首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent in vivo studies using ultrasound-stimulated microbubbles as a localized radiosensitizer have had impressive results. While in vitro studies have also obtained similar results using human umbilical vein endothelial cells (HUVEC), studies using other cell lines have had varying results. This study was aimed at investigating any increases in radiation-induced cell killing in vitro using two carcinoma lines not previously investigated before (metastatic follicular thyroid carcinoma cells [FTC-238] and non-small cell lung carcinoma cells [NCI-H727]), in addition to HUVEC. Cells were treated using a combination of 1.6% (v/v) microbubbles, ~90 s of 2-MHz ultrasound (mechanical index = 0.8) and 0–6 Gy of kilovolt or MV X-rays. Cell viability assays obtained 72 h post-treatment were normalized to untreated controls, and analysis of variance was used to determine statistical significance. All cells treated with combined ultrasound-stimulated microbubbles and radiation exhibited decreased normalized survival, with statistically significant effects observed for the NCI-H727 cells. No statistically significant differences in effects were observed using kV compared with MV radiation. Further studies using increased microbubble concentrations may be required to achieve statistically significant results for the FTC-238 and HUVEC lines.  相似文献   

2.
Ultrasound targeted microbubble destruction has succeeded in delivering drugs and genes. This study was designed to explore characteristics of ultrasound targeted microbubble destruction using short-pulsed diagnostic ultrasound. Canine thyroid adenocarcinoma cells were exposed to short-pulsed diagnostic ultrasound in the presence of cis-diamminedichloroplatinum (II) (cisplatin) and ultrasound contrast agent Sonazoid® microbubbles. The cytotoxic effect of cisplatin was enhanced by short-pulsed diagnostic ultrasound and microbubbles. Incubation time with microbubbles influenced the cytotoxic effect of cisplatin. However, exposure duration did not affect the cytotoxic effect of cisplatin. Therefore, short-pulsed diagnostic ultrasound may activate microbubbles near cells and deliver cisplatin into cells. In addition, activation of microbubbles may be concluded in a short time. Our results suggest that short exposure duration could be potentially sufficient to induce efficient drug delivery by ultrasound targeted microbubble destruction using short-pulsed diagnostic ultrasound.  相似文献   

3.
超声联合载卡莫司汀脂质微泡诱导大鼠C6细胞凋亡   总被引:1,自引:0,他引:1  
目的 探讨低频超声介导载卡莫司汀脂质微泡诱导大鼠神经胶质瘤C6细胞凋亡的机制.方法 采用MTT法检测各实验组不同时间点的细胞抑制率,确定实验参数;流式细胞仪分析C6细胞的凋亡率及细胞周期;透射及扫描电镜观察C6细胞超微结构的变化.结果 超声+10%载卡莫司汀微泡组在6 h时段细胞抑制率、细胞凋亡率均最高,与其他实验组及对照组相比差异均有显著统计学意义(P<0.01).超声破坏载药微泡使增殖期(S期)细胞比例减少,电镜观察超声联合载药微泡可使C6细胞出现凋亡.结论 低频超声介导载卡莫司汀脂质超声微泡能诱导C6细胞凋亡,可能成为胶质瘤治疗的一种新方法.  相似文献   

4.
Ultrasound, in combination with microbubbles, serves as a feasible nonviral method in vascular gene delivery. However, the effects of ultrasonic microbubble transfection (UMT) on vascular endothelial cells remained unclear. We therefore investigated whether UMT itself causes phenotypic changes of the human aortic endothelial cells (HAEC) in vitro. HAEC were cultured with solution containing luciferase reporter gene and microbubbles followed by exposure to ultrasound of selected parameters. Thereafter, the proliferation and migration activities of HAEC were investigated. Real-time RT-PCR and/or western blotting were performed to assess expression profile of HAEC, including growth-related factors (vascular endothelial growth factor, fins-like tyrosine kinase-1 [Flt-1] and kinase insert domain-containing receptor [KDR]), coagulatory factor (von Willebrand factor), vasodilatory enzyme (endothelial nitric oxide synthase), gap junctional protein connexin43 and adhesion molecules (P-selectin, intercellular adhesion molecule 1 and vascular cell adhesion molecule 1). The results showed that in conditions where UMT lead to expression of luciferase, proliferation capacity is enhanced (p < 0.001), partly attributable to the effect of ultrasound (p < 0.05), after excluding the effect of contact inhibition. In addition, the expression of KDR and Flt-1 were found increased at either the mRNA level, protein level, or both (p < 0.05). Other markers did not have significant changes (all p > 0.2). Similarly, the migration capacity was minimally changed (p > 0.3). In conclusion, UMT causes phenotypic changes of HAEC by enhancing proliferation and upregulating KDR and Flt-1, while possesses no obvious adverse effect on viable transfected cells. Further investigation is required to clarify the impact of these changes by UMT in vivo. (E-mail: hiyeh@ms1.mmh.org.tw)  相似文献   

5.
We show here that ultrasound-stimulated microbubbles can enhance cell death within tumors when combined with radiation. The aim of this study was to investigate how different ultrasound parameters, different microbubble concentrations and different radiation doses interact to enhance cell death. Prostate xenograft tumors (PC-3) in severe combined immunodeficiency mice were subjected to ultrasound treatment at various peak negative pressures (250, 570 and 750 kPa) at a center frequency of 500 kHz, different microbubble concentrations (8, 80 and 1000 μL/kg) and different radiation doses (0, 2 and 8 Gy). Twenty-four hours after treatment, tumors were excised and assessed for cell death. Histologic analyses revealed that increases in radiation dose, microbubble concentration and ultrasound pressure promoted apoptotic cell death and disruption within tumors by as much as 21%, 30% and 43%, respectively. Comparable increases in ceramide, a cell death mediator, were identified using immunohistochemistry. We also show here that even clinically used microbubble concentrations combined with ultrasound can induce significant enhancement of cell death.  相似文献   

6.
Timely angiogenesis and effective microcirculation perfusion are essential for the survival and functional recovery of transplanted ovaries. Ultrasound-targeted microbubble destruction (UTMD) can lead to angiogenesis and increase flow perfusion by causing transient inflammation. The purpose of this study was to evaluate the effects of UTMD on transplanted ovarian revascularization and survival. In vitro, for the criteria of cell viability and tube formation capability, the optimal exposure parameters were determined to be a microbubble concentration of 1 × 108/mL, mechanical index of 1 and exposure time of 30 s. After ovarian transplantation, 40 female Sprague Dawley rats were divided into four groups: transplantation alone, ultrasound alone, microbubbles alone and ultrasound and microbubbles (UTMD). At 7 d after transplantation, ovarian perfusion was assessed using qualitative and quantitative methods. The effect of angiogenesis was assessed by contrast-enhanced ultrasound, laser Doppler perfusion imaging and histologic analysis. The results, in which ovarian perfusion was highest in the UTMD group, suggest that UTMD can effectively improve ovarian perfusion. Compared with the other three groups, the number of follicles, microvascular density and rate of Ki-67-positive cells increased significantly in the UTMD group, while apoptosis decreased significantly (p < 0.05). The study indicates that UTMD promoted ovarian re-vascularization after ovarian transplantation and maintained follicular reserve.  相似文献   

7.
We investigated a method for gene delivery to vascular smooth muscle cells using ultrasound triggered delivery of plasmid DNA from electrostatically coupled cationic microbubbles. Microbubbles carrying reporter plasmid DNA were acoustically ruptured in the vicinity of smooth muscle cells in vitro under a range of acoustic pressures (0 to 950 kPa) and pulse durations (0 to 100 cycles). No effect on gene transfection or viability was observed from application of microbubbles, DNA or ultrasound alone. Microbubbles in combination with ultrasound (500-kPa, 1-MHz, 50-cycle bursts at a pulse repetition frequency [PRF] of 100 Hz) significantly reduced viability both with DNA (53 ± 27%) and without (19 ± 8%). Maximal gene transfection (∼1% of cells) occurred using 50-cycle, 1-MHz pulses at 300 kPa, which resulted in 40% viability of cells. We demonstrated that we can locally deliver DNA to vascular smooth muscle cells in vitro using microbubble carriers and focused ultrasound. (E-mail: jh7fj@virginia.edu)  相似文献   

8.
Aggressive tumors are characterized by angiogenesis that promotes the migration and dissemination of tumor cells. Our aim was to develop a dual-targeted microbubble system for non-invasive evaluation of tumor angiogenesis in ultrasound. Avidinylated microbubbles were conjugated with biotinylated arginylglycylaspartic acid and vascular endothelial growth factor receptor 2 (VEGFR2) antibodies. Subcutaneous MHCC-97H liver carcinoma models were established. Non-targeted, αvβ3-targeted, VEGFR2-targeted and dual-targeted microbubbles was intravenously injected in series while acquiring ultrasound images of the tumor. The microbubbles were destroyed by a high-mechanical-index pulse 4?min after the injection. Peak intensity (PI) before and after the destructive pulse was recorded to compare contrast enhancement by different microbubbles. The targeting rates of the integrin-targeted, VEGFR2-targeted and dual-targeted groups were 95.02%, 96.04% and 94.23%, respectively, with no significant differences. Tumors in all groups were significantly enhanced. The time–intensity curve indicated no significant differences in arrival time, PI, area under the curve, amplitude and mean transit time. The difference in ultrasound signal intensity before and after the destructive pulse (⊿PI) for all targeted microbubble groups was significantly greater than that for the non-targeted microbubble group (all p values?<?0.05), and the difference for the dual-targeted microbubble group was significantly greater than those of both mono-targeted groups (p?<0.05).  相似文献   

9.

Purpose

The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model.

Methods

Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 107 microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times.

Results

The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm3, P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice.

Conclusion

Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.  相似文献   

10.
Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments.  相似文献   

11.
目的 探讨超声辐照和SonoVue微泡分别使用和联用在介导hAng-1基因体外转染过程中的作用以及辐照强度和微泡浓度对转染效率和细胞活性的影响.方法 实验分四组A组:单纯超声辐照+质粒组;B组:微泡+质粒组;C组:超声辐照+微泡+质粒组和空白对照组D组. C组内转染参数分别设置为超声照射强度0.5、1.0 、1.5和2.0 W/cm~2,微泡浓度5%、10%、20%、30%和40%.将连接有eGFP-C_3-hAng-1质粒的SonoVue微泡对293T细胞进行转染,48 h后检测各组基因转染效率和细胞存活率. 结果转染48 h后C组转染效率最高,荧光阳性细胞数最多,强度最大;A组转染效率很低,见少量荧光表达;B、D组无明显基因转染发生.随着超声照射强度和微泡浓度的增加,基因转染效率会逐步升高,具有统计学意义.微泡浓度大于20%、超声照射强度超过1.5 W/cm~2后基因转染效率不再升高甚至降低,细胞死亡率显著增高(P<0.01).结论 SonoVue微泡介导外源基因转染必须联合超声辐照才能获得较好的转染效率.对于hAng-1基因和SonoVue微泡,选择声强1.5 W/cm~2,微泡浓度20%是相对最佳转染条件.  相似文献   

12.
In the search for an efficient nonviral gene therapy approach for the treatment of genetic disorders of cardiac and skeletal muscle such as Duchenne muscular dystrophy, ultrasound in combination with contrast enhancing microbubbles has emerged as a promising tool for safe and site-specific enhancement of gene delivery. Indeed, microbubble-enhanced gene transfer (MBGT) has been investigated for a wide variety of target sites using both reporter and therapeutic genes. Although a range of different microbubbles have been used for MBGT studies, comparison of their efficiencies is difficult because microbubble concentration and the ultrasound settings used for the application vary considerably. Only two studies to date have attempted a direct comparison of commercially available microbubbles, and both concluded that not all microbubbles show the same efficiencies with MBGT. Thus far, the reason for this is unclear. Here, the efficiency of three commercially available microbubbles—Optison, SonoVue and Sonazoid—was analyzed to understand the microbubble properties that are important for their function as an effective enhancer for gene transfer in vivo. In this study, plasmid DNA or antisense oligonucleotides were delivered by systemic injection with MBGT, focused on the heart. Gene delivery to the heart with equalized concentrations of the three microbubbles showed that Optison and Sonazoid are more efficient in MBGT compared with SonoVue, which showed the weakest gene transfer to the myocardium. Investigations into the properties of these microbubbles showed that size and shell composition did not directly influence MBGT, whereas the microbubbles with increased stability in an ultrasound field showed better MBGT results than those degrading faster. Moreover, the microbubble concentration used for MBGT was also found to be an important factor influencing the efficiency of MBGT. In conclusion, the stability of a microbubble was shown to be a major influential factor for its performance in MBGT, as is the concentration of the microbubbles used. These findings emphasize the importance of detailed investigations into the properties of microbubbles to allow the production of a microbubble specifically designed for optimum performance with MBGT. (E-mail: d.wells@imperial.ac.uk)  相似文献   

13.
INTRODUCTION: The purpose of this study was to determine whether ultrasound exposure combined with microbubble destruction could be used to enhance non-viral gene delivery in human pancreatic carcinoma cells (PANC-1). METHODS: The study was performed with four experimental groups: Group P, plasmid alone; Group P+M, plasmid and microbubbles; Group P+U, plasmid and ultrasound; Group P+U+M, plasmid with ultrasound and microbubbles. Plasmid DNA encoding enhanced green fluorescent protein (pEGFP) was gently mixed with commercially available ultrasound microbubble contrast agents (SonoVue(R); Bracco Diagnostics Inc, Milan, Italy) in Group P+M and Group P+U+M. The different combinations of DNA and DNA plus microbubbles were added to cultured PANC-1 cells under different conditions. Transfection efficiency and cell viability were assessed by FACS analysis (Becton Dickinson, San Jose, CA, USA), confocal laser scanning microscopy, and trypan blue staining. RESULTS: The results demonstrated that microbubbles with ultrasound exposure could significantly enhance the reporter gene expression as compared with other groups (Group P+U+M, 21.4%+/-3.16%; Group P, 2.9%+/-0.45%; Group P+M, 3.1%+/-0.51%; Group P+U, 6.1%+/-1.27%; P<0.01). No statistically significant difference was observed in the PANC-1 cell viability between Group P+U+M and other groups (P>0.05). CONCLUSION: Our in-vitro findings suggest that ultrasound-mediated microbubble destruction has the potential to promote efficient gene transfer into PANC-1 cells without significant cell death. This non-invasive gene transfer method may be a useful tool for safe clinical gene therapy of pancreatic cancer in the future.  相似文献   

14.
It has been shown in previous studies that gene delivery can be enhanced by a variety of minimally-invasive techniques including: (1) exposure of cells to ultrasound in the presence of DNA and gas microbubbles and (2) exposure of cells to a magnetic field in the presence of DNA conjugated to magnetic nanoparticles. The aim of this work was to investigate whether it was possible to combine the advantages of both these techniques. It was found that transfection of Chinese hamster ovary cells by naked plasmid DNA was enhanced by combined exposure of the cells to ultrasound (10 s at 1 kHz pulse repetition frequency with 40 cycle 1 MHz sinusoidal pulses, 1 MPa peak to peak pressure) and a magnetic field (provided by five square cross-section N52 grade NdFeB magnets 25 × 10 × 10 mm with transversal magnetisation Br = 1.50 T arranged in a Halbach array), in the presence of one of two different microbubble/nanoparticle preparations. The first preparation consisted of phospholipid coated microbubbles mixed with micelles containing magnetic nanoparticles. The second consisted of microbubbles which were themselves magnetically active. These preparations were found to be more effective than either magnetic micelles or phospholipid coated microbubbles alone by a factor of 2.8 (total flux ∼4 versus 1.4 × 106 photon/s) and the results were found to be statistically significant (p < 0.01). Two mechanisms are proposed to explain these observations: firstly, that the magnetic field facilitates close proximity between the cells and the microbubbles and hence increases the likelihood of transfection; second, that there is sensitisation of the cells, as a result of exposure to the magnetic field in the presence of the micelles, which increases their ability to be transfected upon exposure to ultrasound. Further work is in progress to determine which of these mechanisms is the most significant and the potential for other therapeutic applications. (E-mail: e_stride@meng.ucl.ac.uk)  相似文献   

15.
Ultrasound-mediated microbubble destruction (UMMD) is a promising strategy to improve local drug delivery in specific tissues. However, acoustic cavitation can lead to harmful bioeffects in endothelial cells. We investigated the side effects of UMMD treatment on vascular function (contraction and relaxation) and endothelium integrity of ex vivo Wistar rat arteries. We used an isolated organ system to evaluate vascular responses and confocal microscopy to quantify the integrity and viability of endothelial cells. The arteries were exposed for 1–3 min to ultrasound at a 100 Hz pulse-repetition frequency, 0.5 MPa acoustic pressure, 50% duty cycle and 1%–5% v/v microbubbles. The vascular contractile response was not affected. The acetylcholine-dependent maximal relaxation response was reduced from 78% (control) to 60% after 3 min of ultrasound exposure. In arteries treated simultaneously with 1 min of ultrasound exposure and 1%, 2%, 3% or 5% microbubble concentration, vascular relaxation was reduced by 19%, 58%, 80% or 93%, respectively, compared with the control arteries. Fluorescent labeling revealed that apoptotic death, detachment of endothelial cells and reduced nitric oxide synthase phosphorylation are involved in relaxation impairment. We demonstrated that UMMD can be a safe technology if the correct ultrasound and microbubble parameters are applied. Furthermore, we found that tissue-function evaluation combined with cellular analysis can be useful to study ultrasound–microbubble–tissue interactions in the optimization of targeted endothelial drug delivery.  相似文献   

16.
The aim of the study described here was to investigate whether ultrasound-mediated microbubble destruction (UTMD) of targeted microbubbles conjugated with an anti-vascular endothelial growth factor receptor 2 (anti-VEGFR2) antibody can enhance the therapeutic effect of doxorubicin (DOX) on a mouse hepatocellular carcinoma (HCC) model bearing HEP-G2-RFP tumors. The growth of liver tumors in mice was inhibited by using Visistar VEGFR2 plus ultrasound irradiation and by DOX alone. DOX plus UTMD had an inhibitory effect on tumor growth beginning on the seventh day of treatment, while Visistar VEGFR2 alone and DOX alone had inhibitory effects beginning on the 11th day. DOX + UTMD significantly decreased tumor volume and tumor weight compared with DOX alone (p < 0.05) and Visistar VEGFR2 alone (p < 0.05). Compared with DOX alone and Visistar VEGFR2 alone, DOX + UTMD had the highest inhibitory effect on tumor angiogenesis and the highest apoptosis index. UTMD-targeted microbubbles can significantly enhance the antitumor effect of DOX on a mouse HCC model, inhibit angiogenesis and induce apoptosis in tumor cells.  相似文献   

17.
靶向性声学造影剂与血管内皮细胞相互作用的实验研究   总被引:2,自引:0,他引:2  
目的 制备携抗人VCAM-1单克隆抗体的白蛋白声学造影剂,观察其与损伤血管内皮细胞的相互作用,探讨评价血管内皮功能的新方法。 方法 采用交联法将抗人VCAM-1单克隆抗体共价偶联到自制氟碳气体为核心的白蛋白微气泡表面,制备靶向性声学微气泡;倒置显微镜下分别观察普通白蛋白微气泡、靶向性微气泡与正常内皮细胞、损伤内皮细胞的结合作用,高倍视野下计数内皮细胞及黏附的微气泡的数目,通过计算微气泡与内皮细胞的比值对两者之间的结合作用进行定量分析。 结果 无论是正常内皮细胞,或损伤内皮细胞,仅见少量的对照组微气泡的黏附作用;而镜下可见大量携VCAM-1单抗的白蛋白微气泡黏附在损伤内皮细胞表面,黏附数目显著高于黏附于正常内皮细胞表面的数目。 结论 携VCAM-1单抗的靶向性声学造影剂能够特异性结合在损伤内皮细胞表面,开拓了超声成像技术检测血管内皮损伤、评价血管内皮功能新的研究领域。  相似文献   

18.
Microbubble-assisted ultrasound has emerged as a promising method for local drug delivery. Microbubbles are intravenously injected and locally activated by ultrasound, thus increasing the permeability of vascular endothelium for facilitating extravasation and drug uptake into the treated tissue. Thereby, endothelial cells are the first target of the effects of ultrasound-driven microbubbles. In this review, the in vitro and in vivo bioeffects of this method on endothelial cells are described and discussed, including aspects on the permeabilization of biologic barriers (endothelial cell plasma membranes and endothelial barriers), the restoration of their integrity, the molecular and cellular mechanisms involved in both these processes, and the resulting intracellular and intercellular consequences. Finally, the influence of the acoustic settings, microbubble parameters, treatment schedules and flow parameters on these bioeffects are also reviewed.  相似文献   

19.
目的观察经多功能心腔内超声(ICE)导管超声辐照破坏微泡对动物心肌产生的生物学效应,探索基因治疗缺血性心脏病的新方法。方法 15只犬随机分为US+MB组、US组、对照组3组,每组5只。以介入法将多功能ICE导管送入犬心室。对US+MB在ICE监控下向左心室游离壁注射0.5ml微泡,并以1 W/cm2的声能对注射部位辐照1min;对US组以相同条件行左心室壁辐照,但不注射微泡;对照组在插入导管后不进行任何处理。术后3天处死动物,观察心肌组织大体改变,并行HE染色观察细微结构变化。结果ICE能对注射针的进针深度、微泡注射及辐照过程进行实时监控。观察期内所有动物均正常存活。US+MB组心肌辐照部位出现充血、心肌细胞间隙增宽、少量炎性细胞浸润等改变,US组心肌组织仅出现轻微充血;对照组动物心肌无异常变化。结论经ICE导管超声辐照破坏微泡能在靶区域产生相应生物学效应,内置ICE可对心肌内微泡注射、超声辐照过程进行实时监控。此款新型多功能导管可能为基因治疗缺血性心脏病提供新的、更加安全有效的途径。  相似文献   

20.
Recent advances in the field of monodisperse microbubble synthesis by flow focusing allow for the production of foam-free, highly concentrated and monodisperse lipid-coated microbubble suspensions. It has been found that in vitro, such monodisperse ultrasound contrast agents (UCAs) improve the sensitivity of contrast-enhanced ultrasound imaging. Here, we present the first in vivo study in the left ventricle of rat and pig with this new monodisperse bubble agent. We systematically characterize the acoustic sensitivity and safety of the agent at an imaging frequency of 2.5 MHz as compared with three commercial polydisperse UCAs (SonoVue/Lumason, Definity/Luminity and Optison) and one research-grade polydisperse agent with the same shell composition as the monodisperse bubbles. The monodisperse microbubbles, which had a diameter of 4.2 μm, crossed the pulmonary vasculature, and their echo signal could be measured at least as long as that of the polydisperse UCAs, indicating that microfluidically formed monodisperse microbubbles are stable in vivo. Furthermore, it was found that the sensitivity of the monodisperse agent, expressed as the mean echo power per injected bubble, was at least 10 times higher than that of the polydisperse UCAs. Finally, the safety profile of the monodisperse microbubble suspension was evaluated by injecting 400 and 2000 times the imaging dose, and neither physiologic nor pathologic changes were found, which is a first indication that monodisperse lipid-coated microbubbles formed by flow focusing are safe for in vivo use. The more uniform acoustic response and corresponding increased imaging sensitivity of the monodisperse agent may boost emerging applications of microbubbles and ultrasound such as molecular imaging and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号