首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuropathic pain is a debilitating disease which affects central as well as peripheral nervous system. Transient receptor potential (TRP) channels are ligand-gated ion channels that detect physical and chemical stimuli and promote painful sensations via nociceptor activation. TRP channels have physiological role in the mechanisms controlling several physiological responses like temperature and mechanical sensations, response to painful stimuli, taste, and pheromones. TRP channel family involves six different TRPs (TRPV1, TRPV2, TRPV3, TRPV4, TRPM8, and TRPA1) which are expressed in pain sensing neurons and primary afferent nociceptors. They function as transducers for mechanical, chemical, and thermal stimuli into inward currents, an essential first step for provoking pain sensations. TRP ion channels activated by temperature (thermo TRPs) are important molecular players in acute, inflammatory, and chronic pain states. Different degree of heat activates four TRP channels (TRPV1–4), while cold temperature ranging from affable to painful activate two indistinctly related thermo TRP channels (TRPM8 and TRPA1). Targeting primary afferent nociceptive neurons containing TRP channels that play pivotal role in revealing physical stimuli may be an effective target for the development of successful pharmacotherapeutics for clinical pain syndromes. In this review, we highlighted the potential role of various TRP channels in different types of neuropathic pain. We also discussed the pharmacological activity of naturally and synthetically originated TRP channel modulators for pharmacotherapeutics of nociception and neuropathic pain.  相似文献   

2.
作为钙离子渗透性的瞬时受体电位(TRP),5种通道(TRPV1~4和TRPM2)被不同的高温激活,两种通道(TRPV1和TRPV8)被低温激活。越来越多的证据表明,TRPA1和TRPM8拮抗剂可预防顺铂、奥沙利铂和紫杉醇诱导的线粒体氧化应激、炎症、冷痛和痛觉过敏。TRPV1在顺铂引起的感觉神经元热痛觉和机械异常中有应答。TRPA1、TRPM8和TRPV2蛋白表达水平主要通过这些治疗方法在背根(DRG)和三叉神经节中增加。主要总结了5种温度调节TRP通道(TRPA1、TRPM8、TRPV1、TRPV2和TRPV4)。  相似文献   

3.
Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease.  相似文献   

4.
INTRODUCTION: Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease, affect millions of patients worldwide. New therapeutic approaches to these conditions are urgently needed since current treatment options provide only symptomatic relief. Transient receptor potential (TRP) ion channels are emerging molecular target candidates for the development of novel, disease-modifying drugs addressing airway diseases. AREAS COVERED: The authors review the patent literature on novel molecules targeting TRP channels (in particular TRPA1, TRPV1, TRPM8 and TRPC6) that are currently studied in clinical trials or are candidates for future clinical evaluation in the management of respiratory diseases. EXPERT OPINION: The patent literature highlights TRPA1 and TRPV1 channels as the most advanced therapeutic targets in respiratory disorders. TRPV1 antagonists relieve cough in preclinical studies. TRPA1 antagonists not only are anti-tussive but also show efficacy in allergic asthma models. However, to date, only minimal clinical data are available regarding the effects of selective, small-molecule TRPV1 and TRPA1 blockers in respiratory disorders. Clearly, long-term clinical studies are required to confirm the expectations based on preclinical data. In conclusion, the current status of this rapidly expanding research area raises cautious optimism for TRPA1 (and possibly also TRPV1) antagonists as promising anti-tussive/anti-asthma drug candidates.  相似文献   

5.
Transient Receptor Potential (TRP) cation channels participate in several processes of vital importance in cell and organism physiology, and have been demonstrated to participate in the detection of sensory stimuli. The thermo TRP's reviewed: TRPV1 (vanilloid 1), TRPM8 (melastatin 8) and TRPA1 (ankyrin-like 1) are known to integrate different chemical and physical stimuli such as changes in temperature and sensing different irritant or pungent compounds. However, despite the physiological importance of these channels the mechanisms by which they detect incoming stimuli, how the sensing domains are coupled to channel gating and how these processes are connected to specific structural regions in the channel are not fully understood, but valuable information is available. Many sites involved in agonist detection have been characterized and gating models that describe many features of the channel's behavior have been put forward. In this review we will survey some of the key findings concerning the structural and molecular mechanisms of TRPV1, TRPA1 and TRPM8 activation.  相似文献   

6.
The members of the superfamily of transient receptor potential (TRP) cation channels are involved in a plethora of cellular functions. During the last decade, a vast amount of evidence is accumulating that attributes an important role to these cation channels in different regulatory aspects of the alimentary tract. In this review we discuss the expression patterns and roles of TRP channels in the regulation of gastrointestinal motility, enteric nervous system signalling and visceral sensation, and provide our perspectives on pharmacological targeting of TRPs as a strategy to treat various gastrointestinal disorders. We found that the current knowledge about the role of some members of the TRP superfamily in neurogastroenterology is rather limited, whereas the function of other TRP channels, especially of those implicated in smooth muscle cell contractility (TRPC4, TRPC6), visceral sensitivity and hypersensitivity (TRPV1, TRPV4, TRPA1), tends to be well established. Compared with expression data, mechanistic information about TRP channels in intestinal pacemaking (TRPC4, TRPC6, TRPM7), enteric nervous system signalling (TRPCs) and enteroendocrine cells (TRPM5) is lacking. It is clear that several different TRP channels play important roles in the cellular apparatus that controls gastrointestinal function. They are involved in the regulation of gastrointestinal motility and absorption, visceral sensation and visceral hypersensitivity. TRP channels can be considered as interesting targets to tackle digestive diseases, motility disorders and visceral pain. At present, TRPV1 antagonists are under development for the treatment of heartburn and visceral hypersensitivity, but interference with other TRP channels is also tempting. However, their role in gastrointestinal pathophysiology first needs to be further elucidated.  相似文献   

7.
Introduction: Chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease, affect millions of patients worldwide. New therapeutic approaches to these conditions are urgently needed since current treatment options provide only symptomatic relief. Transient receptor potential (TRP) ion channels are emerging molecular target candidates for the development of novel, disease-modifying drugs addressing airway diseases.

Areas covered: The authors review the patent literature on novel molecules targeting TRP channels (in particular TRPA1, TRPV1, TRPM8 and TRPC6) that are currently studied in clinical trials or are candidates for future clinical evaluation in the management of respiratory diseases.

Expert opinion: The patent literature highlights TRPA1 and TRPV1 channels as the most advanced therapeutic targets in respiratory disorders. TRPV1 antagonists relieve cough in preclinical studies. TRPA1 antagonists not only are anti-tussive but also show efficacy in allergic asthma models. However, to date, only minimal clinical data are available regarding the effects of selective, small-molecule TRPV1 and TRPA1 blockers in respiratory disorders. Clearly, long-term clinical studies are required to confirm the expectations based on preclinical data. In conclusion, the current status of this rapidly expanding research area raises cautious optimism for TRPA1 (and possibly also TRPV1) antagonists as promising anti-tussive/anti-asthma drug candidates.  相似文献   

8.
Noxious thermal, mechanical, or chemical stimuli evoke pain through excitation of the peripheral terminals called nociceptor, and many kinds of ionotropic and metabotropic receptors are involved in this process. Capsaicin receptor TRPV1 is a nociceptor-specific ion channel that serves as the molecular target of capsaicin. TRPV1 can be activated not only by capsaicin but also by noxious heat (with a thermal threshold >43 degrees C) or protons (acidification), all of which are known to cause pain in vivo. Studies using TRPV1-deficient mice have shown that TRPV1 is essential for selective modalities of pain sensation and for thermal hyperalgesia. One mechanism underlying inflammatory pain which is initiated by tissue damage/inflammation and characterized by hypersensitivity is sensitization of TRPV1. In addition to TRPV1, there are five thermosensitive ion channels in mammals, all of which belong to the TRP (transient receptor potential) super family. These include TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1. These channels exhibit distinct thermal activation thresholds (> 52 degrees C for TRPV2, > approximately 34-38 degrees C for TRPV3, > approximately 27-35 degrees C for TRPV4, < approximately 25-28 degrees C for TRPM8 and < 17 degrees C for TRPA1) and are expressed in primary sensory neurons as well as other tissues. Some of the thermosensitive TRP channels are likely to be involved in thermal nociception, since their activation thresholds are within the noxious range of temperatures.  相似文献   

9.
The transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively) channels are members of the TRP superfamily of structurally related, non-selective cation channels. It is rapidly becoming clear that the functions of TRPV1 and TRPA1 interlink with each other to a considerable extent. This is especially clear in relation to pain and neurogenic inflammation where TRPV1 is coexpressed on the vast majority of TRPA1-expressing sensory nerves and both integrate a variety of noxious stimuli. The more recent discovery that both TRPV1 and TRPA1 are expressed on a multitude of non-neuronal sites has led to a plethora of research into possible functions of these receptors. Non-neuronal cells on which TRPV1 and TRPA1 are expressed vary from vascular smooth muscle to keratinocytes and endothelium. This review will discuss the expression, functionality and roles of these non-neuronal TRP channels away from sensory nerves to demonstrate the diverse nature of TRPV1 and TRPA1 in addition to a direct role in pain and neurogenic inflammation.  相似文献   

10.
Molecular identification of two new transient receptor potential (TRP) channels, TRPM8 and TRPA1, has prompted an intense interest in their functional roles. We report that an acute exposure to the TRPM8/TRPA1 agonist icilin (0.01-100 microM), but not TRPV1 agonist capsaicin (10 microM), causes an atypical dose-related increase in planarian motility. This is the first demonstration of a TRPM8/TRPA1 channel subtype agonist-induced differential pharmacological effect in invertebrates and provides a novel sensitive, quantifiable end-point for studying TRP channel pharmacology.  相似文献   

11.
Background: The transient receptor potential (TRP) superfamily of ion channels are a large and diverse group that have received increased attention in recent years. The sub-family of thermo-TRPs which are regulated by temperature, among other physical and chemical stimuli, are of particular interest for the development of potential pain therapeutics. Objective/methods: We review the advances in the field in recent years, focusing on a rationale for pain therapy and potential challenges associated with these targets. Results/conclusions: Vanilloid-type TRP 1 (TRPV1) is the most well studied and advanced member of the family, with selective agonists and antagonists already in clinical use or development, respectively. Among other thermo-TRPs (including TRPV2 – 4, Ankyrin type TRP 1 (TRPA1) and melastatin type TRP 8 (TRPM8)), TRPA1 and TRPM8 are emerging as promising novel pain targets.  相似文献   

12.

Transient receptor potential (TRP) channels are non-selective cation channels that are implicated in analgesia, bowel motility, wound healing, thermoregulation, vasodilation and voiding dysfunction. Many natural products have been reported to affect the activity of TRP channels. We hypothesize that numerous traditional herbal medicines (THMs) might exert their pharmacological activity through modulating the activity of TRP channels. The present study aimed to evaluate the effects of flavonoid aglycones and their glycosides, which are the main components of many THMs, on the TRP channel subtypes. A Ca2+ influx assay was performed using recombinant human TRPA1, TRPV1, TRPV4 and TRPM8 cell lines. Our findings showed that flavonoid aglycones and glycycoumarin activated TRPA1. In particular, isoflavone and chalcone compounds displayed potent TRPA1 agonistic activity. Furthermore, flavone aglycones showed concomitant potent TRPM8 inhibiting activity. Indeed, flavone, isoflavone aglycones, non-prenylated chalcones and glycycoumarin were found to be TRPM8 inhibitors. Hence, flavonoid aglycones metabolized by lactase-phlorizin hydrolase and β-glucosidase in the small intestine or gut microbiota of the large intestine could generate TRPA1 agonists and TRPM8 antagonists.

  相似文献   

13.
The transient receptor potential (TRP) family of channels is represented by at least six members in primary sensory neurons. These include the TRP vanilloid subtypes 1 (TRPV1), 2, 3, and 4, the cold and menthol receptor TRPM8, and TRPA1. Much interest has been directed to the study of the TRPV1, because capsaicin has been instrumental in discovering the unique role of a subset of primary sensory neurons in causing nociceptive responses, in activating reflex pathways including cough, and in producing neurogenic inflammation. TRPV1 is now regarded as an integrator of diverse sensory modalities because it undergoes marked plasticity and sensitization through a variety of mechanisms, including activation of G-protein-coupled or tyrosine kinase receptors. Evidence in experimental animals and in patients with airway diseases indicates a marked hypersensitivity to cough induced by TRPV1 agonists. Recent studies with newly developed high-affinity and selective TRPV1 antagonists have revealed that TRPV1 inhibition reduces cough induced by citric acid or antigen challenge.  相似文献   

14.
15.
Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4α (C4α), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.  相似文献   

16.
We studied the involvement of sensory neurons in skin sensitization to allergens using a mouse model in which the T-helper type 2 response is essential. Skin sensitization to fluorescein isothiocyanate (FITC) has been shown to be enhanced by several phthalate esters, including dibutyl phthalate (DBP). For different types of phthalate esters, we found a correlation between the ability of transient receptor potential (TRP) A1 activation and that of enhancing skin sensitization. A TRPA1-specific antagonist, HC-030031, was shown to suppress skin sensitization in the presence of DBP. However, since phthalate esters also activate TRPV1, phthalate esters could activate other types of TRP channels non-selectively. Furthermore, sensitization to FITC is also enhanced by menthol, which activates TRPA1 and TRPM8. Here we established an in vitro system for measuring TRPM8 activation. The selectivity for TRPM8 was established by the fact that two TRPM8 agonists (menthol and icilin) induced calcium mobilization, whereas agonists of TRPA1 and TRPV1 did not. We demonstrated that phthalate esters do not activate TRPM8. TRPA1-antagonist HC-030031 did not inhibit TRPM8 activation induced by menthol or icilin. These results show that phthalate esters activate TRPA1 and TRPV1 with selectivity. TRPM8 activation is not likely to be involved in the sensitization to FITC.  相似文献   

17.
TRPV4 belongs to the TRPV subfamily of Transient Receptor Potential (TRP) ion channels. This year marks the 10 year anniversary of the discovery of this polymodal ion channel which is activated by a variety of stimuli including warm temperatures, hypotonicity and endogenous lipids. Coupled with a widespread tissue distribution, this activation profile has resulted in a large number of disparate physiological functions for TRPV4. These range from temperature monitoring in skin keratinocytes to osmolarity sensing in kidneys, sheer stress detection in blood vessels and osteoclast differentiation control in bone. As knowledge of its physiological roles has expanded, interest in targeting TRPV4 modulation for therapeutic purposes has arisen and is now focused on several areas. First, as with related TRP channels TRPV1, TRPV3, TRPM8 and TRPA1, TRPV4 antagonism is being considered for inflammatory and neuropathic pain treatment. Recent work conducted using KO mice and agonists 4αPDD and GSK1016790A suggests bladder dysfunctions may also be targeted. Additionally, ventilator-induced lung injury has emerged as another potential indication for TRPV4 antagonists. Herein we review the known small molecule modulators of TRPV4 and relate progress made in identifying potent, selective and bioavailable agonists and antagonists to interrogate this ion channel in vivo.  相似文献   

18.
We feel a wide range of temperatures spanning from cold to heat. Within this range, temperatures over about 43 degrees C and below about 15 degrees C evoke not only a thermal sensation, but also a feeling of pain. In mammals, six thermosensitive ion channels have been reported, all of which belong to the TRP (transient receptor potential) super family. These include TRPV1 (VR1), TRPV2 (VRL-1), TRPV3, TRPV4, TRPM8 (CMR1), and TRPA1 (ANKTM1). These channels exhibit distinct thermal activation thresholds (>43 degrees C for TRPV1, >52 degrees C for TRPV2, >32-39 degrees C for TRPV3, >27-35 degrees C for TRPV4, <25-28 degrees C for TRPM8, and <17 degrees C for TRPA1) and are expressed in primary sensory neurons as well as other tissues. The involvement of TRPV1 in thermal nociception has been demonstrated by multiple methods, including the analysis of TRPV1-deficient mice. Temperature thresholds for activation of TRPV1, TRPV4, and TRPM8 are not fixed but changeable. Reduction of the temperature threshold for TRPV1 activation is thought to be one mechanism of inflammatory pain. Significant advances in thermosensation research have been made in the last several years with the cloning and characterization of thermosensitive TRP channels. With these clones in hand, we can begin to understand thermosensation from a molecular standpoint.  相似文献   

19.
Transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1), which are non-selective cation channels, play important roles in the sensation of pain. This study investigated the roles of TRPV1 and TRPA1 in dextran sulfate sodium (DSS)-induced murine colitis. DSS (2%) administered for 7 days caused severe colitis that was significantly less severe in TRPV1-deficient (TRPV1KO) and TRPA1-deficient (TRPA1KO) mice than that in wild-type (WT) mice. Similar colitis attenuations were observed in TRPV1KO and TRPA1KO mice but not in WT mice that had been transplanted with bone marrow cells from WT, TRPA1KO, or TRPV1KO mice. DSS treatment upregulated calcitonin gene-relative peptide (CGRP)- and substance P (SP)-positive nerve fibers in the colonic mucosa of WT mice. TRPV1KO and TRPA1KO mice showed significant reductions in the DSS-induced upregulation of SP, but the DSS-induced upregulation of CGRP was not reduced. Sensory deafferentation evoked by pretreatment with high doses of capsaicin markedly exacerbated DSS-induced colitis with reductions in DSS-induced upregulation of SP- and CGRP-positive nerve fibers. These findings suggest that neuronal TRPV1 and TRPA1 contribute to the progression of colonic inflammation. While these responses may be mediated by the upregulation of SP-mediated deleterious mechanisms, CGRP may be associated with protective mechanisms.  相似文献   

20.
Introduction: Thermosensory channels are a subfamily of the transient receptor potential (TRP) channel family that are activated by changes in the environmental temperature. These channels, known as thermoTRPs, cover the entire spectrum of temperatures, from noxious cold (< 15°C) to injurious heat (> 42°C). In addition, dysfunction of these channels contributes to the thermal hypersensitivity that accompanies painful conditions. Moreover, because of their wide tissue and cellular distribution, thermoTRPs are also involved in the pathophysiology of several diseases, from inflammation to cancer. Areas covered: Although the number of thermoTRPs is increasing with the identification of novel members such as TRPM3, we will cover the recent advances in the pharmacology of the classical thermosensory channels, namely TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1. This review will focus on the therapeutic progress carried out for all these channels and will highlight the tenet that TRPV1, TRPM8 and TRPA1 are the most exploited channels, and that the interest on TRPV3 and TRPV4 is growing with the first TRPV3 antagonist that moves into Phase-II clinical trials. In contrast, the pharmacology of TRPV2 is yet in its infancy. Expert opinion: Despite the tremendous academic and industrial investment to develop therapeutic modulators of thermoTRPs, it apparently seems that we are still far from the first successful product, although hope is maintained high for all compounds currently in clinical trials. A major concern has been the appearance of side effects. A better knowledge of the thermosensory protein networks (signal-plexes), along with the application of system biology approaches may provide novel strategies to modulate thermoTRPs activity with improved therapeutic index. A case in point is TRPV1, where acting on interacting proteins is providing new therapeutic opportunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号