首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomedical imaging is valuable for noninvasive investigation of in vivo drug delivery with polymer conjugates. It can provide real-time information on pharmacokinetics, biodistribution, and drug delivery efficiency of the conjugates. Noninvasive visualization of in vivo drug delivery of polymer conjugates with contrast-enhanced magnetic resonance imaging (MRI) was studied with paramagnetically labeled poly(L-glutamic acid) in an animal tumor model. Poly(L-glutamic acid) is a biocompatible and biodegradable drug carrier for diagnostics and therapeutics. Poly(L-glutamic acid)-1,6-hexanediamine--(Gd-DO3A) conjugates with molecular weights of 87, 50, and 28 kDa and narrow molecular weight distributions were prepared and studied in mice bearing MDA-MB-231 human breast cancer xenografts. Contrast-enhanced MRI resulted in real-time and three-dimensional visualization of blood circulation, pharmacokinetics, biodistribution, and tumor accumulation of the conjugates, and the size effect on these pharmaceutics properties. The conjugate of 28 kDa rapidly cleared from the circulation and had a relatively lower tumor accumulation. The conjugates with higher molecular weights exhibited a more prolonged blood circulation and higher tumor accumulation. The difference between the conjugates of 87 and 50 kDa was not significant. Contrast-enhanced MRI is effective for noninvasive real-time visualization of in vivo drug delivery of paramagnetically labeled polymer conjugates.  相似文献   

2.
The biodistribution and pharmacokinetics of bone-targeting N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-alendronate conjugates were evaluated following intravenous administration of radioiodinated conjugates to young healthy BALB/c mice. The synthesis of a polymerizable and cathepsin K cleavable alendronate derivative, N-methacryloylglycylglycylprolylnorleucylalendronate, enabled the preparation of HPMA copolymer-alendronate conjugates with varying composition. Using the RAFT (reversible addition-fragmentation chain transfer) polymerization technique, four conjugates with different molecular weight and alendronate content and two control HPMA copolymers (without alendronate) with different molecular weight were prepared. The results of biodistribution studies in mice demonstrated a strong binding capacity of alendronate-targeted HPMA copolymer conjugates to bone. Conjugates with low (1.5 mol%) alendronate content exhibited a similar bone deposition capacity as conjugates containing 8.5 mol % of alendronate. The molecular weight was an important factor in the biodistribution of the HPMA copolymer conjugates. More conjugate structures need to be evaluated, but the data suggest that medium molecular weights (50-100 kDa) might be effective drug carriers for bone delivery.  相似文献   

3.
N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers and their drug conjugates are some of the most intensively investigated drug delivery systems for over 30 years. Some of the HPMA copolymer drug conjugates have entered clinical trials. Various molecular imaging technologies have been used to investigate the mechanism of drug delivery with HPMA copolymers. Fluorescence imaging has been used for the study of the process of intracellular drug delivery, including cell binding, subcellular trafficking and intracellular fate, of HPMA copolymers and drug conjugates. Magnetic resonance imaging and nuclear medicine, including γ-scintigraphy, SPECT and PET, have been used for the non-invasive visualization of pharmacokinetics, biodistribution and drug targeting efficiency of HPMA copolymers in animal models. γ-Scintigraphy has been used to study HPMA copolymer drug conjugates in human patients. The application of imaging technologies in the study of HPMA copolymers and properties of the copolymers demonstrated by imaging is summarized in this review.  相似文献   

4.
5-Fluorouracil (5-FU) is an antimetabolite with a broad-spectrum activity against solid tumors. However, its very short half-life in plasma circulation greatly limited the in vivo antitumor efficacy and clinical application. The current work aimed to solve this problem as well as to increase 5-FU biodistribution to tumor by covalently conjugating 5-FU to a biocompatible, non-toxic and non-immunogenic drug carrier – N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer. The in vitro cytotoxicity, in vivo biodistribution and therapeutic efficacy of HPMA copolymer–5-FU conjugates (P-FU) were reported. Cytotoxicity was evaluated by using a serial of tumor cells (A549, CT-26, Hela, HepG2 cells and 5-FU resistant HepG2 cells). In vivo biodistribution and therapeutic efficacy were investigated in Kunming mice-bearing hepatoma 22 (H22). Results indicated that P-FU could increase the cytotoxicity of 5-FU in Hela, HepG2 and 5-FU resistant HepG2 cells, while it decreases the cytotoxicity of 5-FU in A549 and CT-26. Both in vitro release profile in plasma and biodistribution study showed that P-FU significantly prolonged the drug plasma circulation time. P-FU also showed an over 3-fold larger area under the concentration–time curve (AUC) in tumor when compared with free drug. Therapeutic evaluation also demonstrated that the treatment with P-FU displayed stronger inhibition of the tumor growth when compared with that of control group (physiologic saline) or 5-FU group at the same dose. All the results suggested that P-FU could increase cytotoxicity of 5-FU in certain cancer cell lines, prolong 5-FU circulation time in vivo, enhance 5-FU distribution to tumor and improve therapeutic efficacy. Therefore, HPMA copolymer is a potential carrier for 5-FU for the effective treatment of cancer.  相似文献   

5.
Purpose To optimize the structure of geldanamycin (GDM) derivative moieties attached to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers via an enzymatically degradable spacer. Methods HPMA copolymers containing different AR-GDM (AR = 3-aminopropyl (AP), 6-aminohexyl (AH), and 3-amino-2-hydroxy-propyl AP(OH)) were synthesized and characterized. Their cytotoxicity towards the A2780 human ovarian carcinoma cells was evaluated. Results The cytotoxic efficacy of HPMA copolymer-AR-GDM conjugates depended on the structure of AR-GDM. Particularly, HPMA copolymer-bound AH-GDM, which possessed the longest substituent at the 17-position, demonstrated the highest efficacy among the polymer-bound GDM derivatives; however the activity of free AH-GDM was lower than that of the other free AR-GDMs. The relative increase of the activity of macromolecular AH-GDM when compared to AP-GDM or AP(OH)-GDM correlated with the enhanced recognition of AH-GDM terminated oligopeptide side-chains by the active site of the lysosomal enzyme, cathepsin B Drug stability and further stabilization upon binding to HPMA copolymer also contributed to the observed phenomena. Conclusion AH-GDM was found to be a suitable GDM derivative for the design of a drug delivery system based on HPMA copolymers and enzymatically-degradable spacers.  相似文献   

6.
袁芳  张志荣  杨云霞  黄园 《药学学报》2008,43(11):1152-1156
考察本实验室合成的N-(2-羟丙基)甲基丙烯酰胺[N-(2-hydroxypropyl) methacrylamide,HPMA]聚合物-5-氟尿嘧啶(5-flurouracil,5-FU)接合物(P-FU)的体外释药、体内分布及抗肿瘤活性。以小鼠血浆为介质,考察P-FU中5-FU的释放规律;以小鼠H22肝癌实体瘤模型(皮下型)为肿瘤模型,考察接合物在荷瘤小鼠体内的分布情况、药代动力学规律及抑瘤活性。结果表明,37 ℃时P-FU在小鼠血浆中具有一定的稳定性,半衰期(t1/2)为32.4 h。与5-FU相比,P-FU在荷瘤小鼠体内的循环时间明显延长(血浆中t1/2为原药的166倍),在肿瘤中的沉积量(AUC为5-FU的3.3倍)及滞留时间(t1/2为5-FU的2.3倍)均有明显增加。体内药效学研究表明,P-FU组对荷瘤小鼠的肿瘤生长抑制率(69.09%)显著高于5-FU组(56.49%,P<0.05),瘤块组织病理学观察结果也显示P-FU组小鼠肿瘤组织中细胞凋亡程度大于5-FU组。HPMA聚合物可被用于为5-FU构建一种新型实体瘤高分子给药系统。  相似文献   

7.
《Journal of drug targeting》2013,21(10):874-889
Novel star polymer-doxorubicin conjugates designed for passive tumor targeting have been developed and their potential for treatment of cancer has been investigated. In the present study the synthesis, physico-chemical characterization, drug release, bio-distribution and preliminary data of in vivo efficacy of the conjugates are described. In the water-soluble conjugates the core of a molecule formed by poly(amido amine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin (Dox) attached by hydrazone bonds enabling intracellular pH-controlled hydrolytic drug release, or by GFLG sequence susceptible to enzymatic degradation. The controlled synthesis utilizing semitelechelic copolymer precursors facilitated preparation of polymer conjugates in a broad range of molecular weights (1.1–3.0·105 g/mol). In contrast to free drug or linear conjugates the star polymer-Dox conjugates exhibited prolonged blood circulation and enhanced tumor accumulation in tumor-bearing mice indicating important role of the EPR effect. The star polymer-Dox conjugates showed significantly higher anti-tumor activity in vivo than Dox·HCl or its linear or graft polymer conjugates, if treated with a single dose 15 or 5?mg Dox eq./kg. Method of tumor initialization (acute or chronic experimental tumor models) significantly influenced effectiveness of the treatment with much lower success in treatment of mice bearing chronic tumors.  相似文献   

8.
《Journal of drug targeting》2013,21(10):968-980
Abstract

Combination of targeted delivery and controlled release is a powerful technique for cancer treatment. In this paper, we describe the design, synthesis, structure validation and biological properties of targeted and non-targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-docetaxel conjugates. Docetaxel (DTX) was conjugated to HPMA copolymer via a tetrapeptide spacer (–GFLG-). 3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid (DUPA) was used as the targeting moiety to actively deliver DTX for treatment of Prostate-Specific Membrane Antigen (PSMA) expressing prostate cancer. Short and long spacer DUPA monomers were prepared, and four HPMA copolymer – DTX conjugates (non-targeted, two targeted with short spacer of different molecular weight and targeted with long spacer) were prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) copolymerization. Following confirmation of PSMA expression on C4-2 cell line, the DTX conjugates’ in vitro cytotoxicity was tested against C4-2 tumor cells and their anticancer efficacies were assessed in nude mice bearing s.c. human prostate adenocarcinoma C4-2 xenografts. The in vivo results show that the spacer length between targeting moieties and HPMA copolymer backbone can significantly affect the treatment efficacy of DTX conjugates against C4-2 tumor bearing nu/nu mice. Moreover, histological analysis indicated that the DUPA-targeted DTX conjugate with longer spacer had no toxicity in major organs of treated mice.  相似文献   

9.
Non-small cell lung carcinoma is one of the most frequently occurred cancers with a very high rate of recurrence. Self-assembly N-(2-hydroxypropyl) methacrylamide (HPMA) micelles and cross-linked micelles were developed to improve antitumor ability of linear HPMA copolymer. The characters of HPMA micelles were investigated and compared using human non-small cell lung carcinoma 3-D culture model and nude mice xenograft model. Cross-linked micelles showed highest cytotoxicity on A549 cell monolayers after a short time treatment in vitro. Moreover, both of the two micelles exhibited better in vitro anti-tumor activity on A549 tumor spheroids than linear HPMA conjugates especially the cross-linked micelles. On BALB/c nude mice bearing A549 xenograft tumors, the cross-linked micelles exhibited the greatest tumor accumulation and the best anti-tumor activity due to the highly improved stabilities and the more pronounced enhanced permeability and retention (EPR) effect, which were followed by the non-cross-linked micelles. Meanwhile, neither the two micelles nor the linear HPMA copolymers showed significant toxicity on the main organs of mice while free doxorubicin (DOX) showed obvious cardiac toxicity. All the results suggested that micellization improved the anti-tumor activity of HPMA copolymers on A549 human non-small cell lung carcinoma, furthermore, cross-linked HPMA copolymer micelles with pH-sensitivity and biodegradability showed more excellent anti-tumor activity.  相似文献   

10.
Somatostatin receptor 2 (SSTR2), specifically over-expressed on many tumor cells, is a potential receipt for active targeting in cancer therapy. In the present study, octreotide (Oct), which had high affinity to SSTR2, was attached to N-(2-hydroxypropyl) methacrylamide (HPMA) polymeric system to enhance the antitumor efficiency of the anticancer drug doxorubicin (DOX). Two kinds of cell lines (HepG2 and A549), which overexpress SSTR2, were chosen as cell models. Compared with non-modified conjugates, Oct-modified conjugates exhibited superior cytotoxicity and intracellular uptake on both HepG2 and A549 cell lines. This might be due to the mechanism of receptor-mediated endocytosis. Subsequently, the in vivo biodistribution and antitumor activity evaluations showed that Oct modification significantly improved the tumor accumulation and antitumor efficacy of HPMA copolymer conjugates in SSTR2 over-expressed Kunming mice bearing H22 tumor xenografts. In summary, Oct-modified HPMA polymer-DOX conjugates might be a promising system for the treatment of SSTR2 over-expressed cancers.  相似文献   

11.
Abstract

Polymer drug conjugates composed of N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer covalently bound, doxorubicin, and containing additionally galactosamine to facilitate hepatocyte-specific targeting (HPMA copolymer-dox-gal), were synthesised to contain a small amount (~1 mol%) of the monomer methacryloyltyrosinamide to permit radioiodination with [123I]iodide. After intravenous administration to both normal mice and nude mice bearing hepatic human colon carcinoma, the biodistribution of the conjugate was monitored using the gamma camera, and also by dissection analysis. Efficient liver accumulation of HPMA copolymer-dox-gal was seen in the gamma camera images within 20 min, both in normal and rumour-bearing animals. Quantitatively liver uptake was ~40% dose administered/g liver. Images of the tumour-bearing animals showed clearly a much lower accumulation of HPMA copolymer-dox-gal in the colon carcinoma deposits within the liver (3-9% dose/g tumour), and this lack of uptake was verified by ex vivo imaging of the tumour-containing liver and also by dissection analysis. It can be concluded that 123I-labelled HPMA copolymer conjugates offer great potential as effective imaging agents and can be used for future non-invasive clinical studies. This nuclear imaging method will enable optimisation of the dosing schedule by identification of doses of HPMA copolymer-dox-gal that display receptor saturation (and hence diminished targeting efficiency). In addition this conjugate can provide negative images of liver-associated tumour deposits that do not express the asialoglycoprotein receptor.  相似文献   

12.
目的:制备2种正电化修饰的N-(2-羟丙基)甲基丙烯酰胺(HPMA)聚合物-阿霉素接合物并表征,分别考察2种接合物的正电基团含量对肿瘤细胞摄取的影响。方法:制备侧链带伯胺基的HPMA聚合物-阿霉素接合物(pHPMA-DOX-APMA)和侧链带胍基的HPMA聚合物-阿霉素接合物(pHPMA-DOX-GPMA),对其药剂学性质如正电基团含量,载药量,Zeta电位和分子量进行表征,进一步考察不同正电基团含量的接合物对MCF-7细胞摄取和毒性的影响。结果:通过自由基聚合反应,2种接合物成功合成。其中pHPMA-DOX-APMA伯胺基含量为0.44~1.57 mmol·g-1,载药量为7.15%~9.25%;pHPMA-DOX-GPMA胍基含量为0.11~0.54 mmol·g-1,载药量为7.55%~9.07%;相对分子质量分别为33~38 kDa和32~37 kDa。通过BCA法和MTT法研究分别发现在pHPMA-DOX-APMA中的伯胺基团含量为1.570 mmol·g-1及pHPMA-DOX-GPMA中的胍基含量为0.260 mmol·g-1时,肿瘤细胞对阿霉素的摄取量显著增加,二者的IC50与pHPMA-DOX相比显著降低(P<0.05)。结论:成功制备了2种正电化修饰的HPMA聚合物-阿霉素接合物;适当的正电化修饰对阿霉素的肿瘤细胞摄取有促进作用。  相似文献   

13.
Osteotropicity of novel bone-targeted HPMA copolymer conjugates has been demonstrated previously with bone histomorphometric analysis. The pharmacokinetics and biodistribution of this delivery system were investigated in the current study with healthy young BALB/c mice. The 125I-labeled bone-targeted and control (nontargeted) HPMA copolymers were administered intravenously to mice, and their distribution to different organs and tissues was followed using gamma counter and single photon emission computed tomography (SPECT). Both the invasive and noninvasive data further confirmed that the incorporation of D-aspartic acid octapeptide (D-Asp8) as bone-targeting moiety could favorably deposit the HPMA copolymers to the entire skeleton, especially to the high bone turnover sites. To evaluate the influence of molecular weight, three fractions (Mw of 24, 46, and 96 kDa) of HPMA copolymer-D-Asp8 conjugate were prepared and evaluated. Higher molecular weight of the conjugate enhanced the deposition to bone due to the prolonged half-life in circulation, but it weakened the bone selectivity. A higher content of bone-targeting moiety (D-Asp8) in the conjugate is desirable to achieve superior hard tissue selectivity. Further validation of the bone-targeting efficacy of the conjugates in animal models of osteoporosis and other skeletal diseases is needed in the future.  相似文献   

14.
This review describes the design and development of N-(2-hydroxypropyl)-methacrylamide (HPMA) copolymer-cyclic RGD conjugates for targeting tumor angiogenesis. Relative to non-targetable systems, HPMA copolymer-RGD4C and -RGDfK conjugates have shown increased tumor accumulation in a variety of solid tumors including prostate, lung, and breast tumor xenografts. Compared to free peptides, copolymers had increased tumor accumulation and decreased uptake in non-target organs such as the liver and spleen. Clinically relevant imaging agents such as 99mTc, 111In, and Gd enabled in vivo imaging of the constructs by scintigraphy and magnetic resonance techniques. Targeted delivery of 90Y, a radiotherapeutic agent by HPMA copolymer-RGD4C conjugates resulted in tumor size reduction in mice bearing prostate tumor xenografts. Delivery of the geldanamycin derivative 17-(6-aminohexylamino)-17-demethoxygeldanamycin by HPMA copolymer-RGDfK conjugates resulted in increased tumor concentration of the free drug in a prostate xenograft model. These constructs show promise for targeted delivery of therapeutics and imaging agents to solid tumors.  相似文献   

15.
Abstract

N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymers containing doxorubicin (DOX, approximately 8% by weight) bound via the lysosomally degradable spacer Gly-Phe-Leu-Gly and, in certain cases, also melanocyre-stimulating hormone (MSH, 5-10% by weight) were synthesized with the aim of developing a drug conjugate for site-specific delivery to malignant melanoma. Polymer-bound MSH, like free MSH, was able to stimulate tyrosinase activity in B16F10 cells in vitro, confirming the ability of conjugated hormone to interact with the MSH receptor. Similarly, a 125I-labelled conjugate containing MSH was captured by B16F10 cells in vitro more rapidly than a similar polymer without the targeting moiety. HPMA copolymers containing DOX bound via the lysosomally degradable Gly-Phe-Leu-Gly linkage were cytotoxic to a mouse melanoma cell line (M3 S91) in vitro, the MSH-containing conjugate being more active than that without (although the difference in the ID50 was not significant). When administered intraperitoneally or intravenously to C57BL/6J mice bearing intraperitoneal B16F10 tumours, HPMA copolymers containing DOX linked via this biodegradable spacer (with or without MSH) significantly increased animal survival, the maximum ratio of the mean survival of the test group (T) to that of the untreated control (C) T/C observed (approximately 200) over the dose range 5-20 mg DOX/kg being similar to that seen for free DOX. In contrast, neither polymer conjugates containing DOX bound via a non-degradable linkage (Gly-Gly) nor free MSH showed antitumour activity. In mice bearing established subcutaneous B16F10 tumours, biodegradable polymer-bound DOX conjugates given intraperitoneally were more effective than free DOX (which was virtually inactive in this system); conjugates containing MSH were significantly more effective than those without, the maximum T/C being approximately 148 and 324 respectively. Preliminary pharmacokinetic experiments showed evidence of selective MSH targeting of polymer conjugates to subcutaneous B16F10.  相似文献   

16.
This work was based on our recent studies that a promising conjugate, RGD-modified PEGylated polyamidoamine (PAMAM) dendrimer with doxorubicin (DOX) conjugated by acid-sensitive cis-aconityl linkage (RGD-PPCD), could increase tumor targeting by binding with the integrin receptors overexpressed on tumor cells and control release of free DOX in weakly acidic lysosomes. To explore the application of RGD-PPCD to glioma therapy, the effects of the conjugate were further evaluated in glioma model. For comparative studies, DOX was also conjugated to PEG–PAMAM by acid-insensitive succinic linkage to produce the PPSD conjugates, which was further modified by RGD to form RGD-PPSD. In vitro cytotoxicity of the acid-sensitive conjugates against C6 cells was higher than that of the acid-insensitive ones, and further the modification of RGD enhanced the cytotoxicity of the DOX-polymer conjugates as a result of the increased cellular uptake of the RGD-modified conjugates by C6 cells. In vivo pharmacokinetics, biodistribution and antitumor activity were investigated in an orthotopic murine model of C6 glioma by i.v. administration of DOX-polymer conjugates. In comparison with DOX solution, all the conjugates showed significantly prolonged half-life and increased AUC and exhibited higher accumulation in brain tumor than normal brain tissue. Although RGD-PPCD was more than 2-fold lower tumor accumulation than RGD-PPSD, it exhibited the longest survival times among all treatment groups, and therefore, RGD-PPCD conjugate provide a desirable candidate for targeted therapy of glioma.  相似文献   

17.
Abstract

An N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin conjugate is currently under clinical evaluation as a new antitumour agent. It has been shown previously that such conjugates exhibit selective tumour accumulation. In this study HPMA copolymer doxorubicin conjugates of low (LMW) or high (HMW) molecular weight were synthesised (which had a weight average molecular weight (Mw) of 25,000 and 94,000 respectively) and additionally contained a small amount (1 mol%) of the comonomer methacryloyltyrosinamide to permit labelling with [123I or 125I]iodide. Gamma camera imaging using the I-labelled probes was used to follow time-dependent biodistribution after intraperitoneal (i.p.) or intravenous (i.v.) administration to mice bearing subcutaneously either B16F10 melanoma or a mammary carcinoma. Imaging showed more rapid clearance of LMW conjugate from the peritoneal cavity than HMW conjugate. The images of mice given the LMW conjugate revealed rapid urinary excretion of radioactivity after both i.p. and i.v. injection with an early high concentration of tracer in the bladder, and subsequently a very high concentration in the kidneys, which came to dominate the views. Dissection analysis 2 days after administration of the LMW conjugate revealed a kidney level of radioactivity corresponding to 25-40 %dose/g tissue in mice bearing the two tumour models. Following administration of the HMW conjugate kidney accumulation at 2 days was less due to retention of the higher molecular weight polymer molecules in the circulation, and spleen and liver displayed the highest concentrations of radioactivity. The tumour accumulation of LMW and HMW conjugates was; mammary carcinoma 3.18 and 5.29 % dose/g respectively; B16F10 melanoma 3.23 and 8.82 %dose/g although these levels of tracer enabled visualisation in the images of the mammary carcinoma with HMW conjugate at later time points. The smaller size of the B16F10 tumour masses did not permit clear visualisation.  相似文献   

18.
Delivery of macromolecules to pancreatic cancer is inhibited by a dense extracellular matrix composed of hyaluronic acid, smooth muscle actin and collagen fibers. Hyaluronic acid causes a high intratumoral fluidic pressure which prevents diffusion and penetration into the pancreatic tumor. This study involves the breaking down of hyaluronic acid by treating CAPAN-1 xenograft tumors in athymic nu/nu mice with targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers radiolabeled with 111In for single photon emission computerized tomography (SPECT) imaging. Two targeting strategies were investigated including αvβ3 integrin and HER2 receptors. HPMA copolymers were targeted to these receptors by conjugating short peptide ligands cRGDfK and KCCYSL to the side chains of the copolymer. Results demonstrate that tumor targeting can be achieved in vivo after treatment with hyaluronidase. This approach shows promise for enhanced delivery of polymer–peptide conjugates to solid tumors.  相似文献   

19.
20.
Purpose. To examine the -galactoside and -lactoside binding capacity of three human colon-adenocarcinoma cell lines and their sugar specificity, using N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates of galactosamine, lactose, and triantennary galactose. Methods. Three types of HPMA copolymers containing the saccharide epitopes galactosamine (P-Gal), lactose (P-Lac), or triantennary galactose (P-TriGal) were synthesized. The relationship between the content of the saccharide moieties, the valency of the galactose residues, and their biorecognition by the cell lines (Colo-205, SW-480, and SW-620) was investigated using flow cytometry and confocal fluorescence microscopy analysis. Results. The binding of the glycoconjugates to the human colon-adenocarcinoma cell lines was dependent on the type and the number of bound sugar residues per macromolecule. The higher the sugar contents in the HPMA copolymers, the higher the extent of binding. Although introduction of galactoside residues into the HPMA copolymer resulted in a significant increase in the binding of the copolymers to the cells, low biorecognition of the lactoside-containing HPMA copolymers by all cell lines used was observed. The trivalent galactoside-containing HPMA copolymers did not yield a notable glycoside cluster effect for the -galactoside-binding lectin expressed on human colon-adenocarcinoma cells. Among the various cell lines, little differences in the extent of binding of the glycopolymers to the cells were observed. The data on the internalization of HPMA copolymer conjugates obtained by confocal fluorescence microscopy correlated well with the flow cytometry analysis of their biorecognition by target cells. Conclusions. The lectin-mediated endocytosis of the HPMA-glycoconjugates in human colon cancer cell lines suggests their potential use as targeting tools of cytotoxic drugs to colon adenocarcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号