首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
目的:计算^252Cf裂变中子源的的中子和γ辐射在组织等模体内的剂量分布,为使用^252Cf裂变中子源进行中子放疗提供有用的剂量学参数。方法:建立^252Cf源和组织等效模体的三维几何计算模型,利用蒙特卡罗方法进行中子和γ辐射联合输运计算。结果:计算了两种医用^252Cf裂变中子源在水、血液、肌肉、皮肤、骨骼和肺组织等效材料构成的模体中距源不同距离点处的中子和γ辐射吸收剂量。结论:蒙特卡罗计算结果与文献数据以及使用双电离室实验测量的结果符合得较好。对^252Cf裂变中子源在5种组织材料构成的模体中中子和γ辐射的剂量分布进行了比较,使用水作为组织等效材料对^252Cf裂变中子源在在以肌肉、血液和皮肤构成的局部组织内的剂量分布进行模拟计算,可取得较可靠的结果。  相似文献   

2.
目的 计算2 5 2 Cf裂变中子源的中子和γ辐射在组织等效模体内的剂量分布 ,为使用2 5 2 Cf裂变中子源进行中子放疗提供有用的剂量学参数。方法 建立2 5 2 Cf源和组织等效模体的三维几何计算模型 ,利用蒙特卡罗方法进行中子和γ辐射联合输运计算。结果 计算了两种医用2 5 2 Cf裂变中子源在水、血液、肌肉、皮肤、骨骼和肺组织等效材料构成的模体中距源不同距离点处的中子和γ辐射吸收剂量。结论 蒙特卡罗计算结果与文献数据以及使用双电离室实验测量的结果符合得较好。对2 5 2 Cf裂变中子源在 5种组织材料构成的模体中中子和γ辐射的剂量分布进行了比较 ,使用水作为组织等效材料对2 5 2 Cf裂变中子源在以肌肉、血液和皮肤构成的局部组织内的剂量分布进行模拟计算 ,可取得比较可靠的结果。  相似文献   

3.
目的 应用蒙特卡罗(Monte Carlo)数学模型计算冠状动脉CT血管造影(CCTA)检查中患者的辐射剂量,并验证其准确性和有效性。方法 采用3组管电压(80、100、120 kV)对人体仿真体模行双源CT检查,使用数学模型软件(ImpactDose 2.0)模拟方法测量CCTA 3组管电压的患者器官吸收剂量并转换有效剂量,采用人体仿真体模置入热释光剂量计实验对数学模型模拟的结果进行验证。结果 除肺部以外,利用蒙特卡罗软件模拟计算的所有器官剂量值均小于利用仿真体模测量的;两种方法的相对误差在±50%以内。结论 利用蒙特卡罗软件模拟计算CCTA患者辐射剂量误差在可接受范围内,可用于估算CCTA检查辐射剂量水平。  相似文献   

4.
目的 对现有的红骨髓剂量模拟计算方法进行比较和分析.为确定更为合理的计算方法提供依据.方法 借助MCNPX蒙特卡罗模拟软件,模拟了能量20 keV~10 MeV的γ光子源,对Rensselaer理工学院(RPI)体素人体模型进行前后(AP)全身均匀照射,分别采用直接能量沉积法、剂量响应函数法(DRF)、King-Spi...  相似文献   

5.
点扫描质子束治疗机头的蒙特卡罗模拟和验证   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 利用蒙特卡罗程序模拟点扫描质子束治疗机头,建立精准的质子束流蒙特卡罗模拟计算模型。方法 利用蒙特卡罗程序FLUKA,结合上海市质子重离子医院治疗机头几何结构,建立点扫描质子束治疗机头的蒙特卡罗模型。通过对不同能量下水中积分深度剂量分布,等中心点处空气中束斑大小的测量和模拟,建立精准的模拟模型。利用该模型模拟质子束扩展布拉格峰,并与对应治疗计划系统(treatment planning system,TPS)计算结果进行比较分析。结果 对于射程末端90%积分深度剂量值,各能量下模拟和测量的偏差均不高于0.5 mm。而对于80%至20%末端跌落,各能量质子的模拟和测量的偏差在0.1 mm以内。质子束流束斑大小的模拟与测量结果偏差最大为0.45 mm。对扩展布拉格峰的剂量验证的模拟与TPS计算结果进行对比,γ分析通过率高于90%(2 mm,2%标准)。结论 利用蒙特卡罗程序FLUKA可以建立点扫描质子治疗机头模型,该模型满足临床要求,可以精确地模拟点扫描质子束的输运。该模型通过测量验证,可以作为剂量验证工具,评估临床治疗计划,能够减少剂量验证所需的束流时间,从而增加患者治疗数量。  相似文献   

6.
目的 比较简单程式化数学模型(MIRD)与体素模型在常见X射线摄影下得到的器官剂量-入射体表剂量的转换系数差异。方法 利用蒙特卡罗模拟技术,分别模拟计算体素模型的5种常见摄影下受检者的器官剂量与入射体表剂量,并计算两者的转换系数,与MIRD模型所得结果进行比较。结果 体素模型得到射野内器官的转换系数分别是,胸部后前位0.149~0.650,胸部左侧位0.067~0.382,胸部右侧位0.023~0.374,腹部前后位0.035~0.431,腰椎前后位0.083~0.432。在胸部后前位下,两种模型模拟肺的剂量转换系数结果相差最大约54.3%;胸部左侧位照射的肝脏剂量转换系数差异最大为54.5%;胸部右侧位照射胃剂量转换系数差异最大为63.8%;而腹部前后位,两种模型模拟脾脏的剂量转换系数差异最大为65.0%;腰椎前后位发现胃的剂量转换系数相差最大约43.7%。结论 利用两种模型模拟得到的器官剂量转换系数偏差可达50%以上,由于MIRD模型的解剖结构过于简化,计算误差较大。利用体素模型得到的转换系数数据更加科学合理。  相似文献   

7.
一种高能X射线任意形状野剂量计算模型的建立方法   总被引:1,自引:0,他引:1       下载免费PDF全文
目的探讨建立一种可用于模拟计算任意形状和强度的高能X射线外照射射束分布的快速剂量计算模型.方法基于蒙特卡罗方法建立的源模型包含一个由方形网格元素组成的光子注量矩阵,通过对源模型进行重构,以反映物理射束经过加速器射束成形部件后所引起的形状改变.结果比较规则野和不规则野的计算和测量结果,规则野误差小于2%,不规则野在10%等剂量线误差稍大.结论这一模型能够较为精确的模拟计算任意形状和强度的外照射放射治疗射束分布.  相似文献   

8.
目的 计算河南6 0 Co放射源事故中事故患者“梅”受到的辐射剂量。方法 基于MIRD的成人数学模型用蒙特卡罗随机模型方法计算事故患者的辐射剂量 ,并编制了一个用于此计算实用计算机程序。结果 模拟事故患者的具体情况 ,计算了人体主要器官剂量和全身剂量。结论 这种理论模拟的方法与用体模的实验模拟测量结果较为一致 ,说明用这种算法算出的各个器官剂量和全身剂量 ,对于临床治疗有参考价值 ,而且模拟方便 ,快速 ,适用于核事故医学应急中的患者器官剂量估算。  相似文献   

9.
目的 研究光子外照射事故下人体的剂量重建方法,并在局部剂量分布层面上验证方法的准确性。方法 基于开源蒙特卡罗代码Geant4,使用国际辐射防护委员会(ICRP)103号建议书推荐的人体体素模型,研究外照射事故照射条件下的剂量重建方法,实现全身平均吸收剂量、器官吸收剂量和局部剂量分布的评价。为了对建立的方法进行验证,使用组织等效的物理仿真模型ART;通过CT扫描,建立起其分辨率为1.57 mm×1.57 mm×10.00 mm的体素模型;在标准辐射场下进行一系列热释光剂量计(TLD)照射实验,比较实验和剂量重建模拟的结果。结果 实验测量值的综合相对不确定度为10.9%,剂量重建模拟值的综合相对不确定度在非组织交界面处为7.10%,在组织交界面处为16.6%。对451个测量点位进行统计分析,模拟值除以测量值的均值为0.972,标准差为0.083 8,在0.95~1.05,0.90~1.10和0.80~1.20范围内的比例分别为49.2%,79.4%和96.4%。结论 基于人体体素模型的蒙特卡罗剂量重建方法无论在全身或器官层面,还是在局部剂量分布层面都满足实际使用的精度要求,可作为外照射事故下对受照者进行剂量评估的有力工具,为诊断和救治提供支持。  相似文献   

10.
目的 利用蒙特卡罗方法建立质子重离子加速器治疗场所的屏蔽计算模型,为治疗场所的屏蔽设计提供可靠的计算方法。方法 采用基于蒙特卡罗方法的FLUKA程序建立质子重离子治疗场所的屏蔽计算模型,模拟质子重离子加速器治疗场所辐射场的分布,通过对质子重离子加速器治疗场所的检测,验证计算模型。结果 FLUKA程序模拟计算结果与现场检测结果具有较好的符合性。结论 FLUKA程序建立的质子重离子加速器治疗场所屏蔽计算模型能够模拟质子重离子产生的辐射场。基于FLUKA程序建立的屏蔽计算模型,质子重离子治疗场所屏蔽设计应根据加速器最高可达的束流强度及能量进行计算。在质子和重离子加速器运行时的治疗室辐射场中,中子对剂量当量的贡献是主要的,因此,屏蔽设计中应重点考虑中子的屏蔽。  相似文献   

11.
利用MRI三维男性人体模型对航天员所受空间辐射的估算   总被引:2,自引:0,他引:2  
目的 建立空间辐射环境下,航天员器官所受辐射剂量及对其健康危险的计算方法.方法 利用符合航天员体征的人体MRI图像,建立三维男性人体模型及辐射数据库,并结合蒙特卡罗粒子输运程序GEANT4用于剂量计算.结果 我们得到了模拟各向同性抽样情况下,10 MeV到500 MeV单个质子对人体辐射敏感器官的吸收剂量及有效剂量.结论 在航天员体征三维人体模型及辐射数据库的基础上.利用空间舱内测量质子谱,得到了舱内累计剂量.计算的皮肤剂量为148.6 μGy/d.该值与美国和俄罗斯发表的数据100-300μGy/d比较接近.  相似文献   

12.
In radiotherapy, dose distribution and calculation of dose monitor units (DMU) are generally performed by a radiation treatment planning system using CT images. Therefore, differences in calculation can arise as a result of the quality of the CT image data. The quality of CT images involves contrast resolution, resolution, noise, slice thickness, and other factors. Among these factors, we examined noise and slice thicknesses. Results demonstrated that, even if noise increased, CT value did not change, and, therefore, did not influence DMU. Examination of slice thickness showed that, when the radiation field was rectangular, it was not influenced by slice thickness. However, when a multi-leaf collimator (MLC) was used, if slice thickness was thicker than the size of the MLC, a difference arose in the position of the MLC, and, therefore, some difference arose in dose. Therefore, slice thickness should be thinner than the size of the MLC.  相似文献   

13.
目的探讨局部放大重建在肺部小结节结构精准诊断上的价值。方法使用常规胸部CT条件扫描质控模型Catphan500体模,关闭自动辐射剂量调节技术。根据扫描和重建方式不同分为改变扫描FOV组与改变重建FOV组,改变扫描FOV组控制扫描FOV分别为500 mm×500 mm、400 mm×400 mm、300 mm×300 mm、200 mm×200 mm、100 mm×100 mm,改变重建FOV组控制扫描FOV为500 mm×500 mm,分别在扫描FOV为500 mm×500 mm的条件下使用原始数据重建FOV为400 mm×400 mm、300 mm×300 mm、200 mm×200 mm、100 mm×100 mm的图像,控制其他条件均一致。观察Catphan 500体模高对比度分辨率模块,比较两组图像在不同扫描FOV或不同重建FOV下的线对数。回顾性分析2018年2月至3月浙江大学医学院附属第二医院肺部小结节患者35例,均行胸部高分辨率CT平扫,使用原始数据重建图像,常规重建组的重建FOV为320 mm×320 mm,局部放大重建组的重建FOV为100 mm×100 mm,分别对图像质量进行主观评价并采用秩和检验进行比较。结果使用质控模型Catphan 500体模扫描时,随着扫描FOV或重建FOV的逐渐缩小,改变扫描FOV组与改变重建FOV组高对比度分辨率模块图像能显示的线对数逐渐增大,且保持一致。常规重建组的图像质量评分为(3.86±0.50)分,局部放大重建组(4.77±0.35)分,局部放大重建组评分高于常规重建组,差异有统计学意义(Z=-5.763,P<0.05)。结论高分辨CT局部放大重建图像能取得与局部放大扫描一致的图像质量,局部放大重建图像质量优于单纯图像放大。  相似文献   

14.
Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water? (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data extending to average depths of 2.5 mm, 3.4 mm, and 10 mm for the 1-mm, 2-mm, and 5-mm dimension calculation matrices, respectively. These results emphasize the importance of selecting as small a treatment planning software calculation matrix dimension as is practically possible and of taking a conservative approach for skin treatment planning objectives. One suggested conservative approach is accomplished by defining the skin organ as the outermost 2–3 mm of the body such that the high dose tail of the skin organ dose-volume histogram curve represents dose on the deep side of the skin where the algorithm is more accurate.  相似文献   

15.
Carbon-13 chemical shift images (metabolic maps) of [1-13C] glucose in the heads of rats were obtained and compared with proton images of the same rats in terms of signal allocation. Wistar rats were kept awake or anesthetized. [1-13C] glucose was injected intravenously in a dose of 1 g per kg of body weight. The head of the Wistar rat was placed on or into circular coils. Carbon-13 images were obtained using a 7.05 Tesla system. A simple spin echo sequence was used with a chemical shift selective (CHESS) pulse. The frequency band width was set to cover the spectral breadth of the carbon-13 signal of [1-13C] glucose. The slice thickness of the image was 4 mm or 6 mm, and the field of view (FOV) was 60 mm x 60 mm, with a matrix size of 64 x 64. The total acquisition time was 36 minutes. Strong signals were observed from the scalp muscles and tissues outside the brain, but signal strength from the brain itself was minimal. This was presumably due to the metabolism of [1-13C] glucose in the brain. Little difference was recognized between [1-13C] glucose images of the heads of rats with and without anesthesia. Chemical shift imaging of carbon-13 could be useful methods for the in vivo study of physiochemical structures and metabolic pathways of living organs.  相似文献   

16.
目的 对南京"5.7"192Ir源放射事故中,1例局部受大剂量外照射的患者的受照剂量进行快速估算。方法 在获知放射源参数、照射方式和照射时间的基础上,基于东亚人体素体模和受照者主要生理特征,利用蒙特卡罗模拟软件包MCNP建立模型并估算。结果 估算了受照患者16个器官的吸收剂量,数值范围为0.03~9.16 Gy。腿部皮肤的等剂量曲线清晰显示了左、右腿部皮肤的剂量差异。受照者睾丸、前列腺受照剂量较大,吸收剂量数值约9.16 Gy。大腿皮肤受到局部大剂量照射,双腿皮肤剂量估算结果与红外热成像仪探测结果基本一致。结论 结合恰当受照模型的蒙特卡罗技术和模拟软件包可有效用于放射事故患者的早期物理剂量估算。  相似文献   

17.
W Schlegel 《Der Radiologe》1991,31(10):457-466
3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.  相似文献   

18.
PURPOSE: To determine the feasibility of imaging living mice with a 1-T compact MRI system and investigate appropriate imaging techniques for use in routine animal experiments. MATERIALS AND METHODS: An MRI system consisting of a 1-T permanent magnet and compact console was used. Images of the entire trunks of living mice were obtained on the system using a T1-weighted three-dimensional fast low-angle shot (3D FLASH) sequence, and image quality was evaluated in relation to imaging techniques. RESULTS: Restraint of respiratory motion improved the image quality. Decreasing the slice thickness reduced artificial inhomogeneity in signal intensity (SI). Substantial effects of TR and FA on image quality were also demonstrated. With the determined techniques, images covering the entire trunk with a voxel size of 0.26x0.26x0.52 mm were acquired in an acquisition time of five minutes 28 seconds and a total experiment time of <20 minutes, and various organs and subcutaneous tumors were clearly visualized. CONCLUSION: The compact MRI system provides images of living mice with acceptable quality in a reasonable time. Considering its convenience, it appears to be suitable for use in routine mouse experiments.  相似文献   

19.
Internal dosimetry deals with the determination of the amount and the spatial and temporal distribution of radiation energy deposited in tissue by radionuclides within the body. Nuclear medicine has been largely a diagnostic specialty, and model-derived average organ dose estimates for risk assessment, the traditional application of the MIRD schema, have proven entirely adequate. However, to the extent that specific patients deviate kinetically and anatomically from the model used, such dose estimates will be inaccurate. With the increasing therapeutic application of internal radionuclides and the need for greater accuracy, radiation dosimetry in nuclear medicine is evolving from population- and organ-average to patient- and position-specific dose estimation. Beginning with the relevant quantities and units, this article reviews the historical methods and newly developed concepts and techniques to characterize radionuclide radiation doses. The latter include the 3 principal approaches to the calculation of macroscopic nonuniform dose distributions: dose point-kernel convolution, Monte Carlo simulation, and voxel S factors. Radiation dosimetry in "sensitive" populations, including pregnant women, nursing mothers, and children, also will be reviewed.  相似文献   

20.
In this study, we evaluated clinical images to determine appropriate settings for slice thickness in screening examinations for hepatocellular carcinoma and metastatic liver cancer, which are frequently performed in abdominal CT. The clinical images of 15 cases screened for hepatocellular carcinoma and 15 cases screened for metastatic liver cancer were evaluated. The evaluation was visually performed by three abdominal radiologists, and the sensitivity and specificity of each slice thickness were calculated. Results: differences in sensitivity and specificity were not found between slice thicknesses of 2.5 mm and 5.0 mm; however, sensitivity and specificity were low, and confidence was also low at a 10.0 mm slice thickness. Furthermore, when a 5.0 mm slice thickness was adopted, it was shown that radiation dose in limited parts could be reduced greatly to a noise level that compared equally with a study in which a 2.5 mm slice thickness was adopted in another evaluation. Therefore, the objective could be achieved by using a slice thickness of about 5.0 mm in multidetector-row CT examinations for the screening of liver cancer, while controlling patient dose to a minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号