首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exercise decreases insulin resistance and increases maximal exercise capacity as estimated from maximal oxygen uptake (O2max). Recent reports have demonstrated that the mitochondrial DNA (mtDNA) content of blood is correlated with O2max in healthy subjects (mean age 31 years) and is inversely correlated with insulin resistance parameters. The aim of this study was to determine the effect of regular exercise on the mtDNA content in the peripheral blood of 16 healthy young women of mean age 24.8 (SD 6.2) years and 14 healthy older women of mean age 66.7 (SD 5.8) years. The exercise programme lasted for 10 weeks and consisted of three sessions a week, each of 1 h and aiming to attain 60%–80% of O2max. The mtDNA content of peripheral blood was measured by competitive polymerase chain reaction. The O2max had significantly increased following the exercise programme [from 33.1 (SD 3.4) to 35.2 (SD 3.4) ml · kg−1 · min−1 in the young and from 24.3 (SD 5.3) to 30.3 (SD 7.3) ml · kg−1 · min−1 in the older women, both P < 0.05]. Exercise decreased systolic blood pressure, and concentrations of triglyceride, low density lipoprotein-cholesterol (LDL-C), glucose and insulin in the blood of the young and of total cholesterol, LDL-C and glucose in that of the older women. High density lipoprotein-cholesterol (HDL-C) in the young women was increased by exercise. The mtDNA content significantly increased following the exercise programme in both groups [from 27.1 (SD 17.9) to 52.7 (SD 44.6) amol · 5 ng−1 genomic DNA in the young and from 15.3 (SD 10.2) to 32.1 (SD 30.0) amol · 5 ng−1 genomic DNA in the older women, both P < 0.05]. There was a significant positive correlation between the change in mtDNA content and the change in O2max (r=0.74 in the young and r=0.71 in the older women, both P < 0.01). In conclusion, 10 weeks of moderate intensity, regular exercise increased the mtDNA content in peripheral blood and decreased insulin resistance parameters. This data suggests that increase in the mtDNA content may be associated with increased insulin sensitivity. Accepted: 15 April 2000  相似文献   

2.
The aim of the present study was to determine the effects of 40 km of cycling on the biomechanical and cardiorespiratory responses measured during the running segment of a classic triathlon, with particular emphasis on the time course of these responses. Seven male triathletes underwent four successive laboratory trials: (1) 40 km of cycling followed by a 10-km triathlon run (TR), (2) a 10-km control run (CR) at the same speed as TR, (3) an incremental treadmill test, and (4) an incremental cycle test. The following ventilatory data were collected every minute using an automated breath-by-breath system: pulmonary ventilation ( E, l · min−1), oxygen uptake (O2, ml · min−1 · kg−1), carbon dioxide output (ml · min−1), respiratory equivalents for oxygen ( E/O2) and carbon dioxide ( E/CO2), respiratory exchange ratio (R) respiratory frequency (f, breaths · min−1), and tidal volume (ml). Heart rate (HR, beats · min−1) was monitored using a telemetric system. Biomechanical variables included stride length (SL) and stride frequency (SF) recorded on a video tape. The results showed that the following variables were significantly higher (analysis of variance, P < 0.05) for TR than for CR: O2 [51.7 (3.4) vs 48.3 (3.9) ml · kg−1 · min−1, respectively], E [100.4 (1.4) l · min−1 vs 84.4 (7.0) l · min−1], E/O2 [24.2 (2.6) vs 21.5 (2.7)] E/CO2 [25.2 (2.6) vs 22.4 (2.6)], f [55.8 (11.6) vs 49.0 (12.4) breaths · min−1] and HR [175 (7) vs 168 (9) beats · min−1]. Moreover, the time needed to reach steady-state was shorter for HR and O2 (1 min and 2 min, respectively) and longer for E (7 min). In contrast, the biomechanical parameters, i.e. SL and SF, remained unchanged throughout TR versus CR. We conclude that the first minutes of the run segment after cycling in an experimental triathlon were specific in terms of O2 and cardiorespiratory variables, and nonspecific in terms of biomechanical variables. Accepted: 7 July 1997  相似文献   

3.
It is generally assumed that exercise and shivering are analogous processes with regard to substrate utilisation and that, as a consequence, exercise can be used as a model for shivering. In the present study, substrate utilisation during exercise and shivering at the same oxygen consumption (O2) were compared. Following an overnight fast, eight male subjects undertook a 2-h immersion in cold water, designed to evoke three different intensities of shivering. At least 1 week later they undertook a 2-h period of bicycle ergometry during which the exercise intensity was varied to match the O2 recorded during shivering. During both activities hepatic glucose output (HGO), the rate of glucose utilisation (Rd), blood glucose, plasma insulin, free fatty acid (FFA) and beta-hydroxybutyrate (B-HBA) concentrations were measured. The O2 measured during the different levels of shivering averaged 0.49 l · min−1 (level 1: low), 0.6 l · min−1 (level 2: low-moderate), and 0.9 l · min−1 (level 3: moderate), and corresponded closely to the levels measured during exercise. HGO and Rd were greater (P < 0.05) during exercise than during shivering at the same O2 (9.5% and 14.7%, respectively). The average (SD) HGO during level 3 exercise was 3.0 (0.91) mg · kg−1 . min−1 compared to 2.76 (1.0) mg · kg−1 . min−1 during shivering. The values for Rd were 3.06 (0.98) mg · kg−1 · min−1 during level 3 exercise and 2.68 (0.82) mg · kg−1 · min−1 during shivering. Blood glucose levels did not differ between conditions, averaging 5.4 (0.3) mmol . l−1 over all levels of shivering and 5.2 (0.3) mmol · l−1 during exercise. Plasma FFA and B-HBA were higher (P < 0.01) during shivering than during corresponding exercise (12.3% and 33.3%, respectively). FFA averaged 0.61 (0.2) mmol · l−1 over all levels of shivering and 0.47 (0.16) mmol · l−1 during exercise. The figures for B-HBA were 0.44 (0.13) mmol · l−1 during all levels of shivering and 0.32 (0.1) mmol · l−1 during exercise. Plasma insulin was higher (P < 0.05) during level 2 and 3 shivering compared to corresponding exercise; at these levels the average value for plasma insulin was 95.9 (21.9) pmol · l−1 during shivering and 80.6 (16.1) pmol · l−1 during exercise. On the basis of the present findings it is concluded that, with regard to substrate utilisation, shivering and exercise of up to 2 h duration should not be regarded as analogous processes. Accepted: 12 February 1997  相似文献   

4.
Influence of body mass on maximal oxygen uptake: effect of sample size   总被引:2,自引:0,他引:2  
Basal metabolic rate is scaled to body mass to the power of 0.73, and we evaluated whether a similar scaling applies when the O2 transport capacity of the body is challenged during maximal exercise (i.e. at maximal O2 uptake, V˙O 2max). The allometric relationship between V˙O 2max and body mass (y=a · x b, where y is V˙O 2max and x is body mass) was developed for 967 athletes representing 25 different sports, with up to 157 participants in each sport. With an increasing number of observations, the exponent approached 0.73, while for ventilation the exponent was only 0.55. By using the 0.73 exponent for V˙O 2max, the highest value [mean (SD)] for the males was obtained for the runners and cyclists [234 (16) ml · kg−0.73 · min−1], and for the females the highest value was found for the runners [189 (14) ml · kg−0.73 · min−1]. For the females, aerobic power was about 80% of the value achieved by the males. Scaling may help both in understanding variation in aerobic power and in defining the physiological limitations of work capacity. Accepted: 3 November 2000  相似文献   

5.
The purpose of this study was to investigate the effects of endurance training on the ventilatory response to acute incremental exercise in elite cyclists. Fifteen male elite cyclists [mean (SD) age 24.3 (3.3) years, height 179 (6) cm, body mass 71.1 (7.6) kg, maximal oxygen consumption (O2max) 69 (7) ml · min−1 · kg−1] underwent two exercise tests on a cycle ergometer. The first test was assessed in December, 6 weeks before the beginning of the cycling season. The second test was performed in June, in the middle of the season. During this period the subjects were expected to be in a highly endurance-trained state. The ventilatory response was assessed during an incremental exercise test (20 W · min−1). Oxygen consumption (O2), carbon dioxide production (CO2), minute ventilation ( E), and heart rate (HR) were assessed at the following points during the test: at workloads of 200 W, 250 W, 300 W, 350 W, 400 W and at the subject's maximal workload, at a respiratory exchange ratio (R) of 1, and at the ventilatory threshold (Thvent) determined using the V-slope-method. Post-training, the mean (SD) O2max was increased from the pre-training level of 69 (7) ml · min−1 · kg−1 (range 61.4–78.6) to 78 (6) ml · min−1 · kg−1 (range 70.5–86.3). The mean post-training O2 was significantly higher than the pre training value (P < 0.01) at all work rates, at Thvent and at R=1. O2 was also higher at all work rates except for 200 W and 250 W. E was significantly higher at Thvent and R=1. Training had no effect on HR at all workloads examined. An explanation for the higher O2 cost for the same work rate may be that in the endurance-trained state, the adaptation to an exercise stimulus with higher intensity is faster than for the less-trained state. Another explanation may be that at the same work rate, in the less-endurance-trained state power is generated using a significantly higher anaerobic input. The results of this study suggest the following practical recommendations for training management in elite cyclists: (1) the O2 for a subject at the same work rate may be an indicator of the endurance-trained state (i.e., the higher the O2, the higher the endurance-trained capacity), and (2) the need for multiple exercise tests for determining the HR at Thvent during a cycling season is doubtful since at Thvent this parameter does not differ much following endurance training. Accepted: 19 October 1999  相似文献   

6.
The nutritional status of elderly sportsmen has not been reported on, neither has the nutritional balance nor the precise relationship between nutritional status and physical fitness been detailed for this population. Thus, group of 18 sportsmen [age 63 (SD 4.5) years] was monitored by weighing their food during a 6-day period. Macro nutrient, mineral and vitamin content was derived from tables. Daily energy expenditure (DEE) and sport activity (DSA) were quantified over a 7-day period using a questionnaire. Physical fitness was assessed by maximal oxygen uptake (O2max) measurements. The DEE was 11 429 (SD 1890) kJ · day−1. The DSA corresponded to 38% of DEE and O2max to 35.9 (SD 6.1) ml · min−1 · kg−1. When compared with French recommended dietary allowances (RDA) intakes were higher for energy (+24%), macro nutrients, and most minerals and vitamins. Despite high energy intakes, some subjects had mineral and vitamin deficits. Energy intakes were significantly related to intakes of magnesium, phosphorus, iron, vitamins B2, B6, C and to O2max, but not to age. Stepwise regressions indicated that vitamin C intake was the only determinant to have a relationship with O2max. Thus, most elderly sportsmen had higher nutritional status than RDA, although some had mineral and vitamin deficits. It is therefore suggested that elderly sportsmen should be encouraged to consume food with higher mineral and vitamin contents. Accepted: 17 June 1997  相似文献   

7.
In patients suffering from primary pulmonary hypertension (PPH), a raised pulmonary vascular resistance may limit the ability to increase pulmonary blood flow as work rate increases. We hypothesised that oxygen uptake (O2) may not rise appropriately with increasing work rate during incremental cardiopulmonary exercise tests. Nine PPH patients and nine normal subjects performed symptom-limited maximal continuous incremental cycle ergometry exercise. Mean peak O2 [1.00 (SD 0.22) compared to 2.58 (SD 0.64) l · min−1] and mean O2 at lactic acidosis threshold [LAT, 0.73 (SD 0.17) compared to 1.46 (SD 0.21 · l) ml · min−1] were much lower in patients than in normal subjects (both P < 0.01, two-way ANOVA with Tukey test). The mean rate of change of O2 with increasing work rate above the LAT [5.9 (SD 2.1) compared to 9.4 (SD 1.3) ml · min−1 · W−1, P < 0.01)] was also much lower in patients than in normal subjects [apparent δ efficiency 60.3 (SD 38.8)% in patients compared to 31.0 (SD 4.9)% in normal subjects]. The patients displayed lower mean values of end-tidal partial pressure of carbon dioxide than the normal subjects at peak exercise [29.7 (SD 6.8) compared to 42.4 (SD 5.8) mmHg, P < 0.01] and mean oxyhaemoglobin saturation [89.1 (SD 4.1) compared to 93.6 (SD 1.8)%, P < 0.05]. Mean ventilatory equivalents for CO2 [49.3 (SD 11.4) compared to 35.0 (SD 7.3), P < 0.05] and O2 [44.2 (SD 10.7) compared to 29.9 (SD 5.1), P < 0.05] were greater in patients than normal subjects. The sub-normal slopes for the O2-work-rate relationship above the LAT indicated severe impairment of the circulatory response to exercise in patients with PPH. The ventilatory abnormalities in PPH suggested that the lung had become an inefficient gas exchange organ because of impaired perfusion of the ventilated lung. Accepted: 17 April 2000  相似文献   

8.
Previous findings of a narcosis-induced reduction in heat production during cold water immersion, as reflected in oxygen uptake (O2), have been attributed to the attenuation of the shivering response. The possibility of reduced oxygen utilization (O2) by the muscles could not, however, be excluded. Accordingly, the present study tested the hypothesis that mild narcosis, induced by inhalation of a normoxic gas mixture containing 30% nitrous oxide (N2O), would affect O2. Nine male subjects participated in both maximal and submaximal exercise trials, inspiring either room air (AIR) or a normoxic mixture containing 30% N2O. In the submaximal trials, the subjects exercised at 50% of maximal exercise intensity ( max ) as determined in the maximal AIR trial. Though the subjects attained the same max in the AIR and N2O trials, maximal O2 was significantly higher (P < 0.05) during the N2O condition [58.9 (SEM 3.1) ml · kg−1 · min−l] compared to the AIR condition [55.0 (SEM 2.4) ml · kg−1 · min−l]. However, the O2-relative exercise intensity relationship was similar during both maximal AIR and maximal N2O at submaximal exercise intensities. There were no significant differences in the responses of oesophageal temperature, sweating rate, heart rate and ventilation between AIR and N2O in the maximal and submaximal tests. It was concluded that the previously reported narcosis-induced reductions in O2 observed during cold water immersion can be attributed solely to a reduction in the shivering response rather than to decreased oxygen utilization by the muscles. Accepted: 6 February 2000  相似文献   

9.
The transient response of oxygen uptake (O2) to submaximal exercise, known to be abnormal in patients with cardiovascular disorders, can be useful in assessing the functional status of the cardiocirculatory system, however, a method for evaluating it accurately has not yet been established. As an alternative approach to the conventional test at constant exercise intensity, we applied a random stimulus technique that has been shown to provide relatively noise immune responses of system being investigated. In 27 patients with heart failure and 24 age-matched control subjects, we imposed cycle exercise at 50 W intermittently according to a pseudo-random binary (exercise-rest) sequence, while measuring breath-by-breath O2. After determining the transfer function relating exercise intensity () to O2 and attenuating the high frequency ranges (>6 exercise-rest cycles · min−1), we computed the high resolution band-limited (0–6 cycles · min−1) O2 response (0–120 s) to a hypothetical step exercise. The O2 response showed a longer time constant in the patients than in the control subjects [47 (SD 37) and 31 (SD 8) s, respectively, P < 0.05]. Furthermore, the amplitude of the O2 response after the initial response was shown to be significantly smaller in the patients than in the control subjects [176 (SD 50) and 267 (SD 54) ml · min−1 at 120 s]. The average amplitude over 120 s correlated well with peak O2 (r = 0.73) and ΔO2 (r = 0.70), both of which are well-established indexes of exercise tolerance. The data indicated that our band-limited V˙O2 step response using random exercise was more markedly attenuated and delayed in the patients with heart failure than in the normal controls and that it could be useful in quantifying the overall functional status of the cardiocirculatory system. Accepted: 6 January 1998  相似文献   

10.
The conventional method used to estimate the change in mean body temperature (dMBT) is by taking X% of a body core temperature and (1−X)% of weighted mean skin temperature, the value of X being dependent upon ambient temperature. This technique is used widely, despite opposition from calorimetrists. In the present paper we attempt to provide a better method. Minute-by-minute changes in dMBT, as assessed using calorimetry, and 21 (20 if esophageal temperature was unavailable) various regional temperatures (dRBTs), as assessed using thermometry, including 6 subcutaneous measures, were collected from 7 young male adults at 6 calorimeter temperatures. Since a calorimeter measures only changes in heat storage, which can be converted to dMBT, all body temperatures are expressed as changes from the reasonably constant pre-exposure temperatures. The following three aspects were investigated. (1) The prediction of dMBT from the 21 (or 20) dRBTs with multi-linear regression analysis (MLR). This yields two results, model A with rectal temperature (dT re) alone, and model B with dT re and esophageal temperature (dT es). (2) The prediction of dMBT from dT re with or without dT es and 13 skin surface temperatures combined to one weighted mean skin temperature (d sk), using MLR. This results in models C and D. Six more models (E–J) were added, representing the above two sets in various combinations with four factors. (3) The conventional method calculated with four values for X. Model A predicted better than 0.3 °C in 70% of the cases. Model I was the best amongst the models with 13 weighted skin temperatures (better than 0.3 °C in 60% of the cases). The conventional method was erratic. Accepted: 14 January 2000  相似文献   

11.
This study investigated the effects on running economy (RE) of ingesting either no fluid or an electrolyte solution with or without 6% carbohydrate (counterbalanced design) during 60-min running bouts at 80% maximal oxygen consumption (O2max). Tests were undertaken in either a thermoneutral (22–23°C; 56–62% relative humidity, RH) or a hot and humid natural environment (Singapore: 25–35°C; 66–77% RH). The subjects were 15 young adult male Singaporeans [O2max = 55.5 (4.4 SD) ml kg−1 min−1]. The RE was measured at 3 m s−1 [65 (6)% O2max] before (RE1) and after each prolonged run (RE2). Fluids were administered every 2 min, at an individual rate determined from prior tests, to maintain body mass (group mean = 17.4 ml min−1). The O2 during RE2 was higher (P < 0.05) than that during the RE1 test for all treatments, with no differences between treatments (ANOVA). The mean increase in O2 from RE1 to RE2 ranged from 3.4 to 4.7 ml kg−1 min−1 across treatments. In conclusion, the deterioration in RE at 3 m s−1 (65% O2max) after 60 min of running at 80% O2max appears to occur independently of whether fluid is ingested and regardless of whether the fluid contains carbohydrates or electrolytes, in both a thermoneutral and in a hot, humid environment. Accepted: 30 October 1997  相似文献   

12.
In this study we determined the influence of improving aerobic power (O2max) on basal plasma levels of insulin and glucose of 11- to 14-year-old children, while accounting for body fat, gender, pubertal status, and leisure-time physical activity (LTPA) levels. Blood samples were obtained from 349 children after an overnight fast and analyzed for plasma insulin and glucose. Height, mass, body mass index (BMI), and sum of skinfolds (Σ triceps + subscapular sites) were measured. LTPA levels and pubertal status were estimated from questionnaires, and O2max was predicted from a cycle ergometry test. Regardless of gender, insulin levels were significantly correlated (P = 0.0001) to BMI, skinfolds, pubertal stage, and predicted O2max, but were not related to LTPA levels. Fasting glucose levels were not correlated to measures of adiposity or exercise (LTPA score, O2max) for females; however, BMI and skinfolds were correlated for males (P < 0.006). The children then took part in an 8-week aerobic exercise program. The 60 children whose O2max improved (≥3 ml · kg−1 · min−1) had a greater reduction in circulating insulin than the 204 children whose O2max did not increase −16 (41) vs −1 (63) pmol · l−1; P = 0.028. The greatest change occurred in those children with the highest initial resting insulin levels. Plasma glucose levels were slightly reduced only in those children with the highest insulin levels whose O2max improved (P < 0.0506). The results of this study indicate that in children, adiposity has the most significant influence on fasting insulin levels; however, increasing O2max via exercise can lower insulin levels in those children with initially high levels of the hormone. In addition, LTPA does not appear to be associated with fasting insulin status, unless it is sufficient to increase O2max. Accepted: 2 June 1999  相似文献   

13.
This study compares two different sport events (orienteering = OTC; tennis = TEC) with discontinuous load profiles and different activity/recovery patterns by means of blood lactate (LA), heart rate (HR), and respiratory gas exchange measures (RGME) determined via a portable respiratory system. During the TEC, 20 tennis-ranked male subjects [age: 26.0 (3.7) years; height: 181.0 (5.7) cm; weight: 73.2 (6.8) kg; maximal oxygen consumption (O2max): 57.3 (5.1) ml·kg−1·min−1] played ten matches of 50 min. During the OTC, 11 male members of the Austrian National Team [age: 23.5 (3.9) years; height: 183.6 (6.8) cm; weight: 72.4 (3.9) kg;O2max: 67.9 (3.8) ml·kg−1·min−1] performed a simulated OTC (six sections; average length: 10.090 m). In both studies data from the maximal treadmill tests (TT) were used as reference values for the comparison of energy expenditure of OTC and TEC. During TEC, the averageO2 was considerably lower [29.1 (5.6) ml·kg−1·min−1] or 51.1 (10.9)% of VO2max and 64.8.0 (13.3)% ofO2 determined at the individual anaerobic threshold (IAT) on the TT. The short high-intensity periods (activity/recovery = 1/6) did not result in higher LA levels [average LA of games: 2.07 (0.9) mmol·l−1]. The highest averageO2 value for a whole game was 47.8 ml·kg−1·min−1 and may provide a reference for energy demands required to sustain high-intensity periods of tennis predominately via aerobic mechanism of energy delivery. During OTC, we found an averageO2 of 56.4 (4.5) ml·kg−1·min−1 or 83.0 (3.8)% ofO2max and 94.6 (5.2)% ofO2 at IAT. In contrast to TEC, LA were relatively high [5.16 (1.5) mmol·l−1) although the averageO2 was significantly lower thanO2 at IAT. Our data suggest that portable RGEM provides valuable information concerning the energy expenditure in sports that cannot be interpreted from LA or HR measures alone. Portable RGEM systems provide valuable assessment of under- or over-estimation of requirements of sports and assist in the optimization and interpretation of training in athletes. Electronic Publication  相似文献   

14.
The effects of whole-body exposure to ambient temperatures of −15°C and 23°C on selected performance-related physiological variables were investigated in elite nonasthmatic cross-country skiers. At an ambient temperature of −15°C we also studied the effects of the selective β2-adrenergic agonist Salbutamol (0.4 mg × 3) which was administered 10 min before the exercise test. Eight male cross-country skiers with known maximal oxygen uptakes (O2 max ) of more than 70 ml · kg−1 · min−1 participated in the study. Oxygen uptake (O2), heart rate (f c), blood lactate concentration ([La]b) and time to exhaustion were measured during controlled submaximal and maximal running on a treadmill in a climatic chamber. Lung function measured as forced expiratory volume in 1 s (FEV1) was recorded immediately before the warm-up period and at the conclusion of the exercise protocol. Submaximal O2 and [La]b at the two highest submaximal exercise intensities were significantly higher at −15°C than at 23°C. Time to exhaustion was significantly shorter in the cold environment. However, no differences in O2 max or f c were observed. Our results would suggest that exercise stress is higher at submaximal exercise intensities in a cold environment and support the contention that aerobic capacity is not altered by cold exposure. Furthermore, we found that after Salbutamol inhalation FEV1 was significantly higher than after placebo administration. However, the inhaled β2-agonist Salbutamol did not influence submaximal and maximal O2, f c, [La]b or time to exhaustion in the elite, nonasthmatic cross-country skiers we studied. Thus, these results did not demonstrate any ergogenic effect of the β2-agonist used. Accepted: 18 August 1997  相似文献   

15.
The aim of the present study was to investigate whether the changes in breathing pattern that frequently occur towards the end of exhaustive exercise (i.e., increased breathing frequency, f b, with or without decreased tidal volume) may be caused by the respiratory work itself rather than by leg muscle work. Eight healthy, trained subjects performed the following three sessions in random order: (A) two sequential cycling endurance tests at 78% peak O2 consumption (O2peak) to exhaustion (A1, A2); (B) isolated, isocapnic hyperpnea (B1) at a minute ventilation ( E) and an exercise duration similar to that attained during a preliminary cycling endurance test at 78% O2peak, followed by a cycling endurance test at 78% O2peak (B2); (C) isolated, isocapnic hyperpnea (C1) at a E at least 20% higher than that of the preliminary cycling test and the same exercise duration as the preliminary cycling test, followed by a cycling endurance test at 78% O2peak (C2). Neither of the two isocapnic hyperventilation tasks (B1 or C1) affected either the breathing pattern or the endurance times of the subsequent cycling tests. Only cycling test A2 was significantly shorter [mean (SD) 26.5 (8.3) min] than tests A1 [41.0 (9.0) min], B2 [41.9 (6.0) min], and C2 [42.0 (7.5) min]. In addition, compared to test A1, only the breathing pattern of test A2 was significantly different [i.e., E: +10.5 (7.6) l min−1, and f b: +12.1 (8.5) breaths min−1], in contrast to the breathing patterns of cycling tests B2 [ E: −2.5 (6.2) l min−1, f b: +0.2 (3.6) breaths min−1] and C2 [ E: −3.0 (7.0) l min−1, f b: +0.6 (6.1) breaths min−1]. In summary, these results suggest that the changes in breathing pattern that occur towards the end of an exhaustive exercise test are a result of changes in the leg muscles rather than in the respiratory muscles themselves. Accepted: 7 October 1999  相似文献   

16.
In this study, we compared the biomechanical and physiological responses of healthy men and women during bilateral load carriage while they walked on a treadmill at their self-selected velocity. Eleven men mean (SD) maximal oxygen uptake, [O2 max = 56.0 (7.1) ml · kg−1 · min−1] and 11 women [O2 max = 44.6 (7.6) ml · kg−1 · min−1] carried 15-kg and 20-kg loads in random order using a custom-designed load-carriage device. The load supported by each hand was measured by placing strain gauges in each handle of the device. The load supported by the body was calculated as the difference between the load carried and that supported by each hand. Physiological measurements were recorded using standard procedures, and cardiac output was measured by carbon dioxide rebreathing while standing, walking, and during load carriage. Three-way analysis of variance (gender by load by test phase) indicated no significant (P > 0.05) three-way interaction, implying that the overall trend in these responses was similar in men and women. A-priori Scheffe multiple comparisons revealed the following significant (P < 0.05) gender differences during load carriage: (1) women supported a lower proportion of the load with the hands and transferred a greater amount to the body by resting the load against the chest, (2) the oxygen uptake increased by a greater amount in the women compared with men and exceeded the ventilatory threshold during the 20-kg walk in women, and (3) the cardiovascular stress, as indicated by the percentage of maximal heart rate and rate pressure product (product of heart rate and systolic blood pressure), was significantly higher in women compared with men during both of the load-carriage walks. These observations suggest that when carrying absolute loads of 15 kg and 20 kg, women are more susceptible to fatigue and are at a greater risk of cardiovascular complications than men. Accepted: 18 June 1999  相似文献   

17.
This study examined the effect of mild hypobaria (MH) on the peak oxygen consumption (O2peak) and performance of ten trained male athletes [ (SEM); O2peak = 72.4 (2.2) ml · kg−1 · min−1] and ten trained female athletes [O2peak = 60.8 (2.1) ml · kg−1 · min−1]. Subjects performed 5-min maximal work tests on a cycle ergometer within a hypobaric chamber at both normobaria (N, 99.33 kPa) and at MH (92.66 kPa), using a counter-balanced design. MH was equivalent to 580 m altitude. O2peak at MH decreased significantly compared with N in both men [− 5.9 (0.9)%] and women [− 3.7 (1.0)%]. Performance (total kJ) at MH was also reduced significantly in men [− 3.6 (0.8)%] and women [− 3.8 (1.2)%]. Arterial oxyhaemoglobin saturation (SaO2) at O2peak was significantly lower at MH compared with N in both men [90.1 (0.6)% versus 92.0 (0.6)%] and women [89.7 (3.1)% versus 92.1 (3.0)%]. While SaO2 at O2peak was not different between men and women, it was concluded that relative, rather than absolute, O2peak may be a more appropriate predictor of exercise-induced hypoxaemia. For men and women, it was calculated that 67–76% of the decrease in O2peak could be accounted for by a decrease in O2 delivery, which indicates that reduced O2 tension at mild altitude (580 m) leads to impairment of exercise performance in a maximal work bout lasting ≈ 5 min. Accepted: 30 July 1996  相似文献   

18.
The aim of the study was to examine to what extent prior high- or low-intensity cycling, yielding the same amount of external work, influenced the oxygen uptake (O2) slow component of subsequent high-intensity cycling. The 12 subjects cycled in two protocols consisting of an initial 3 min period of unloaded cycling followed by two periods of constant-load exercise separated by 3 min of rest and 3 min of unloaded cycling. In protocol 1 both periods of exercise consisted of 6 min cycling at a work rate corresponding to 90% peak oxygen uptake (O2peak). Protocol 2 differed from protocol 1 in that the first period of exercise consisted of a mean of 12.1 (SD 0.8) min cycling at a work rate corresponding to 50% O2peak. The difference between the 3rd min O2 and the end O2O2(6−3)) was used as an index of the O2 slow component. Prior high-intensity exercise significantly reduced ΔO2(6−3). The ΔO2(6−3) was also reduced by prior low-intensity exercise despite an unchanged plasma lactate concentration at the start of the second period of exercise. The reduction was more pronounced after prior high- than after prior low-intensity exercise (59% and 28%, respectively). The results of this study show that prior exercise of high as well as low intensity reduces the O2 slow component and indicate that a metabolic acidosis is not a necessary condition to elicit a reduction in ΔO2(6−3). Accepted: 8 July 2000  相似文献   

19.
The purpose of this study was to investigate whether the modest increases in serum erythropoietin (sEpo) experienced after brief sojourns at simulated altitude are sufficient to stimulate reticulocyte production. Six well-trained middle-distance runners (HIGH, mean maximum oxygen uptake, O2max = 70.2 ml · kg−1 · min−1) spent 8–11 h per night for 5 nights in a nitrogen house that simulated an altitude of 2650 m. Five squad members (CONTROL, mean O2max = 68.9 ml · kg−1 · min−1) undertook the same training, which was conducted under near-sea-level conditions (600 m altitude), and slept in dormitory-style accommodation also at 600 m altitude. For both groups, this 5-night protocol was undertaken on three occasions, with a 3-night interim between successive exposures. Venous blood samples were measured for sEpo after 1 and 5 nights of hypoxia on each occasion. The percentage of reticulocytes was measured, along with a range of reticulocyte parameters that are sensitive to changes in erythropoiesis. Mean serum erythropoietin levels increased significantly (P < 0.01) above baseline values [mean (SD) 7.9 (2.4) mU · ml−1] in the HIGH group after the 1st night [11.8 (1.9) mU · ml−1, 57%], and were also higher on the 5th night [10.7 (2.2) mU · ml−1, 42%] compared with the CONTROL group, whose erythropoietin levels did not change. After athletes spent 3 nights at near sea level, the change in sEpo during subsequent hypoxic exposures was markedly attenuated (13% and −4% change during the second exposure; 26% and 14% change during the third exposure; 1st and 5th nights of each block, respectively). The increase in sEpo was insufficient to stimulate reticulocyte production at any time point. We conclude that when daily training loads are controlled, the modest increases in sEpo known to occur following brief exposure to a simulated altitude of 2650 m are insufficient to stimulate reticulocyte production. Accepted: 7 October 1999  相似文献   

20.
Heart rate variability during dynamic exercise in elderly males and females   总被引:3,自引:0,他引:3  
It has been proposed that cardiac control is altered in the elderly. Power spectral analysis of heart rate variability (HRV) was performed on 12 male and 11 female elderly subjects (mean age 74 years) while at rest in supine and sitting positions, and at steady states during 5 min of exercise (35–95% peak oxygen consumption, O2peak). There were no differences in power, measured as a percentage of the total of the high frequency peak (HF, centred at about 0.25 Hz; 13% in males vs 12% in females), low frequency peak (LF, centred at 0.09 Hz; 25% in males and 22% in females), and very low frequency component (VLF, at 0.03 Hz; 66% in males and 69% in females) between body positions at rest. There was no difference in spectral power between male and female subjects. Total power decreased as a function of oxygen consumption during exercise, LF% did not change up to about 14 ml · kg−1 · min−1 (40% and 80% O2peak in males and females, respectively), then decreased towards minimal values in both genders. HF% power and central frequency increased linearly with metabolic demand, reaching higher values in male subjects than in female subjects at O2peak, while VLF% remained unchanged. Thus, the power spectra components of HRV did not reflect the changes in autonomic activity that occur at increasing exercise intensities, confirming previous findings in young subjects, and indicated similar responses in both genders. Accepted: 30 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号