共查询到20条相似文献,搜索用时 15 毫秒
1.
Stevenson RE Holden KR Rogers RC Schwartz CE 《European journal of medical genetics》2012,55(5):307-312
Intellectual disability occurs as an isolated X-linked trait and as a component of recognizable X-linked syndromes in the company of somatic, metabolic, neuromuscular, or behavioral abnormalities. Seizures accompany intellectual disability in almost half of these X-linked disorders. The spectrum of seizures found in the X-linked intellectual disability syndromes is broad, varying in time of onset, type of seizure, and response to anticonvulsant therapy. The majority of the genes associated with XLID and seizures have now been identified. 相似文献
2.
《Genetics in medicine》2022,24(9):1941-1951
PurposeWNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown.MethodWe ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID).ResultsWe identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition.ConclusionPathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism. 相似文献
3.
Exome sequencing has greatly impacted the speed at which new disease genes are identified. In the last year alone, six studies have used exome sequencing to identify new genes involved in intellectual disability, a genetically heterogeneous condition affecting 1-3% of the population. These studies encompass the full gamut of modes of inheritance and phenotypic presentation, including syndromic and non-syndromic conditions, sporadic and familial cases, and dominant and recessive inheritance patterns. Because different disease presentations require different approaches to gene discovery, studies of intellectual disability provide a nearly comprehensive showcase of strategies for exome-driven gene discovery. Despite these successes, the etiology of ~60% of cases of intellectual disability remains unknown. The application of exome sequencing to the clinical diagnosis of intellectual disability in the near future will ultimately reduce the number of idiopathic cases and provide a rich source of sequence variation for the identification of new intellectual disability genes. 相似文献
4.
5.
Marc Pauper Erdi Kucuk Aaron M. Wenger Shreyasee Chakraborty Primo Baybayan Michael Kwint Bart van der Sanden Marcel R. Nelen Ronny Derks Han G. Brunner Alexander Hoischen Lisenka E. L. M. Vissers Christian Gilissen 《European journal of human genetics : EJHG》2021,29(4):637
Long-read sequencing (LRS) has the potential to comprehensively identify all medically relevant genome variation, including variation commonly missed by short-read sequencing (SRS) approaches. To determine this potential, we performed LRS around 15×–40× genome coverage using the Pacific Biosciences Sequel I System for five trios. The respective probands were diagnosed with intellectual disability (ID) whose etiology remained unresolved after SRS exomes and genomes. Systematic assessment of LRS coverage showed that ~35 Mb of the human reference genome was only accessible by LRS and not SRS. Genome-wide structural variant (SV) calling yielded on average 28,292 SV calls per individual, totaling 12.9 Mb of sequence. Trio-based analyses which allowed to study segregation, showed concordance for up to 95% of these SV calls across the genome, and 80% of the LRS SV calls were not identified by SRS. De novo mutation analysis did not identify any de novo SVs, confirming that these are rare events. Because of high sequence coverage, we were also able to call single nucleotide substitutions. On average, we identified 3 million substitutions per genome, with a Mendelian inheritance concordance of up to 97%. Of these, ~100,000 were located in the ~35 Mb of the genome that was only captured by LRS. Moreover, these variants affected the coding sequence of 64 genes, including 32 known Mendelian disease genes. Our data show the potential added value of LRS compared to SRS for identifying medically relevant genome variation.Subject terms: Structural variation, DNA sequencing 相似文献
6.
Strobl-Wildemann G Kalscheuer VM Hu H Wrogemann K Ropers HH Tzschach A 《American journal of medical genetics. Part A》2011,155(12):3067-3070
X-linked intellectual disability (XLID) is a heterogeneous disorder, and mutations in more than 90 genes have been associated with XLID to date. We report on a large multi-generational German family in which the affected male family members had nonsyndromic intellectual disability, that is, they had neither abnormal body measurements nor any other significant clinical problems. Molecular genetic analysis revealed a frameshift mutation in GDI1 (c.1185_1186delAG; Ser396ProfsX15) that co-segregated with the disease. GDI1 encodes for the GDP-dissociation inhibitor alpha (αGDI), a protein involved in the regulation of the activity of Rab GTPases. Only three families with GDI1 mutations have been reported so far. The present family supports the lack of additional phenotypic features in patients with GDI1 mutations, rendering a clinical diagnosis of GDI1-associated XLID impossible. Thus, this family not only broadens the spectrum of GDI1 mutations but also emphasizes the need for parallel testing of all known genes associated with ID in patients with an unspecific phenotype. 相似文献
7.
Recent advances in nucleic acid sequencing technologies, referred to as ‘next-generation’ sequencing (NGS), have produced a true revolution and opened new perspectives for research and diagnostic applications, owing to the high speed and throughput of data generation. So far, NGS has been applied to metagenomics-based strategies for the discovery of novel viruses and the characterization of viral communities. Additional applications include whole viral genome sequencing, detection of viral genome variability, and the study of viral dynamics. These applications are particularly suitable for viruses such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus, whose error-prone replication machinery, combined with the high replication rate, results, in each infected individual, in the formation of many genetically related viral variants referred to as quasi-species. The viral quasi-species, in turn, represents the substrate for the selective pressure exerted by the immune system or by antiviral drugs. With traditional approaches, it is difficult to detect and quantify minority genomes present in viral quasi-species that, in fact, may have biological and clinical relevance. NGS provides, for each patient, a dataset of clonal sequences that is some order of magnitude higher than those obtained with conventional approaches. Hence, NGS is an extremely powerful tool with which to investigate previously inaccessible aspects of viral dynamics, such as the contribution of different viral reservoirs to replicating virus in the course of the natural history of the infection, co-receptor usage in minority viral populations harboured by different cell lineages, the dynamics of development of drug resistance, and the re-emergence of hidden genomes after treatment interruptions. The diagnostic application of NGS is just around the corner. 相似文献
8.
Next-generation sequencing (NGS) is the most powerful diagnostic tool since the roentgenogram. NGS will facilitate diagnosis on a massive scale, allowing interrogation of all genes in a single assay. It has been suggested that NGS will decrease the need for phenotyping in general and medical geneticists in particular. We argue that NGS will shift focus and approach of phenotyping. We predict that NGS performed for diagnostic purposes will yield variants in several genes, and consequences of these variants will need to be analyzed and integrated with clinical findings to make a diagnosis. Diagnostic skills of medical specialists will shift from a pre-NGS-test differential diagnostic mode to a post-NGS-test diagnostic assessment mode. In research phenotyping and medical genetic assessments will remain essential as well. NGS can identify primary causative variants in phenotypes inherited in a Mendelian pattern, but biology is much more complex. Phenotypes are caused by the actions of several genes and epigenetic and environmental influences. Dissecting all influences necessitates ongoing and detailed phenotyping, refinement of clinical diagnostic assignments, and iterative analyses of NGS data. We conclude that there will be a critical need for phenotyping and clinical analysis, and that medical geneticists are uniquely positioned to address this need. 相似文献
9.
10.
《Human immunology》2021,82(11):801-811
Since the days of Sanger sequencing, next-generation sequencing technologies have significantly evolved to provide increased data output, efficiencies, and applications. These next generations of technologies can be categorized based on read length. This review provides an overview of these technologies as two paradigms: short-read, or “second-generation,” technologies, and long-read, or “third-generation,” technologies. Herein, short-read sequencing approaches are represented by the most prevalent technologies, Illumina and Ion Torrent, and long-read sequencing approaches are represented by Pacific Biosciences and Oxford Nanopore technologies. All technologies are reviewed along with reported advantages and disadvantages. Until recently, short-read sequencing was thought to provide high accuracy limited by read-length, while long-read technologies afforded much longer read-lengths at the expense of accuracy. Emerging developments for third-generation technologies hold promise for the next wave of sequencing evolution, with the co-existence of longer read lengths and high accuracy. 相似文献
11.
12.
《Human immunology》2021,82(11):829-837
Histocompatibility testing is essential for donor identification and risk assessment in solid organ and hematopoietic stem cell transplant. Additionally, it is useful for identifying donor specific alleles for monitoring donor specific antibodies in post-transplant patients. Next-generation sequence (NGS) based human leukocyte antigen (HLA) typing has improved many aspects of histocompatibility testing in hematopoietic stem cell and solid organ transplant. HLA disease association testing and research has also benefited from the advent of NGS technologies. In this review we discuss the current impact and future applications of NGS typing on clinical histocompatibility testing for transplant and non-transplant purposes. 相似文献
13.
《Genetics in medicine》2022,24(11):2296-2307
PurposeIndividuals with intellectual disability (ID) and/or neurodevelopment disorders (NDDs) are currently investigated with several different approaches in clinical genetic diagnostics.MethodsWe compared the results from 3 diagnostic pipelines in patients with ID/NDD: genome sequencing (GS) first (N = 100), GS as a secondary test (N = 129), or chromosomal microarray (CMA) with or without FMR1 analysis (N = 421).ResultsThe diagnostic yield was 35% (GS-first), 26% (GS as a secondary test), and 11% (CMA/FMR1). Notably, the age of diagnosis was delayed by 1 year when GS was performed as a secondary test and the cost per diagnosed individual was 36% lower with GS first than with CMA/FMR1. Furthermore, 91% of those with a negative result after CMA/FMR1 analysis (338 individuals) have not yet been referred for additional genetic testing and remain undiagnosed.ConclusionOur findings strongly suggest that genome analysis outperforms other testing strategies and should replace traditional CMA and FMR1 analysis as a first-line genetic test in individuals with ID/NDD. GS is a sensitive, time- and cost-effective method that results in a confirmed molecular diagnosis in 35% of all referred patients. 相似文献
14.
《Genetics in medicine》2022,24(9):1899-1908
PurposeNeurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not.MethodsUsing the Clinical Genome Resource gene–disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship.ResultsAs of September 2021, 156 gene–disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants.ConclusionOur understanding of gene–disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene–disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs. 相似文献
15.
《Human immunology》2021,82(11):871-882
Inborn errors of immunity (IEIs) include several hundred gene defects affecting various components of the immune system. As with other constitutional disorders, next-generation sequencing (NGS) is a powerful tool for the diagnosis of these diseases. While NGS can provide molecular confirmation of disease in a patient with a suspected or classic phenotype, it can also identify new molecular defects of the immune system, expand gene-disease phenotypes, clarify mechanism of disease, pattern of inheritance or identify new gene-disease associations. Multiple clinical specialties are involved in the diagnosis and management of patients with IEI, and most have no formal genetic training or expertise. To effectively utilize NGS tools and data in clinical practice, it is relevant and pragmatic to obtain a modicum of knowledge about genetic terminology, the variety of platforms and tools available for high-throughput genomic analysis, the interpretation and implementation of such data in clinical practice. There is considerable variability not only in the technologies and analytical tools used for NGS but in the bioinformatics approach to variant identification and interpretation. The ability to provide a molecular basis for disease has the potential to alter therapeutic management and longer-term treatment of the disease, including developing personalized approaches with molecularly targeted therapies. This review is intended for the clinical specialist or diagnostic immunologist who works in the area of inborn errors of immunity, and provides an overview of the need for genetic testing in these patients (the “why” aspect), the various technologies and analytical approaches, bioinformatics tools, resources, and challenges (the “how” aspect), and the clinical evidence for identifying which patients might be best served by such testing (the “when” aspect). 相似文献
16.
Intellectual disability affects approximately 2% of the population with males outnumbering females due to involvement of over 300 genes on the X chromosome. The most common form of X-linked intellectual disability (XLID) is fragile X syndrome. We report a family with an apparent XLID pattern with the proband, his mother and maternal half brother having an Xp21.3 deletion detected with chromosomal microarray analysis involving the interleukin 1 receptor accessory protein-like 1 (IL1RAPL1) gene. IL1RAPL1 is highly expressed in the postnatal brain, specifically hippocampus suggesting a specialized role in memory and learning abilities. The proband presented with intellectual disability, a broad face, prominent and wide nasal root, ptosis, a wide philtrum and a small mouth. XLID due to involvement of the IL1RAPL1 gene has been reported to cause nonsyndromic XLID. We report a new family with XLID due to partial deletion of IL1RAPL1, summarize reported literature and describe similar phenotypic similarities among the affected individuals in this family and those reported in the literature proposing that deletion of IL1RAPL1 may cause syndromic XLID. Additional reports are needed to further characterize whether syndromic features are related to disturbances of this gene. 相似文献
17.
Mateusz Kolanczyk Peter Krawitz Jochen Hecht Anna Hupalowska Marta Miaczynska Katrin Marschner Claire Schlack Denise Emmerich Karolina Kobus Uwe Kornak Peter N Robinson Barbara Plecko Gernot Grangl Sabine Uhrig Stefan Mundlos Denise Horn 《European journal of human genetics : EJHG》2015,23(5):633-638
Ritscher-Schinzel syndrome (RSS)/3C (cranio-cerebro-cardiac) syndrome (OMIM#220210) is a rare and clinically heterogeneous developmental disorder characterized by intellectual disability, cerebellar brain malformations, congenital heart defects, and craniofacial abnormalities. A recent study of a Canadian cohort identified homozygous sequence variants in the KIAA0196 gene, which encodes the WASH complex subunit strumpellin, as a cause for a form of RSS/3C syndrome. We have searched for genetic causes of a phenotype similar to RSS/3C syndrome in an Austrian family with two affected sons. To search for disease-causing variants, whole-exome sequencing (WES) was performed on samples from two affected male children and their parents. Before WES, CGH array comparative genomic hybridization was applied. Validation of WES and segregation studies was done using routine Sanger sequencing. Exome sequencing detected a missense variant (c.1670A>G; p.(Tyr557Cys)) in exon 15 of the CCDC22 gene, which maps to chromosome Xp11.23. Western blots of immortalized lymphoblastoid cell lines (LCLs) from the affected individual showed decreased expression of CCDC22 and an increased expression of WASH1 but a normal expression of strumpellin and FAM21 in the patients cells. We identified a variant in CCDC22 gene as the cause of an X-linked phenotype similar to RSS/3C syndrome in the family described here. A hypomorphic variant in CCDC22 was previously reported in association with a familial case of syndromic X-linked intellectual disability, which shows phenotypic overlap with RSS/3C syndrome. Thus, different inactivating variants affecting CCDC22 are associated with a phenotype similar to RSS/3C syndrome. 相似文献
18.
Local translation of dendritic mRNAs is a key aspect of dendrite and spine morphogenesis and synaptic plasticity, two phenomena generally compromised in intellectual disability disorders. Mammalian target of rapamycin (mTOR) is a protein kinase involved in a plethora of functions including dendritogenesis, plasticity and the regulation of local translation. Hence, this kinase may well be implicated in intellectual disability. Hyperactivation of mTOR has been recently reported in mouse models of Fragile X and tuberous sclerosis, two important causes of intellectual disability. Moreover, local dendritic translation seems to be increased in Fragile X syndrome. Recent findings show that the mTOR pathway is also deregulated in murine models of Rett's syndrome and Down's syndrome. As in Fragile X, local dendritic translation seems to be abnormally active in Down's syndrome mice, while rapamycin, a Food and Drug Administration-approved mTOR inhibitor, restores normal rates of translation. Rapamycin administration in tuberous sclerosis mice rescues deficits in behavior and synaptic plasticity. Indeed, mTOR-dependent deregulation of local translation may be a common trait in different intellectual deficiencies, suggesting that mTOR inhibitors may have significant therapeutic potential for the treatment of diverse forms of cognitive impairment. 相似文献
19.
20.
Sarah Vergult Ellen Van Binsbergen Tom Sante Silke Nowak Olivier Vanakker Kathleen Claes Bruce Poppe Nathalie Van der Aa Markus J van Roosmalen Karen Duran Masoumeh Tavakoli-Yaraki Marielle Swinkels Marie-José van den Boogaard Mieke van Haelst Filip Roelens Frank Speleman Edwin Cuppen Geert Mortier Wigard P Kloosterman Bj?rn Menten 《European journal of human genetics : EJHG》2014,22(5):652-659
Recently, microarrays have replaced karyotyping as a first tier test in patients with idiopathic intellectual disability and/or multiple congenital abnormalities (ID/MCA) in many laboratories. Although in about 14–18% of such patients, DNA copy-number variants (CNVs) with clinical significance can be detected, microarrays have the disadvantage of missing balanced rearrangements, as well as providing no information about the genomic architecture of structural variants (SVs) like duplications and complex rearrangements. Such information could possibly lead to a better interpretation of the clinical significance of the SV. In this study, the clinical use of mate pair next-generation sequencing was evaluated for the detection and further characterization of structural variants within the genomes of 50 ID/MCA patients. Thirty of these patients carried a chromosomal aberration that was previously detected by array CGH or karyotyping and suspected to be pathogenic. In the remaining 20 patients no causal SVs were found and only benign aberrations were detected by conventional techniques. Combined cluster and coverage analysis of the mate pair data allowed precise breakpoint detection and further refinement of previously identified balanced and (complex) unbalanced aberrations, pinpointing the causal gene for some patients. We conclude that mate pair sequencing is a powerful technology that can provide rapid and unequivocal characterization of unbalanced and balanced SVs in patient genomes and can be essential for the clinical interpretation of some SVs. 相似文献