首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
This article reviews the impacts on the in vivo prediction of oral bioavailability (BA) and bioequivalence (BE) based on Biopharmaceutical classification systems (BCS) by the food-drug interaction (food effect) and the gastrointestinal (GI) environmental change. Various in vitro and in silico predictive methodologies have been used to expect the BA and BE of the test oral formulation. Food intake changes the GI physiology and environment, which affect oral drug absorption and its BE evaluation. Even though the pHs and bile acids in the GI tract would have significant influence on drug dissolution and, hence, oral drug absorption, those impacts largely depend on the physicochemical properties of oral medicine, active pharmaceutical ingredients (APIs). BCS class I and III drugs are high soluble drugs in the physiological pH range, food-drug interaction may not affect their BA. On the other hand, BCS class II and IV drugs have pH-dependent solubility, and the more bile acid secretion and the pH changes by food intake might affect their BA. In this report, the GI physiological changes between the fasted and fed states are described and the prediction on the oral drug absorption by food-drug interaction have been introduced.  相似文献   

2.
In vitro dissolution tests can be used to waive in vivo bioequivalency studies (biowaiver), if drug has high solubility and high permeability according to biopharmaceutics classification system (BCS I). Then absorption of BCS I drugs is not dependent on drug dissolution or gastrointestinal transit time and the solid dosage form behaves like oral solution. Currently biowaivers are determined based on solubility, permeability and dissolution, but the factors related to the gastrointestinal tract and the dynamic nature of drug dissolution and systemic pharmacokinetics are not taken into account. We utilized pharmacokinetic simulation model to study effects of formulation types, and different rates of dissolution and gastric emptying on drug concentrations in plasma. Simulated maximum concentration in plasma (C(max)) and area under the curve (AUC) values of solid dosage forms were compared to the simulations of oral solution. Based on simulations about half of BCS I drugs have higher risk to fail in bioequivalency (BE) study than BCS III drugs. For these BCS I compounds 10-25% differences of C(max) were observed. Rest of the BCS I drugs and all BCS III drugs have lower risk to fail in BE study since less than 10% difference in C(max) and AUC were observed. Pharmacokinetic simulation model was valuable tool to evaluate biowaiver criteria and to study the effects of drug and physiology gastrointestinal related factors on C(max) and AUC.  相似文献   

3.
The ratio of AUC to the dose (AUC/dose) was previously found as a parameter that predicts a risk of bioinequivalence of oral drug products. On the basis of the combination of this parameter and the biopharmaceutics classification system (BCS), a perspective for biowaivers of human bioequivalence studies is discussed. Databases of bioequivalence studies using immediate-release solid oral dosage forms were disclosed by 6 Japanese generic pharmaceutical companies, and the number of subjects required for demonstrating bioequivalence between generic and reference products was plotted as a function of AUC/dose for each BCS category. A small variation in the number of subjects was constantly observed in bioequivalence studies using dosage forms containing an identical BCS class 1 or class 3 drug, even though formulations of the generic product differ between companies. The variation was extremely enlarged when the drugs were substituted with BCS class 2 drugs. Rate-determining steps in oral absorption of highly water-soluble BCS class 1 and class 3 drugs are independent of formulations when there is no significant difference in the in vitro dissolution profiles between formulations. The small variation observed for both BCS categories indicates that the number of subjects converges into one value for each drug. Our analysis indicates the appropriateness of biowaiver of bioequivalence studies for immediate-release solid oral dosage forms containing not only BCS class 1 drugs but also class 3 drugs.  相似文献   

4.
The purpose of this study is to test the hypothesis that rapidly dissolving immediate-release (IR) solid oral products containing a highly soluble and highly permeable drug [biopharmaceutical classification system (BCS) class I] are bioequivalent under fed conditions. Metoprolol and propranolol (BCS class I) as well as hydrochlorothiazide (BCS class III) were selected as model drugs. The relative bioavailability of two FDA approved (Orange Book AB rating) solid oral dosage forms of metoprolol and propranolol/hydrochlorothiazide (combination tablets) was evaluated in human volunteers under fed conditions using a two-way crossover design. Equal numbers of male and female volunteers were recruited, and racial and/or ethnic minorities were not excluded. The plasma concentrations of metoprolol, propranolol, and hydrochlorothiazide were determined using validated high-performance liquid chromatography (HPLC) methods. Eighteen subjects completed the metoprolol study while 17 subjects completed the propranolol/hydrochlorothiazide combination tablet study. In the metoprolol study, the 90% confidence intervals of Cmax and AUC(inf) were 98-118% and 92-115%, respectively. For propranolol, the 90% confidence intervals of Cmax and AUC(inf) were 91-121% and 89-117%, and for hydrochlorothiazide, the 90% confidence intervals for Cmax and AUC(inf) were 96-107% and 97-106%, respectively. These study results appear to support the hypothesis that rapidly dissolving IR solid oral products containing a BCS class I drug are likely to be bioequivalent under fed conditions. In addition, BCS class III drugs may have the potential to be bioequivalent under fed conditions.  相似文献   

5.
PURPOSE: Nonlinear oral absorption due to poor solubility often impedes drug development. The purpose of this study was to elucidate the rate-limiting process in oral absorption of Biopharmaceutical Classification System (BCS) class II (low solubility-high permeability) drugs in order to predict nonlinear absorption of dose caused by solubility-limited absorption. METHODS: Oral absorption of danazol, griseofulvin, and aprepitant was predicted from a miniscale dissolution test and a physiologically-based model. The effect of particle size reduction and dose increase on absorption was investigated in vitro and in vivo to clarify the rate-limiting steps of dissolution-rate-limited and solubility-limited absorption. RESULTS: The rate-limiting steps of oral absorption were simulated and increase in the dissolution rate and administration dose showed a shift from dissolution rate-limited to solubility-limited absorption. In the study in dogs, particle size reduction improved the oral absorption of large particle drugs but had little effect on small particle drugs. Dose nonlinearity was observed with small particles at a high dose. Our model quantitatively predicted results observed in vivo, including but not exclusively, dissolution-rate-limited and solubility-limited absorption. CONCLUSION: The present study provides a powerful tool to predict dose nonlinearity and will aid in the success of BCS class II drug development.  相似文献   

6.
Drug solubility, effective permeability, and intestinal metabolism and transport are parameters that govern intestinal bioavailability and oral absorption. However, excipients may affect the systemic bioavailability of a drug by altering these parameters. Thus, parameter sensitivity analyses using physiologically based pharmacokinetic (PBPK) models were performed to examine the potential impact of excipients on oral drug absorption of different Biopharmaceutics Classification System (BCS) class drugs. The simulation results showed that changes in solubility had minimal impact on Cmax and AUC0-t of investigated BCS class 1 and 3 drugs. Changes in passive permeability altered Cmax more than AUC0-t for BCS class 1 drugs but were variable and drug-specific across different BCS class 2 and 3 drugs. Depending on the drug compounds for BCS class 1 and 2 drugs, changes in intestinal metabolic activity altered Cmax and AUC0-t. Reducing or increasing influx and efflux transporter activity might likely affect Cmax and AUC0-t of BCS class 2 and 3 drugs, but the magnitude may be drug dependent. Changes in passive permeability and/or transporter activity for BCS class 2 and 3 drugs might also have a significant impact on fraction absorbed and systemic bioavailability while changes in intestinal metabolic activity may have an impact on gut and systemic bioavailability. Overall, we demonstrate that PBPK modeling can be used routinely to examine sensitivity of bioavailability based on physiochemical and physiological factors and subsequently assess whether biowaiver requirements need consideration of excipient effects for immediate release oral solid dosage forms.  相似文献   

7.
口服给药是患者顺应性最好的给药方式,而小肠上皮是口服药物吸收的主要屏障.为了克服小肠上皮屏障口服递送难溶性药物,本研究设计合成了小肠胆酸转运体的底物脱氧胆酸偶联的聚(2-乙基-2-噁唑啉)-聚(D,L-乳酸)(DA-PEOz-PLA),并基于小肠胆酸特殊的转运途径构建了由DA-PEOz-PLA和mPEG-PLA组成的聚...  相似文献   

8.
The Biopharmaceutics Classification System (BCS) is a scientific framework that provides a basis for predicting the oral absorption of drugs. These concepts have been extended in the Biopharmaceutics Drug Disposition Classification System (BDDCS) to explain the potential mechanism of drug clearance and understand the effects of uptake and efflux transporters on absorption, distribution, metabolism, and elimination. The objective of present work is to establish criteria for provisional biopharmaceutics classification using pH-dependent passive permeability and aqueous solubility data generated from high throughput screening methodologies in drug discovery settings. The apparent permeability across monolayers of clonal cell line of Madin-Darby canine kidney cells, selected for low endogenous efflux transporter expression, was measured for a set of 105 drugs, with known BCS and BDDCS class. The permeability at apical pH 6.5 for acidic drugs and at pH 7.4 for nonacidic drugs showed a good correlation with the fraction absorbed in human (Fa). Receiver operating characteristic (ROC) curve analysis was utilized to define the permeability class boundary. At permeability ≥ 5 × 10(-6) cm/s, the accuracy of predicting Fa of ≥ 0.90 was 87%. Also, this cutoff showed more than 80% sensitivity and specificity in predicting the literature permeability classes (BCS), and the metabolism classes (BDDCS). The equilibrium solubility of a subset of 49 drugs was measured in pH 1.2 medium, pH 6.5 phosphate buffer, and in FaSSIF medium (pH 6.5). Although dose was not considered, good concordance of the measured solubility with BCS and BDDCS solubility class was achieved, when solubility at pH 1.2 was used for acidic compounds and FaSSIF solubility was used for basic, neutral, and zwitterionic compounds. Using a cutoff of 200 μg/mL, the data set suggested a 93% sensitivity and 86% specificity in predicting both the BCS and BDDCS solubility classes. In conclusion, this study identified pH-dependent permeability and solubility criteria that can be used to assign provisional biopharmaceutics class at early stage of the drug discovery process. Additionally, such a classification system will enable discovery scientists to assess the potential limiting factors to oral absorption, as well as help predict the drug disposition mechanisms and potential drug-drug interactions.  相似文献   

9.
Bioavailability (BA) and bioequivalence (BE) play a central role in pharmaceutical product development and BE studies are presently being conducted for New Drug Applications (NDAs) of new compounds, in supplementary NDAs for new medical indications and product line extensions, in Abbreviated New Drug Applications (ANDAs) of generic products and in applications for scale-up and post-approval changes. The Biopharmaceutics Classification System (BCS) has been developed to provide a scientific approach for classifying drug compounds based on solubility as related to dose and intestinal permeability in combination with the dissolution properties of the oral immediaterelease (IR) dosage form. The aim of the BCS is to provide a regulatory tool for replacing certain BE studies by accurate in-vitro dissolution tests. The aim of this review is to present the status of the BCS and discuss its future application in pharmaceutical product development. The future application of the BCS is most likely increasingly important when the present framework gains increased recognition, which will probably be the case if the BCS borders for certain class II and III drugs are extended. The future revision of the BCS guidelines by the regulatory agencies in communication with academic and industrial scientists is exciting and will hopefully result in an increased applicability in drug development. Finally, we emphasize the great use of the BCS as a simple tool in early drug development to determine the rate-limiting step in the oral absorption process, which has facilitated the information between different experts involved in the overall drug development process. This increased awareness of a proper biopharmaceutical characterization of new drugs may in the future result in drug molecules with a sufficiently high permeability, solubility and dissolution rate, and that will automatically increase the importance of the BCS as a regulatory tool over time.  相似文献   

10.
Most biopharmaceutics classification system (BCS) class IV drugs, with poor solubility and inferior permeability, are also substrates of P-glycoprotein (P-gp) and cytochrome P450 (CYP450), leading to their low oral bioavailability. The objective of this study is to explore the potential of using functional polymer-lipid hybrid nanoparticles (PLHNs) to enhance the oral absorption of BCS IV drugs. In this paper, taking paclitaxel (PTX) as a drug model, PTX-loaded PLHNs were prepared by a self-assembly method. Chitosan was selected to modify the PLHN to enhance its mucoadhesion and stability. Three P-gp inhibitors (D-α-tocopherol polyethylene glycol 1000 succinate, pluronic P123 and Solutol HS15) were incorporated into selected PLHNs, and a CYP450 inhibitor (the extract of VBRB, BC0) was utilized to jointly promote the drug absorption. Properties of all the PLHNs were characterized systemically, including particle size, zeta potential, encapsulation efficiency, morphology, stability, in vitro drug release, mucoadhesion, in situ intestinal permeability and in vivo systemic exposure. It was found mucoadhesion of the CS-modified PLHNs was the strongest among all the formulations tested, with absolute bioavailability 21.95%. P-gp and CYP450 inhibitors incorporation further improved the oral bioavailability of PTX to 42.60%, 8-fold increase compared with that of PTX itself (4.75%). Taken together, our study might shed light on constructing multifunctional PLHNs based on drug delivery barriers for better oral absorption, especially for BCS IV drugs.  相似文献   

11.
Oral drug absorption enhancement by chitosan and its derivatives.   总被引:30,自引:0,他引:30  
Chitosan is a non-toxic, biocompatible polymer that has found a number of applications in drug delivery including that of absorption enhancer of hydrophilic macromolecular drugs. Chitosan, when protonated (pH<6.5), is able to increase the paracellular permeability of peptide drugs across mucosal epithelia. Chitosan derivatives have been evaluated to overcome chitosan's limited solubility and effectiveness as absorption enhancer at neutral pH values such as those found in the intestinal tract. Trimethyl chitosan chloride (TMC) has been synthesized at different degrees of quaternization. This quaternized polymer forms complexes with anionic macromolecules and gels or solutions with cationic or neutral compounds in aqueous environments and neutral pH values. TMC has been shown to considerably increase the permeation and/or absorption of neutral and cationic peptide analogs across intestinal epithelia. The mechanism by which TMC enhances intestinal permeability is similar to that of protonated chitosan. It reversibly interacts with components of the tight junctions, leading to widening of the paracellular routes. Mono-carboxymethylated chitosan (MCC) is a polyampholytic polymer, able to form visco-elastic gels in aqueous environments or with anionic macromolecules at neutral pH values. MCC appears to be less potent compared to the quaternized derivative. Nevertheless, MCC was found to increase the permeation and absorption of low molecular weight heparin (LMWH; an anionic polysaccharide) across intestinal epithelia. Neither chitosan derivative provokes damage of the cell membrane, and therefore they do not alter the viability of intestinal epithelial cells.  相似文献   

12.

Aims

Evidence suggests that the rate of oral drug absorption changes during early childhood. Yet, respective clinical implications are currently unclear, particularly for preterm neonates. The objective of this study was to evaluate changes in oral drug absorption after birth for different Biopharmaceutics Classification System (BCS) class I and II compounds to better understand respective implications for paediatric pharmacotherapy.

Methods

Two paradigm compounds were selected for BCS class I (paracetamol (acetaminophen) and theophylline) and II (indomethacin and ibuprofen), respectively, based on the availability of clinical literature data following intravenous and oral dosing. A comparative population pharmacokinetic analysis was performed in a step‐wise manner in nonmem® 7.2 to characterize and predict changes in oral drug absorption after birth for paracetamol, theophylline and indomethacin.

Results

A one compartment model with an age‐dependent maturation function for oral drug absorption was found appropriate to characterize the pharmacokinetics of paracetamol. Our findings indicate that the rate at which a drug is absorbed from the GI tract reaches adult levels within about 1 week after birth. The maturation function for paracetamol was found applicable to theophylline and indomethacin once solubility limitations were overcome via drug formulation. The influence of excipients on solubility and, hence, oral bioavailability was confirmed for ibuprofen, a second BCS class II compound.

Conclusions

The findings of our study suggest that the processes underlying changes in oral drug absorption after birth are drug‐independent and that the maturation function identified for paracetamol may be generally applicable to other BCS class I and II compounds for characterizing drug absorption in preterm as well as term neonates.  相似文献   

13.
The objective of this work was to suggest the biowaiver potential of biopharmaceutical classification system (BCS) Class II drugs in self-microemulsifying drug delivery systems (SMEDDS) which are known to increase the solubility, dissolution and oral absorption of water-insoluble drugs. Cyclosporine was selected as a representative BCS Class II drug. New generic candidate of cyclosporine SMEDDS (test) was applied for the study with brand SMEDDS (reference I) and cyclosporine self-emulsifying drug delivery systems (SEDDS, reference II). Solubility and dissolution of cyclosporine from SMEDDS were critically enhanced, which were the similar behaviors with BCS class I drug. The test showed the identical dissolution rate and the equivalent bioavailability (0.34, 0.42 and 0.68 of p values for AUC0→24h, Cmax and Tmax, respectively) with the reference I. Based on the results, level A in vitro-in vivo correlation (IVIVC) was established from these two SMEDDS formulations. This study serves as a good example for speculating the biowaiver extension potential of BCS Class II drugs specifically in solubilizing formulation such as SMEDDS.  相似文献   

14.
The goal of this study was to apply gastrointestinal simulation technology and integration of physiological parameters to predict biopharmaceutical drug classification. GastroPlus was used with experimentally determined physicochemical and pharmacokinetic drug properties to simulate the absorption of several weak acid and weak base BCS class II compounds. Simulation of oral drug absorption given physicochemical drug properties and physicochemical parameters will aid justification of biowaivers for selected BCS class II compounds.  相似文献   

15.
The US Food and Drug Administration's (FDA's) guidance for industry on dissolution testing of immediate-release solid oral dosage forms describes that drug dissolution may be the rate limiting step for drug absorption in the case of low solubility/high permeability drugs (BCS class II drugs). US FDA Guidance describes the model-independent mathematical approach proposed by Moore and Flanner for calculating a similarity factor (f2) of dissolution across a suitable time interval. In the present study, the similarity factor was calculated on dissolution data of two marketed aceclofenac tablets (a BCS class II drug) using various weighing approaches proposed by Gohel et al. The proposed approaches were compared with a conventional approach (W = 1). On the basis of consideration of variability, preference is given in the order of approach 3 > approach 2 > approach 1 as approach 3 considers batch-to-batch as well as within-samples variability and shows best similarity profile. Approach 2 considers batch-to batch variability with higher specificity than approach 1.  相似文献   

16.
Data are examined regarding possible waiver of in vivo bioequivalence testing (i.e. biowaiver) for approval of metformin hydrochloride (metformin) immediate-release solid oral dosage forms. Data include metformin's Biopharmaceutics Classification System (BCS) properties, including potential excipient interactions. Metformin is a prototypical transporter-mediated drug and is highly soluble, but only 50% of an orally administered dose is absorbed from the gut. Therefore, metformin is a BCS Class III substance. A BCS-based approval approach for major changes to marketed products and new generics is admissible if test and reference dosage forms have the identical active pharmaceutical ingredient and if in vitro dissolution from both are very rapid (i.e. at least 85% within 15 min at pH 1.2, 4.5, and 6.8). Recent International Council for Harmonisation BCS guidance indicates all excipients for Class III biowaivers are recommended to be qualitatively the same and quantitatively similar (except for preservatives, flavor agents, colorant, or capsule shell or film coating excipients). However, despite metformin being a prototypical transporter-mediated drug, there is no evidence that commonly used excipients impact metformin absorption, such that this restriction on excipients for BCS III drugs merits regulatory relief. Commonly used excipients in usual amounts are not likely to impact metformin absorption.  相似文献   

17.
The Biopharmaceutics Classification System (BCS) categorizes drugs into one of four biopharmaceutical classes according to their water solubility and membrane permeability characteristics and broadly allows the prediction of the rate-limiting step in the intestinal absorption process following oral administration. Since its introduction in 1995, the BCS has generated remarkable impact on the global pharmaceutical sciences arena, in drug discovery, development, and regulation, and extensive validation/discussion/extension of the BCS is continuously published in the literature. The BCS has been effectively implanted by drug regulatory agencies around the world in setting bioavailability/bioequivalence standards for immediate-release (IR) oral drug product approval. In this review, we describe the BCS scientific framework and impact on regulatory practice of oral drug products and review the provisional BCS classification of the top drugs on the global market. The Biopharmaceutical Drug Disposition Classification System and its association with the BCS are discussed as well. One notable finding of the provisional BCS classification is that the clinical performance of the majority of approved IR oral drug products essential for human health can be assured with an in vitro dissolution test, rather than empirical in vivo human studies.  相似文献   

18.
Chitosan is a non-toxic, biocompatible polymer that has found a number of applications in drug delivery including that of absorption enhancer of hydrophilic macromolecular drugs. Chitosan, when protonated (pH<6.5), is able to increase the paracellular permeability of peptide drugs across mucosal epithelia. Chitosan derivatives have been evaluated to overcome chitosan's limited solubility and effectiveness as absorption enhancer at neutral pH values such as those found in the intestinal tract. Trimethyl chitosan chloride (TMC) has been synthesized at different degrees of quaternization. This quaternized polymer forms complexes with anionic macromolecules and gels or solutions with cationic or neutral compounds in aqueous environments and neutral pH values. TMC has been shown to considerably increase the permeation of neutral and cationic peptide analogs across Caco-2 intestinal epithelia. The mechanism by which TMC is enhancing the intestinal permeability is similar to that of protonated chitosan. It reversibly interacts with components of the tight junctions, leading to widening of the paracellular routes. This chitosan derivative does not provoke damage of the cell membrane, and does not alter the viability of intestinal epithelial cells. Co-administrations of TMC with peptide drugs were found to substantially increase the bioavailability of the peptide in both rats and juvenile pigs compared with administrations without the polymer.  相似文献   

19.
Oral delivery of camptothecin has a treatment advantage but is limited by low bioavailability and gastrointestinal toxicity. Poly(amido amine) or PAMAM dendrimers have shown promise as intestinal penetration enhancers, drug solubilizers and drug carriers for oral delivery in vitro and in situ. There have been very limited studies in vivo to evaluate PAMAM dendrimers for oral drug delivery. In this study, camptothecin (5 mg/kg) was formulated and co-delivered with cationic, amine-terminated PAMAM dendrimer generation 4.0 (G4.0) (100 and 300 mg/kg) and anionic, carboxylate-terminated PAMAM generation 3.5 (G3.5) (300 and 1000 mg/kg) in CD-1 mice. Camptothecin associated to a higher extent with G4.0 than G3.5 in the formulation, attributed to an electrostatic interaction on the surface of G4.0. Both PAMAM G4.0 and G3.5 increased camptothecin solubilization in simulated gastric fluid and caused a 2–3 fold increase in oral absorption of camptothecin when delivered at 2 h. PAMAM G4.0 and G3.5 did not increase mannitol transport suggesting that the oral absorption of camptothecin was not due to tight junction modulation. Histologic observations of the epithelial layer of small intestinal segments of the gastrointestinal tract (GIT) at 4 h post dosing supported no evidence of toxicity at the evaluated doses of PAMAM dendrimers. This study demonstrates that both cationic (G.4) and anionic (G3.5) PAMAM dendrimers were effective in enhancing the oral absorption of camptothecin. Results suggest that drug inclusion in PAMAM interior controlled solubilization in simulated gastric and intestinal fluids, and increased oral bioavailability.  相似文献   

20.
口服前药研究:机遇与挑战   总被引:3,自引:0,他引:3  
操锋  平其能  陈军 《药学学报》2008,43(4):343-349
前药研究是提高生物药剂学分类系统中第III和IV类药物口服吸收的有效途径之一。本文综述了近年来口服前药研究的进展,主要包括经典前药设计和靶向前药设计。经典前药设计重在改善母体药物的油水分配系数或减少药物的代谢。靶向前药设计重在主动利用胃肠道的生理特性靶向组织、酶及肠内流转运器,其中靶向小肠内流转运器-肽类转运器的口服前药成为目前研究的热点。前药研究还面临选题,设计和体内研究等方面的挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号