首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatotoxin okadaic acid (OA) was incubated with nine human recombinant cytochrome P450s (1A1, 1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). Both CYP3A4 and CYP3A5 converted OA to a mixture of the same four metabolites, but incubation with CYP3A4 resulted in higher levels of conversion. Michaelis–Menten parameters, Km (73.4 μM) and Vmax (7.23 nmol of metabolites nmol?1 min?1) for CYP3A4 were calculated by analyzing double-reciprocal plots. LC–MSn analysis and chemical interconversion indicate that metabolites 2 and 3 are the 11S-hydroxy and 11R-hydroxy okadaic acid respectively, while metabolite 4 is 11-oxo okadaic acid. LC–MSn analysis of metabolite 1 shows a molecular ion which corresponds to an addition of 16 amu to OA, also suggesting hydroxylation, but the specific site has not been identified. The same four metabolites were produced upon incubation of okadaic acid with pooled human liver microsomes. This transformation could be completely inhibited with ketokonazole, and inhibitor of the CYP3A family of enzymes. The metabolites were determined to be only slightly less potent inhibitors of serine threonine protein phosphatase 2A (PP2A) when compared to OA. As PP2A is the principle molecular target for OA, these oxidative transformations may not effectively detoxify OA.  相似文献   

2.
3.
The 1d-polymeric iron(III) complexes [Fe(salen)(μ-L)]n (16), involving a deprotonated form of the N-donor heterocyclic compounds (L) imidazole (complex 1), 1,2,4-triazole (2), benztriazole (3), 5-methyltetrazole (4), 5-aminotetrazole (5) and 5-phenyltetrazole (6), were studied for their in vitro cytotoxic activity against human cancer cell lines including lung carcinoma (A549), cervix epithelial carcinoma (HeLa), osteosarcoma (HOS), malignant melanoma (G361), breast adenocarcinoma (MCF7), ovarian carcinoma (A2780) and cisplatin-resistant ovarian carcinoma (A2780cis). Cytotoxicity in vitro (IC50 = 0.39–0.48 μM) was achieved for 26 against A2780 (IC50 of cisplatin equals 11.5 μM) as well as for 5 and 6 against all the tested cells, with IC50 = 2.5–37.7 μM. The Uv–Vis spectroscopic study showed that the complexes are unstable in organic solvents (e.g. dimethyl sulfoxide, dimethylformamide) containing even trace amounts of water (and thus also in the medium, i.e. 0.1% DMF, v/v, used in the MTT assay), where they partially or completely decompose to the mixtures involving, besides [Fe(salen)(μ-L)]n itself, also the starting compounds [{Fe(salen)}2(μ-O)] and appropriate organic compound (HL). In efforts to find how the resulting cytotoxicity of the most active compounds 5 and 6 is influenced by this fact, the in vitro cytotoxicity testing of mixtures of reactants [{Fe(salen)}2(μ-O)] and HL, as well as the respective reactants, was also performed. It has been found that the cytotoxicity of 5 and 6 against all the tested cell lines is probably caused by a combined effect of the individual components presented within the corresponding mixture in the medium used.  相似文献   

4.
BackgroundRat CYP2C11 (besides CYP2C6) can be regarded as a functional counterpart of human CYP2C9. The aim of the present study was to investigate the influence of classic and novel antidepressant drugs on the activity of CYP2C11, measured as a rate of testosterone 2α- and 16α-hydroxylation.MethodsThe reaction was studied in control liver microsomes in the presence of antidepressants, as well as in microsomes from rats treated intraperitoneally (ip) with pharmacological doses of the tested drugs (imipramine, amitriptyline, clomipramine, nefazodone – 10 mg/kg ip; desipramine, fluoxetine, sertraline - 5 mg/kg ip; mirtazapine - 3 mg/kg ip) for one day or two weeks (twice a day), in the absence of antidepressants in vitro.ResultsThe investigated antidepressant drugs added to control liver microsomes produced certain inhibitory effects on CYP2C11 activity, which were moderate (sertraline, nefazodone and clomipramine: Ki = 39, 56 and 66 μM, respectively), modest (fluoxetine and amitriptyline: Ki = 98 and 108 μM, respectively) or weak (imipramine and desipramine: Ki = 191 and 212 μM, respectively). Mirtazapine had no inhibitory effect on CYP2C11 activity. One-day exposure of rats to the antidepressant drugs did not significantly change the activity of CYP2C11 in liver microsomes; however, imipramine, desipramine and fluoxetine showed a tendency to diminish the activity of CYP2C11. Of the antidepressants studied, only desipramine and fluoxetine administered chronically elevated CYP2C11 activity; those effects were positively correlated with the observed increases in the enzyme protein level.ConclusionThree different mechanisms of the antidepressants-CYP2C11 interaction are postulated: 1) a direct inhibition of CYP2C11 shown in vitro by nefazodone, SSRIs and TADs; 2) in vivo inhibition of CYP2C11 produced by one-day treatment with imipramine, desipramine and fluoxetine, which suggests inactivation of the enzyme by reactive metabolites; 3) in vivo induction of CYP2C11 produced by chronic treatment with desipramine and fluoxetine, which suggests their influence on enzyme regulation.  相似文献   

5.
We investigated the influence of genetic, cadmium exposure and smoking status, on cytochrome P450-mediated nicotine metabolism (CYP2A6) in 182 Thai subjects after receiving 2 mg of nicotine gum chewing for 30 min. The urinary excretion of cotinine was normally distributed over a 2 h period (logarithmically transformed). Individuals with urinary cotinine levels in the ranges of 0.01–0.21, and 0.52–94.99 μg/2 h were categorized as poor metabolizes (PMs: 6.5%), and extensive metabolizers (EMs: 93.5%), respectively. The majority of EMs (45%) carried homozygous wild-type genotypes (CYP2A6*1A/*1A, CYP2A6*1A/*1B and CYP2A6*1B/*1B), whereas only 1% of PMs carried these genotypes. Markedly higher frequencies of EMs were also observed in all heterozygous defective genotypes including the null genotype (*4C/*4C; 1 subject).A weak but significant positive correlation was observed between total amounts of urinary cadmium excretion and total cotinine excretion over 2 h. Our study shows generally good agreement between CYP2A6 genotypes and phenotypes. Smokers accumulated about 3–4-fold higher mean total amounts of 2-h urinary cadmium excretion (127.5 ± 218.2 ng/2 h) than that of non-smokers (40.5 ± 78.4 ng/2 h). Among the smokers (n = 16), homologous wild-type genotype *1/*1 was significantly the predominant genotype (6/16) compared with other defective allele including *4C/*4C. In addition, 2 h urinary excretion of cotinine in smokers of all genotypes was significantly higher than non-smokers. The proportion of smokers who smoked more than 5 cigarettes/day was significantly higher in EMs in all CYP2A6 genotypes (n = 14) than in PMs (n = 0).  相似文献   

6.
《Toxicology in vitro》2010,24(1):178-183
Replacement of the ancillary ligand in titanocene dichloride by amino acids provides titanocene species with high water solubility. As part of our research efforts in the area of titanium-based antitumor agents, we have investigated the cytotoxic activity of Cp2TiCl2 and three water soluble titanocene-amino acid complexes – [Cp2Ti(aa)2]Cl2 (aa = l-cysteine, l-methionine, and d-penicillamine) and one water soluble coordination compound, [Ti4(maltolato)8(μ-O)4] on the human colon adenocarcinoma cell line, Caco-2. At pH of 7.4 all titanocene species decompose extensively while [Ti4(maltolato)8(μ-O)4] is stable for over seven days. In terms of cytotoxicity, the [Cp2Ti(aa)2]Cl2 and [Ti4(maltolato)8(μ-O)4] complexes exhibited slightly higher toxicity than titanocene dichloride at 24 h, but at 72 h titanocene dichloride and [Ti4(maltolato)8(μ-O)4] have higher cytotoxic activity. Cellular titanium uptake was quantified at various time intervals to investigate the possible relationship between Ti uptake and cellular toxicity. Results indicated that there was not a clear relationship between Ti uptake and cytotoxicity. A structure–activity relationship is discussed.  相似文献   

7.
Hyperoside, quercetin-3-O-galactoside, is a flavonoid isolated from Oenanthe javanica. In the present study, we investigated potential herb-drug inhibitory effects of hyperoside on nine cytochrome P450 (CYP) isoforms in pooled human liver microsomes (HLMs) and human recombinant cDNA expressed CYP using a cocktail probe assay. Hyperoside strongly inhibited CYP2D6-catalyzed dextromethorphan O-demethylation, with IC50 values of 1.2 and 0.81 μM after 0 and 15 min of preincubation, and a Ki value of 2.01 μM in HLMs, respectively. Hyperoside strongly decreased CYP2D6 activity dose-, but not time-, dependently in HLMs. In addition, the Lineweaver–Burk and Secondary plots for the inhibition of CYP2D6 in HLMs fitted a competitive inhibition mode. Furthermore, hyperoside decreased CYP2D6-catalyzed dextromethorphan O-demethylation activity of human recombinant cDNA-expressed CYP2D6, with an IC50 value of 3.87 μM. However, other CYPs were not inhibited significantly by hyperoside. In conclusion, our data demonstrate that hyperoside is a potent selective CYP2D6 inhibitor in HLMs, and suggest that hyperoside might cause herb-drug interactions when co-administrated with CYP2D substrates.  相似文献   

8.
T-2 toxin (T-2) is an acute toxic trichothecene mycotoxin produced mainly by Fusarium species, detected in many crops including oats, wheat and barley, in animal feed and food. It is important to know the metabolic pathway and kinetics of T-2 in food animals given that T-2 can cause serious adverse effects on human health. In this study, we investigated the metabolic capacity of chicken CYP3A37 in the metabolism of T-2 using reconstituted bacteria produced enzymes. Our results showed that chicken CYP3A37 is able to convert T-2 to 3′-OH T-2 with an apparent Km of 15.29 μM, and T-2 hydroxylation activity of CYP3A37 is strongly inhibited by ketoconazole (IC50 = 0.11 μM). We also observed that chicken CYP3A37 can catalyze erythromycin N-demethylation, another CYP3A-specific activity. These findings imply that chicken CYP3A37 may have a broad substrate spectrum, similar to its human homologue CYP3A4.  相似文献   

9.
AimTo examine the transport of 5,5-diphenylbarbituric acid sodium (T2007) and its mono- (MMMDPB) and di- (T2000) methoxymethylated precursors and their inducibility potential in Caco-2 and LS180 cells.MethodsTransport studies of T2000, MMMDPB and T2007 in Caco-2 cells were performed in Transwells. P-gp and CYP3A4 activities were assayed by [3H]digoxin and rhodamine 123 cellular retention and testosterone 6β-hydroxylation, respectively. Expressions of PXR, VDR and CAR mRNA and CYP3A4, MDR1/P-gp and MRP2 mRNA and protein were determined by qPCR and Western blotting, respectively. PXR siRNA was used to assess the involvement of PXR.ResultsThe Papp(A→B)s and Papp(B→A)s of T2000, MMMDPB and T2007 were similar (30–35 × 10?6 cm/s) in Caco-2 cells. Treatment for 3 days with T2000 (15 μM), MMMDPB (70 μM) and T2007 (300 μM) generally furnished a greater induction in LS180 cells over the Caco-2 cells due to the higher, natural abundance of PXR. Changes in expression were confined mostly to MDR1 and CYP3A4: in LS180 cells, treatment for 3 days increased MDR1 and CYP3A4 but not MRP2 mRNA, and elevated P-gp and CYP3A4 protein expression that led to decreased cellular accumulation of [3H]digoxin and rhodamine 123, and enhanced testosterone 6β-hydroxylase activity towards T2007, respectively. The silencing of PXR by PXR siRNA in LS180 cells significantly attenuated the induction of MDR1 and CYP3A4.ConclusionsT2000, MMMDPB, and T2007 exhibited high permeabilities but are not P-gp substrates. T2007 and its analogs upregulated CYP3A4 and MDR1 modestly via the PXR.  相似文献   

10.
The blue-green algal toxin cylindrospermopsin (CYN) inhibits protein synthesis, and CYP450 enzymes metabolise CYN to cytotoxic endproducts. Human chorionic gonadotrophin (hCG) stimulates the de novo synthesis of StAR and CYP450 aromatase. Human IVF-derived granulosa cells (GC) (n = 7) were exposed to 0–5 μM CYN ± 1 IU/ml hCG for 2–24 h. After 24 h pre-culture GC responded to hCG by increasing estradiol 17β (E2) and progesterone (P4) synthesis. Three micromolar of CYN ± 1 IU/ml hCG for 24 h was not cytotoxic and did not affect basal or hCG-stimulated E2 or P4 production, but did inhibit protein synthesis (p < 0.05, n = 4). hCG-stimulated steroidogenesis was not reduced by CYN, suggesting a lack of effect on StAR or CYP450 aromatase protein synthesis. hCG enhanced the effects of CYN on GC protein synthesis. Twenty four hours exposure to 0.1 μM CYN did not affect GC, supporting the establishment of a 0.0024 μM Guideline level for CYN in public water supplies.  相似文献   

11.
TM208 and TM209, dithiocarbamate derivatives with potential anti-cancer effects, were evaluated in reversible and time-dependent cytochrome P450 (CYP) 3A inhibition assays in rat liver microsomes using testosterone as probe substrate. Both compounds were found to be weak reversible inhibitors and moderate mechanism-based inhibitors of rat CYP3A. For reversible inhibition on rat CYP3A, the Ki values of competitive inhibition model were 12.10±1.75 and 13.94±1.31 μM, respectively. For time-dependent inhibition, the inactivation constants (Kl) were 31.93±12.64 and 32.91±15.58 μM, respectively, and the maximum inactivation rates (kinact) were 0.03497±0.0069 and 0.07259±0.0172 min?1 respectively. These findings would provide useful in vitro information for future in vivo DDI studies on TM208 or TM209.  相似文献   

12.
Among the various possible causes for drug interactions, pharmacokinetic factors such as inhibition of drug-metabolizing enzymes, especially cytochrome P450 (CYP) enzymes, are regarded as the most frequent and clinically important. Gypenosides is widely used as functional food and over-the-counter drug in East Asia. In this study, the in vitro inhibitory effects of gypenosides on the major human CYP enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) activities in human liver microsomes were examined using liquid chromatography–tandem mass spectrometry. Gypenosides showed the strongest inhibition of CYP2D6, followed by CYP2C8, CYP3A4 and CYP2C9. The IC50 values were 1.61 μg/mL, 20.06 μg/mL, 34.76 μg/mL (CYP3A4/midazolam), 46.73 μg/mL (CYP3A4/testosterone), and 54.52 μg/mL, respectively. Gypenosides exhibited competitive inhibition of CYP2D6 (Ki = 1.18). In conclusion, Gypenosides might cause herb–drug interactions via inhibition of CYP2D6. An in vivo study is needed to examine this further.  相似文献   

13.
BackgroundCytochrome P450 3A (CYP3A) subfamily is involved in the metabolism of xenobiotics (e.g., drugs) and endogenous substances (e.g., steroids). The aim of the present study was to investigate the influence of classic and atypical neuroleptics on the level and activity of CYP3A in rat liver, measured as a rate of testosterone 2β- and 6β-hydroxylation.MethodsThe reactions were studied in control liver microsomes in the presence of neuroleptics, as well as in the microsomes of rats treated intraperitoneally (ip) with pharmacological doses of the drugs (promazine and thioridazine 10 mg/kg; chlorpromazine 3 mg/kg; haloperidol 0.3 mg/kg; risperidone 0.1 mg/kg; sertindole 0.05 mg/kg) for one day or two weeks (twice a day), in the absence of the neuroleptics in vitro.ResultsThe investigated neuroleptics added in vitro to control liver microsomes produced a moderate or week inhibitory effects on CYP3A activity. After one-day exposure of rats to neuroleptics, only chlorpromazine significantly increased the activity of CYP3A. Chronic treatment of rats with thioridazine diminished the protein level and activity of CYP3A, while risperidone induced this enzyme.ConclusionThe observed changes in the CYP3A expression after prolonged exposition to neuroleptics suggest their influence on the enzyme regulation.  相似文献   

14.
Species and organ differences in the intrinsic clearance and the enzymes involved in the metabolism of DEHP were examined in subcellular fractions of the intestine and liver as well as by recombinant cytochrome P450 (CYP) isoforms of human and rat. Estimated clearance (CLint) of DEHP via esterase-mediated pathway in human intestine was 2.4-fold greater than that in human liver while its value in rat intestine was 1.7-fold less than that in rat liver. Ranks of CLint for CYP-mediated oxidation/dealkylation of MEHP were human liver > rat liver > human intestine > rat intestine. Estimates of CLint for the production of mono(2-ethyl-5-hydroxyhexyl) phthalate and mono(2-ethyl-5-oxohexyl) phthalate by human CYP2C9*1 were 4.2- and 2.6-fold greater than those by rat CYP2C6, respectively. Total CLint via hCYP2C9*3-mediated oxidation was 1.9- and 2.6-fold less than those by hCYP2C9*2 and 2C9*1, respectively. Estimated CLint for phthalic acid production by hCYP3A4 was 24.5 μL nmol CYP?1 min?1 while it was continuously produced by rCYP2C6 and 3A2 via passive mechanism. These species/organ differences in major metabolic pathway and CYP isoforms should be considered for appraisal of the potential adverse health effects of DEHP.  相似文献   

15.
The aim of this study was to retrospectively evaluate the effect of polymorphisms in the CYP3A4, CYP3A5 and ABCB1 genes on the dose-adjusted concentration and dose requirement of cyclosporine A (CsA) in Chinese recipients during the early period after bone marrow or hematopoietic stem cell transplantation. Ninety-one bone marrow transplant recipients were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay or by direct sequencing for the C1236T, G2677T/A and C3435T polymorphisms in CYP3A4*18B, CYP3A5*3, and ABCB1, respectively. The concentration at zero before administration (C0) and concentration at 2 h after administration (C2) of whole blood CsA were measured by fluorescence polarization immunoassay. Dose-adjusted C0 and C2 were determined and compared among groups with different genotypes. Compared with CYP3A5*3/*3 individuals, CYP3A5*1/*1 subjects have a significantly lower dose-adjusted C0 and C2 at days 1–10 and a higher dose requirement for CsA at days 16–30 (p < 0.05). In addition, homozygotes for the ABCB1 3435T mutant have a significantly higher dose-adjusted C0 and C2 and a lower dose requirement compared with wildtype (p < 0.05). Similar results were also derived for carriers of the T-G-C haplotype in CYP3A5 producers compared with non-carriers (p < 0.05 and p < 0.01, respectively). In summary, the ABCB1 3435T SNP, T-G-C haplotype in CYP3A5 producers, and CYP3A5*3 SNP are all associated with differences in CsA pharmacokinetics and dose requirements during the first month after bone marrow or hematopoietic stem cell transplantation. Genetic testing can therefore help to determine initial dosage and individualize immunosuppressive therapy.  相似文献   

16.
We performed a study to quantify CYP2C9 and CYP2C8 alleles influence on the variability observed in tenoxicam pharmacokinetic (PK) and implication in a bioequivalence study design performed on Spaniards. Eighteen healthy volunteers were included in an open, randomized, crossover, phase I bioequivalence study. Significant increases were found in CYP2C9*3 alleles vs. *1 and *2 in AUC0–∞ (median (min–max)): 256 (230–516) vs. 150 (100–268) and 169 (124–197) μg h/mL (p < 0.01) and half-life time (t1/2) 102 (79–36) vs. 56 (45–94) and 64 (60–80) h (p < 0.01). Non-significant differences were observed in Cmax 1.9 (1.8–2.9) vs. 2.4 (1.7–3.4), 2.5 (1.6–2.9) μg/mL or in according to CYP2C8 alleles presence. CYP2C9*3 allele is associated to a longer elimination time of tenoxicam. PK parameters calculated in bioequivalence studies (AUC0–∞, t1/2) may be influenced by the presence of CYP2C9*3 allele resulting in a high variability. Thus, bioequivalence studies of tenoxicam formulations should be designed considering genotype profile.  相似文献   

17.
The results of this study have shown that N-acetyl-l-cysteine (NAC), a compound used for protection of tissues or cell cultures against the deleterious effects of various environmental pollutants, has certain unusual effects on the contraction of the spontaneously beating atria of the frog isolated in saline (ex vivo): (1) NAC, 6.0 and 10.0 mM, eliminated, in a concentration-dependent manner, the contractile properties of the atria (force and frequency) within minutes, without affecting its electrical properties; (2) the IC50 of NAC for the force was 5.09 ± 1.01 mM (n = 6) [4.98–5.19 mM, 95% confidence interval (CI)], significantly lower than the IC50 for the frequency, 6.15 ± 1.01 mM, (6.02–6.29 mM, 95% CI), indicating that working atria cells are more sensitive to NAC than autorhythmic cells. The no-observed-effect concentration (NOEC) was 1–2 mM; (3) the pattern of NAC-induced inhibition of electromechanical activity was similar to that of verapamil, an indication that NAC possibly affects L-type voltage-gated calcium channels; (4) NAC at 2 mM protected against cadmium-induced inhibition of atria contraction. The IC50 for cadmium was 17.9 ± 1.1 μM (n = 6) (16.9–19.0 μM, 95% CI), while in the presence of 2 mM NAC, it became 123.3 ± 1.0 μΜ (n = 6) (114.8–132.4 μM, 95% CI). The same concentration of NAC failed to exert any protective effects against rotenone (5 μM)-induced inhibition of atria contraction. The protective effects of NAC are probably due to chelation of cadmium, rather than scavenging of oxidants.  相似文献   

18.
The present study was undertaken to evaluate the protective effect of aqueous extract of Corchorus olitorius leaves (AECO) against CdCl2 intoxication. In vitro bioassay on isolated mice hepatocytes confirmed dose dependent cytoprotective effect of AECO. The CdCl2 (30 μM) exhibited a significantly increased levels of lipid peroxidation, protein carbonylation along with the reduction of antioxidant enzymes and reduced glutathione levels in hepatocytes. AECO (200 and 400 μg/ml) + CdCl2 (30 μM) could significantly restore the aforementioned oxidation parameters in hepatocytes. Beside this, AECO could significantly reduce Cd-induced increase in Bad/Bcl-2 ratio and the over-expression of NF-κB, caspase 3 and caspase 9. In in vivo assay, CdCl2 (4 mg/kg body weight, for 6 days) treated rats exhibited a significantly increased intracellular Cd accumulation, oxidative stress and DNA fragmentation in the organs. In addition, the haematological parameters were significantly altered in the CdCl2 treated rats. Simultaneous administration of AECO (50 and 100 mg/kg body weight), could significantly restore the biochemical, antioxidant and haematological parameters near to the normal status. Histological studies of the organs supported the protective role of jute leaves. Presence of substantial quantity of phenolic compounds and flavonoids in extract may be responsible for overall protective effect.  相似文献   

19.
In the present study on human hepatic microsomes, the N-in-one assay with ten probe substrates for nine cytochrome-P450 enzymes (CYPs) was compared with the single substrate assays to investigate pesticides–CYP interactions. CYP inhibition was measured by liquid chromatography–tandem mass spectrometry (LC/MS–MS). As illustrated by the initial screening at 100 μM concentration of 18 pesticides, CYPs are more sensitive to organophosphates (OPs) than to other pesticide groups. Chlorpyrifos and fenitrothion were most effective in inhibiting CYP1A1/2, and CYP2B6. Profenofos was also inhibitory towards multiple CYPs. Pyrethroids, e.g. deltamethrin, fenvalerate and lambda-cyhalothrin, potently inhibited CYP2D6. CYP3A4 activity was moderately inhibited by fenvalerate and potently by alpha-cypermethrin. The correlations between IC50 values obtained from the N-in-one and single substrate approaches were highly significant for CYP2Cs (r2 = 0.94), CYP3A4, omeprazole-sulfoxidation, (r2 = 0.89), followed by CYP1A2 and CYP2B6 (r2 = 0.82), and CYP2D6 (r2 = 0.80). In contrast no correlation was observed with CYP2E1 and CYP3A4 (midazolam-1′-hydroxylation). The N-in-one screening assay seems useful and reliable for most CYP activities when a comprehensive and quick evaluation of potential interactions with CYPs is needed. However, at the present moment, it does not enable discrimination on the basis of mechanism of inhibition. A strict comparison between single and N-in-one assays is a prerequisite for more extensive routine use.  相似文献   

20.
《Toxicology in vitro》2010,24(3):973-980
Xenobiotic metabolizing enzymes like cytochrome P450s and N-acetyltransferase are expressed in keratinocytes and professional antigen-presenting cells. Thus, biotransformation of chemicals applied to the skin can be relevant for their potential to cause skin toxicity and immune responses like allergic contact dermatitis. Considering the keratinocyte cell line HaCaT as a relevant in vitro tool for epidermal biotransformation, we specifically investigated CYP1 (EROD) and N-acetyltransferase 1 (NAT1) activities of three different HaCaT shipments and human primary keratinocytes (NHEK). Solvent treated HaCaT showed EROD levels near the detection limit (0.047 pmol/mg/min), primary keratinocytes (n = 4) were in a range between 0 and 0.76 pmol/mg/min. B[a]P (1 μM) induced EROD activities of 19.0 ± 0.9 pmol/mg/min (n = 11) in HaCaT and 5.8 ± 0.5 pmol/mg/min (n = 4) in NHEK. N-acetylation activities for para-aminobenzoic acid (PABA) were in average 3.4-fold higher in HaCaT compared to NHEK (8 ± 0.5 nmol/mg/min) and varied between the HaCaT shipments (range 12.0–44.5 nmol/mg/min). This was in good agreement with NAT1 promoter P1 dependent mRNA level and N-acetylation of the contact allergen para-phenylenediamine (PPD) under typical cell-based assay conditions. We conclude that HaCaT represent a suitable in vitro model for studying the qualitative contribution of epidermal phase1/phase2 metabolism to toxicological endpoints such as skin sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号