共查询到20条相似文献,搜索用时 15 毫秒
1.
Cortical plasticity refers to flexible and long-lasting changes in neuronal circuitry and information processing, which is caused by learning and experience. Although cortical plasticity can be observed in every cortex of the brain, the plasticity of the prefrontal cortex (PFC) is particularly important because the PFC is involved in various cognitive functions, and its plasticity could lead to adaptive changes in the use of other brain regions. Cortical plasticity occurs at several levels, from functional molecules to the organization of large areas of the brain. Here, the authors focus mainly on the development and remodeling of the functional and structural organization of the primate PFC. They discuss how the columnar modules of the PFC develop in the immature brain, how these modules form a "cognitive field" that is responsible for a specific cognitive function, how the cognitive field could be reorganized by training in the mature brain, and how monoaminergic systems contribute to these various levels of plasticity. They suggest that monoaminergic systems, especially the dopaminergic system, are involved in various levels of cortical plasticity, such as behavioral learning and learning-dependent cortical remodeling, thereby contributing to the reorganization of the cognitive field in the primate PFC. 相似文献
2.
The tangential distribution of GABA-containing cells was examined in the principal sulcus of the frontal lobe in 12 macaque monkeys. Following immunostaining with GABA antisera all immunoreactive cells were charted and their distribution analyzed with both statistical and spectral density methods. In addition, a gapless series of sections was used to generate a 2-dimensional reconstruction of cell disposition in the tangential plane parallel to the pia. Our findings indicate that the GABA cells are not distributed uniformly across the cortex, as is commonly believed, but that their density is characterized by 2 independent sinusoidal fluctuations: a high-frequency component with a period ranging from 150 to 250 micron superimposed upon a lower-frequency component with a period of 1000-1275 micron. The half-cycle of the low-frequency component (roughly 625 micron) is very similar to the dimensions of afferent and efferent columns in the principal sulcus, while the half-cycle of the higher-frequency component (approximately 125 micron) is closer in size to that of the functionally defined columns of neurons found in regions of sensory cortex that share common physiological properties. To our knowledge, these findings are the first indication that inhibitory local circuit neurons are not uniformly or randomly distributed, but exhibit periodicities that may be related to the columnar, functional and architectural organization of the cortex. 相似文献
3.
Humans and animals often must choose between rewards that differ in their qualities, magnitudes, immediacy, and likelihood, and must estimate these multiple reward parameters from their experience. However, the neural basis for such complex decision making is not well understood. To understand the role of the primate prefrontal cortex in determining the subjective value of delayed or uncertain reward, we examined the activity of individual prefrontal neurons during an inter-temporal choice task and a computer-simulated competitive game. Consistent with the findings from previous studies in humans and other animals, the monkey’s behaviors during inter-temporal choice were well accounted for by a hyperbolic discount function. In addition, the activity of many neurons in the lateral prefrontal cortex reflected the signals related to the magnitude and delay of the reward expected from a particular action, and often encoded the difference in temporally discounted values that predicted the animal’s choice. During a computerized matching pennies game, the animals approximated the optimal strategy, known as Nash equilibrium, using a reinforcement learning algorithm. We also found that many neurons in the lateral prefrontal cortex conveyed the signals related to the animal’s previous choices and their outcomes, suggesting that this cortical area might play an important role in forming associations between actions and their outcomes. These results show that the primate lateral prefrontal cortex plays a central role in estimating the values of alternative actions based on multiple sources of information. 相似文献
4.
Much of our knowledge on trafficking of neurotransmitter receptors derives from heterologous expression systems and neurons in vitro. Understanding these dynamics in vivo for dopamine receptors, and D2 receptors (D2Rs) in particular, presents a foremost challenge as their pharmacological manipulation underlies antipsychotic medications and drug abuse, which may in turn alter response to endogenous dopamine. Here we present the first ultrastructural evidence of clathrin-mediated endocytosis of D2Rs or any other neurotransmitter receptor in the primate brain. We have captured in situ the insertion of D2Rs in clathrin-coated membrane pits, resulting in receptor sorting in primary endosomes. Endocytosis was specific to nonsynaptic membranes of distal dendrites, and virtually absent from larger shafts, spines, axons and perikarya expressing D2Rs. The selective association of D2Rs with the clathrin endocytotic pathway of high-order dendrites identifies a novel substrate for monitoring and adjusting dopaminoception, as well as a potent target for dysregulation, and manipulation, of D2R signalling in mental illness. 相似文献
5.
Prospective coding for objects in primate prefrontal cortex. 总被引:13,自引:0,他引:13
We examined neural activity in prefrontal (PF) cortex of monkeys performing a delayed paired associate task. Monkeys were cued with a sample object. Then, after a delay, a test object was presented. If the test object was the object associated with the sample during training (i.e., its target), they had to release a lever. Monkeys could bridge the delay by remembering the sample (a sensory-related code) and/or thinking ahead to the expected target (a prospective code). Examination of the monkeys' behavior suggested that they were relying on a prospective code. During and shortly after sample presentation, neural activity in the lateral PF cortex primarily reflected the sample. Toward the end of the delay, however, PF activity began to reflect the anticipated target, which indicated a prospective code. These results provide further confirmation that PF cortex does not simply buffer incoming visual inputs, but instead selectively processes information relevant to current behavioral demands, even when this information must be recalled from long-term memory. 相似文献
6.
Miguel Á. García‐Cabezas Mary Kate P. Joyce Yohan J. John Basilis Zikopoulos Helen Barbas 《The European journal of neuroscience》2017,46(8):2392-2405
Research on plasticity markers in the cerebral cortex has largely focused on their timing of expression and role in shaping circuits during critical and normal periods. By contrast, little attention has been focused on the spatial dimension of plasticity–stability across cortical areas. The rationale for this analysis is based on the systematic variation in cortical structure that parallels functional specialization and raises the possibility of varying levels of plasticity. Here, we investigated in adult rhesus monkeys the expression of markers related to synaptic plasticity or stability in prefrontal limbic and eulaminate areas that vary in laminar structure. Our findings revealed that limbic areas are impoverished in three markers of stability: intracortical myelin, the lectin Wisteria floribunda agglutinin, which labels perineuronal nets, and parvalbumin, which is expressed in a class of strong inhibitory neurons. By contrast, prefrontal limbic areas were enriched in the enzyme calcium/calmodulin‐dependent protein kinase II (CaMKII), known to enhance plasticity. Eulaminate areas have more elaborate laminar architecture than limbic areas and showed the opposite trend: they were enriched in markers of stability and had lower expression of the plasticity‐related marker CaMKII. The expression of glial fibrillary acidic protein (GFAP), a marker of activated astrocytes, was also higher in limbic areas, suggesting that cellular stress correlates with the rate of circuit reshaping. Elevated markers of plasticity may endow limbic areas with flexibility necessary for learning and memory within an affective context, but may also render them vulnerable to abnormal structural changes, as seen in neurologic and psychiatric diseases. 相似文献
7.
When we react to the outer world, perceived sensory information is frequently memorized over a temporal interval then transformed into a motor command based on a behavioural rule. In this type of memory-based sensorimotor transformation, working memory is considered to play an important role. It has been suggested that the lateral prefrontal cortex is involved in the process of the working memory. However, the neuronal mechanism for guiding a motor command from the working memory has not been established. To examine how visuospatial working memory is linked with a forthcoming saccade direction, we used an antisaccade paradigm for monkeys in which a behavioural rule was presented in the middle of a delay period. In this task, the subjects were required to maintain cue location and to select a response based on a behavioural rule. We found that a subset of mnemonic neurons in the lateral prefrontal cortex changed their representation from cue to saccade direction. Furthermore, the discriminability for saccade direction of these neurons tended to appear soon after the behavioural rule presentation, indicating their significant dependency on the behavioural rule. These results suggest that a subset of mnemonic neurons in the lateral prefrontal cortex change their activity depending on a behavioural rule to guide a prospective motor command. 相似文献
8.
Everyday life typically requires behavior that involves far more than simple stimulus-response associations. Environmental cues are often ambiguous and require different actions depending on the situation. The prefrontal cortex (PFC) is thought to be crucial for this flexible control of behavior. An important task that probes this ability is the antisaccade task in which subjects have to suppress a glance towards a suddenly presented peripheral stimulus and instead look away from the stimulus to its mirror location. Here we recorded the activity of PFC neurons in monkeys trained to alternate between blocks of prosaccade and antisaccade trials with no external instruction cues. We found that the activity of many neurons was different between the two tasks during the fixation period before the peripheral stimulus was presented. These differences were already present on the first correct trials after a task switch. The activity of these neurons also discriminated between correct responses and errors. We hypothesize that the PFC provides bias signals to saccade-related areas that are necessary to preset the oculomotor system for different tasks. 相似文献
9.
10.
11.
Social selective pressures are commonly considered as the main driving force of primate brain evolution. Primate social behaviour is, however, known to be sexually dimorphic, and no previous study has made a direct comparison between male and female brain structures across species. We quantify sex-specific evolutionary trends in the prefrontal cortex of anthropoid primates (including humans) to investigate how sexual selection has shaped brain evolution in primates. The prefrontal cortex is of particular importance to the investigation of sexual dimorphism in primate brain evolution because of its association to those cognitive capacities central to primate (and human) evolution: sociality and higher-order cognitive processing. Our results demonstrate sex-by-hemisphere differences in the evolution of the prefrontal cortex in humans and non-human anthropoid primates congruent with the principal selective pressures considered to underlie anthropoid behavioural evolution. Our findings further show how sexual selection can shape brain adaptation in primates and provide an evolutionary framework for interpreting sex and sex-by-hemisphere differences in cortical organization in humans and non-human primates. 相似文献
12.
Neurobiological studies of stress often focus on the hippocampus where cortisol binds with different affinities to two types of corticosteroid receptors, i.e., mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The hippocampus is involved in learning and memory, and regulates the neuroendocrine stress response, but other brain regions also play a role, especially prefrontal cortex. Here, we examine MR and GR expression in adult squirrel monkey prefrontal cortex and hippocampus after exposure to social stress in infancy or adulthood. In situ hybridization histochemistry with (35)S-labeled squirrel monkey riboprobes and quantitative film autoradiography were used to measure the relative distributions of MR and GR mRNA. Distinct cortical cell layer-specific patterns of MR expression differed from GR expression in three prefrontal regions. The relative distributions of MR and GR also differed in hippocampal Cornu Ammonis (CA) regions. In monkeys exposed to adult social stress compared to the no-stress control, GR expression was diminished in hippocampal CA1 (P=0.021), whereas MR was diminished in cell layer III of ventrolateral prefrontal cortex (P=0.049). In contrast, exposure to early life stress diminished GR but not MR expression in cell layers I and II of dorsolateral prefrontal cortex (P's<0.048). Similar reductions likewise occurred in ventrolateral prefrontal cortex, but the effects of early life stress on GR expression in this region were marginally not significant (P=0.053). These results provide new information on regional differences and the long-term effects of stress on MR and GR distributions in corticolimbic regions that control cognitive and neuroendocrine functions. 相似文献
13.
Electron microscopy and immunocytochemistry with a monoclonal antibody against parvalbumin (PV) were combined to analyze the distribution and morphology of PV-immunoreactive (PV-IR) neurons and the synaptology of PV-IR processes in the principal sulcus of the macaque prefrontal cortex. Parvalbumin-IR neurons are present in layers II-VI of the macaque principal sulcus (Walker's area 46) and are concentrated in a band centered around layer IV. PV-IR cells are exclusively non-pyramidal in shape and are morphologically heterogeneous with soma sizes ranging from less than 10 microns to greater than 20 microns. Well-labeled neurons that could be classified on the basis of soma size and dendritic configuration resembled large basket and chandelier cells. A novel finding is that supragranular PV-IR neurons exhibit dendritic patterns with predominantly vertical orientations, whereas infragranular cells exhibit mostly horizontal or oblique dendritic orientations. PV-IR cells within layer IV exhibit a mixture of dendritic arrangements. Vertical rows of PV-IR puncta, 15-30 microns in length, resembling the "cartridges" of chandelier cell axons were most dense in layers II, superficial III, and the granular layer IV but were not observed in the infragranular layers. Cartridges were often present beneath unlabeled, presumed pyramidal cells. PV-IR puncta also formed pericellular nests around pyramidal cell somata and proximal dendrites, suggestive of basket cell innervation. PV-IR axons were occasionally observed in the white matter underlying the principal sulcus. Electron microscopic analysis revealed that PV-IR somata and dendrites are densely innervated by nonimmunoreactive terminals forming asymmetric (Gray type I) synapses as well as by fewer terminals forming symmetric (Gray type II) synapses. The majority of terminals forming symmetric synapses with PV-IR post-synaptic structures were not immunolabeled; however, some of these boutons did contain PV-immunoreactivity. PV-IR boutons exclusively form symmetric synapses and heavily innervate layer II/III pyramidal cells. PV-IR axon cartridges formed numerous axo-axonic synapses with the axon initial segments of pyramidal cells 15-20 microns beneath the axon hillock and also terminated on large axonal spines of the initial segment. Furthermore, we failed to observe a mixture of PV-immunoreactive and non-immunoreactive boutons composing a single axon cartridge. Pyramidal cell somata and proximal dendrites were also heavily innervated by PV-IR boutons forming symmetric synapses, again, consistent with basket cell innervation. In addition, PV-IR axon terminals frequently formed symmetric synapses with dendritic shafts and spines of unidentified neurons.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
14.
Brito-Melo GE Nicolato R de Oliveira AC Menezes GB Lélis FJ Avelar RS Sá J Bauer ME Souza BR Teixeira AL Reis HJ 《Journal of psychiatric research》2012,46(6):738-742
Schizophrenia is characterized by a slow deteriorating mental illness. Although the pathophysiology mechanisms are not fully understood, different studies have suggested a role for the immune system in the pathogenesis of schizophrenia. To date, an altered expression or signaling of neurotransmitters receptors is observed in immune cells during psychiatric disorders. In the present study, we investigated the expression of different serotonin and dopamine receptors in T-cells of schizophrenic and control patients. We used flow cytometry to determine the pattern of expression of dopamine (D2 and D4) and serotonine receptors (SR1A, SR1C, SR2A, SR2B), as well as serotonin transporter (ST), in T-cell subsets (CD4 and CD8). Expression of serotonin receptors and ST in T-cells of schizophrenic patients were not different from controls. However, the percentages of CD4+D4+ and CD8+D4+ were increased in schizophrenic patients as compared to controls. In addition, increased percentages of CD8+D2+ cells were also observed in schizophrenic patients, albeit this population revealed lower CD4+D2+ cells in comparison to controls. Interestingly, a relationship between clinical symptoms and immunological parameters was also observed. We showed that the Brief Psychiatric Rating Scale (BPRS), the Positive and Negative Syndrome Scale (PANSS) and the Abnormal Involuntary Movement Scale (AIMS) were positively related to CD8+D2+ cells, though AIMS was inversely related to CD4+D4+ cells. In conclusion, the alteration in the pattern of cell population and molecules expressed by them might serve as a promising biomarker for diagnosis of schizophrenia. 相似文献
15.
Topographic maps in adult primate somatosensory cortex are capable of dramatic reorganizations after peripheral nerve injuries. In the present experiments, we have deprived a circumscribed portion of the hand map in somatosensory cortex of four adult squirrel monkeys by transecting the median nerve to one hand, and evaluated the hypothesis that N-methyl-d-aspartate (NMDA) glutamatergic receptors are necessary for the reorganization that follows within four weeks. In one monkey, we confirm previous results demonstrating that the deprived cortex has regained responsiveness in its expanse four weeks after median nerve transection. However, in three monkeys in which NMDA receptors were concurrently blocked, most of the deprived cortex remained unresponsive. Thus, much of the cortical “recovery” that typically follows peripheral nerve injury in adult monkeys is apparently dependent on NMDA receptors and may well be due to Hebbian-like changes in synaptic strength. Perhaps the elimination of the normally dominant inputs to “median nerve cortex” permits the gradual strengthening of correlations between the activity of the formally impotent presynaptic and deprived postsynaptic elements. These enhanced correlations may also have been made possible by reductions in intracortical inhibition as a necessary but not sufficient condition. © 1996 Wiley-Liss, Inc. 相似文献
16.
Neurochemical interaction between dopaminergic and noradrenergic neurons in the medial prefrontal cortex 总被引:3,自引:0,他引:3
Growing evidence indicates that there is an interaction between the transmission of dopamine (DA) and norepinephrine (NE) in the noradrenergic and dopaminergic projections that converge in the medial prefrontal cortex (mPFC). The effects of the noradrenergic alpha1 and alpha2 receptors and the NE transporters on the DA outflow and those of the dopaminergic D1 and D2 receptors on NE release in the mPFC were investigated. Local infusions of NE (90, 150, and 300 nM) into the mPFC increased the extracellular release of DA in anesthetized rats. The alpha1 receptor antagonist (10 microM prazosin), but not the alpha2 receptor antagonist (100 microM piperoxan), blocked the NE-induced increase of DA in the mPFC. In addition, local infusion of alpha1 receptor agonist (10 microM phenylephrine) enhanced DA release in the mPFC. Local application of DA in different concentrations into the mPFC increased extracellular NE levels. Intra-mPFC infusion of a D1 receptor antagonist (10 nM SCH23390), inhibited the DA-induced increase of NE; this did not happen with a D2 receptor antagonist (1 nM eticlopride). Local administration of a selective NE uptake inhibitor (1 microM desmethylimipramine) into the mPFC increased the outflows of both DA and NE in the mPFC. However, co-infusion of DMI and prazosin blunted, but did not totally abolish, the DMI-increase in the extracellular levels of DA and NE. These results suggest that in the mPFC, 1) extracellular NE could enhance DA release by activating the alpha1 receptors; and 2) extracellular DA increased the extracellular levels of NE by activating the D1 receptors. 相似文献
17.
The concentration and location of adrenergic receptors in cat visual cortex have been determined by radioligand binding techniques using [3H]prazosin (alpha 1-adrenergic receptors), [3H]yohimbine (alpha 2-adrenergic receptors) and [3H]dihydroalprenolol (beta-adrenergic receptors). Saturable high affinity binding sites for all of these ligands were found. The beta-adrenergic receptor population was resolved into beta 1- and beta 2-sites that were present in the ratio 35:65. The laminar distributions of the alpha 1-, alpha 2- and beta-adrenergic receptors were different. The alpha 1- and beta-adrenergic receptors were very similarly localized, being seen in upper layers (I, II and III) and lower layers (layers V and VI). The labelling in upper layers was greater than that in lower layers, more so for alpha 1-adrenergic receptors than beta-adrenergic receptors. alpha 2-Adrenergic receptors were seen in a single band that occupied layer II and III but did extend to the pial surface. These results indicate that the effect of norepinephrine on neuronal activity in cat visual cortex will depend upon the layer in which it is released. Our results provide a basis for further physiological studies of the role of norepinephrine in the processing of visual information. 相似文献
18.
Metabotropic glutamate receptors (mGluRs) mediate important modulatory glutamatergic influences throughout the brain. However, the specific localization and functions of group I mGluR subtypes (mGluR1alpha and mGluR5) in cortical neurotransmission are not well known, particularly in primates. To address this issue, we used immunoelectron microscopy to compare the subcellular localizations of mGluR1alpha and mGluR5 in the prefrontal cortex of macaque monkeys. Both receptor subtypes were found in a variety of subcellular compartments, including spines, dendrites, preterminal axons, axon terminals, and glia; however, quantitative differences were found in the relative abundance of labeled elements for each receptor. The mGluR1alpha-immunoreactive (-IR) elements were overwhelmingly the spines and dendrites, with labeled terminals, axons, and glia seen more rarely. The mGluR5-IR elements were also mostly spines and dendrites, but the proportion of labeled unmyelinated axons, terminals, and glia was higher than for mGluR1alpha-IR elements. Double labeling with SMI-32 and parvalbumin confirmed that both receptors were found in pyramidal cell and interneuron dendrites. The localization of mGluR1alpha to pyramidal cells in primate cortex contrasts with reports that mGluR1alpha is found almost exclusively in interneurons in rodent cortex. By using double labeling, we found no evidence for mGluR1alpha or mGluR5 in dopaminergic afferents to prefrontal cortex. The data presented here provide an anatomical substrate for a differential role of mGluR1alpha and mGluR5 in post-and presynaptic actions of glutamate in primate prefrontal cortex. They further suggest differences in the cortical distribution of group I mGluRs between primates and rodents. 相似文献
19.
20.
A Kalsbeek P Voorn R M Buijs C W Pool H B Uylings 《The Journal of comparative neurology》1988,269(1):58-72
The pre- and postnatal development of the dopaminergic innervation in the prefrontal cortex (PFC) of the rat is described from embryonic day 14 through postnatal day 90. By embryonic day 15 the dopamine (DA)-containing fibers reach the anlage of the lateral neocortex; 2 days later the first fibers have reached the subplate of the future prefrontal cortex. The process of entering the cortical plate starts just before birth. Prenatally, some dopaminergic fibers can be observed in the marginal zone of both the lateral and the medial wall of the hemisphere. Within 48 hours after birth a large number of dopaminergic fibers can be observed in the marginal zone, i.e., the future layer I, in some subareas of the PFC. A transient appearance of DA-positive fibers is noticed in the late embryonic and early postnatal periods especially in the marginal zone and possibly in the superficial layers of the pregenual cingulate cortex. Changes in the morphology of DA fibers at P4 suggest that the actual DA innervation starts at this age. From postnatal day 6 the different subareas of the PFC can be recognized according to the characteristics of the topographical distribution of the dopaminergic fibers. Until postnatal day 60 the density of the dopaminergic fibers continues to increase. No difference in density and topography was observed between postnatal days 60 and 90. 相似文献