, manipulating the membrane potential of a nonspiking interneuron by injecting current through the recording electrode has no direct effect on a spiking local interneuron. The direct interactions between pairs of these local interneurons are thus one-way. If, however, the current injected into a nonspiking interneuron is sufficient to evoke a movement by exciting motor neurons, then the spiking interneuron can be excited or inhibited by the resulting reafference. The spiking local interneurons have excitatory regions in their receptive fields formed by arrays of exteroreceptors or by proprioceptors at specific joints. The inhibitory connections mean that the postsynaptic nonspiking interneurons have corresponding inhibitory regions to their receptive fields. Several spiking local interneurons with similar receptive fields may converge onto one nonspiking interneuron. Some nonspiking interneurons, however, have larger receptive fields than an individual spiking interneuron, again indicating convergence of inputs. The specificity of the inhibitory connections preserves the spatial representation of sensory information for use in particular reflexes. For example, touching hairs on the ventral femur evokes a reflex extension of the tibia. Spiking interneurons excited by these receptors inhibit a nonspiking interneuron that would cause the opposing and therefore unwanted flexion movement. Viewed in this behavioral context, the pattern of connections between the local interneurons forms the basis of the circuitry for the local reflex adjustments of posture and locomotion.  相似文献   

19.
Taste hairs are located on the labellum and tarsi of blowflies. These multimodal hairs consist of four functionally distinct chemoreceptors and a mechanoreceptor. By staining selected multimodal hairs, we sought to identify the central projection patterns of multiple and single axons from those hairs. On each side of the labellum there are 11 "largest" hairs (LH). The neurons associated with the anteriormost (LH-1), posteriormost (LH-11), and one lateral (LH-6) hair on the labellum were stained selectively with cobaltous sulfide. The overall projection pattern in the central nervous system (CNS) for axons from LH-1 and LH-11 is similar and differs markedly from axons from LH-6. At least three individual axon-projection patterns were determined for each labellar hair filled, indicating a partial functional organization for axons from multimodal hairs. One identified axon, the dorsalmost axon, has terminal arborizations that do not differ with the location of its associated hair. Another axon, thicker than the others, projects to a region that is distinct from the four thin axons. Within this region the arborizations of the thick axons occupy different areas depending on the location of their associated hair. Neurons from the largest hairs on the distalmost tarsomere (D5) of each leg were also stained and consisted of one thick and four thin axons. All axons except one thin axon from tarsal D5 hairs terminate in their respective leg neuromeres. The remaining thin axon projects to the suboesophageal ganglion ipsilateral to the hair filled and terminates in the same region as a branch of the labellar dorsalmost axon. These data suggest that axonal arbors from multimodal hairs have a limited functional and somatotopic organization in the blowfly CNS.  相似文献   

20.
Previous results of an in vitro guidance test, the stripe assay, have demonstrated the presence of a repulsive axon guidance activity for temporal retinal axons in the posterior part of the vertebrate optic tectum. Ephrin-A5 and Ephrin-A2 are ligands for the EphA subfamily of Eph receptor tyrosine kinases, which are expressed in overlapping gradients in the posterior part of the tectum. When recombinantly expressed, both proteins have been shown to guide retinal ganglion cell axons in the stripe assay. While these results suggest that Ephrin-A5 and Ephrin-A2 form part of the posterior repulsive guidance activity, they do not elucidate whether they are necessary components. Here we report that soluble forms of the ligands at nanomolar concentrations completely abolish this repulsive activity. Similar results were obtained with the soluble extracellular domain of EphA3, which is a receptor for Ephrin-A2 and Ephrin-A5, but not with the corresponding domain of EphB3, a receptor for the transmembrane class of Eph ligands. These experiments show that the repulsive axon guidance activity seen in the stripe assay is mediated by Ephrin-A ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号