首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Hypoxia–ischemia is a significant cause of brain damage in the human newborn and can result in long-term neurodevelopmental disability. The loss of oxygen and glucose supply to the developing brain leads to excitotoxic neuronal cell damage and death; such over-excitation of nerve cells can also manifest as seizures. The newborn brain is highly susceptible to seizures although it is unclear what role they have in hypoxic-ischemic (H/I) injury. The aim of this study was to determine an association between seizures and severity of brain injury in a piglet model of perinatal H/I and, whether injury severity was related to type of seizure, i.e. sub-clinical (electrographic seizures only) or clinical (electrographic seizures+physical signs). Hypoxia (4% O2) was induced in anaesthetised newborn piglets for 30 min with a final 10 min period of hypotension; animals were recovered and survived to 72 h. Animals were monitored daily for seizures both visually and with electroencephalogram (EEG) recordings. Brain injury was assessed with magnetic resonance imaging (MRI), 1H-MR spectroscopy (1H-MRS), EEG and by histology (haematoxylin and eosin). EEG seizures were observed in 75% of all H/I animals, 46% displayed clinical seizures and 29% sub-clinical seizures. Seizure animals showed significantly lower background amplitude EEG across all post-insult days. Presence of seizures was associated with lower cortical apparent diffusion coefficient (ADC) scores and changes in 1H-MRS metabolite ratios at both 24 and 72 h post-insult. On post-mortem examination animals with seizures showed the greatest degree of neuropathological injury compared to animals without seizures. Furthermore, clinical seizure animals had significantly greater histological injury compared with sub-clinical seizure animals; this difference was not apparent on MRI or 1H-MRS measures. In conclusion we report that both sub-clinical and clinical seizures are associated with increased severity of H/I injury in a term model of neonatal H/I.  相似文献   

2.

Introduction

In this study, we tried to determine whether darbepoetin-α would protect the brain from oxidative stress and apoptosis in a rat traumatic brain injury model.

Material and methods

The animals were randomized into four groups; group 1 (sham), group 2 (trauma), group 3 (darbepoetin α), group 4 (methylprednisolone). In the sham group only the skin incision was performed. In all the other groups, a moderate traumatic brain injury modelwas applied.

Results

Following trauma both glutathione peroxidase, superoxide dismutase levels decreased (p < 0.001 for both); darbepoetin-α increased the activity of both antioxidant enzymes (p = 0.001 and p < 0.001 respectively). Trauma caused significant elevation in the nitric oxide synthetase and xanthine oxidase levels (p < 0.001 for both). Administration of darbepoetin-α significantly decreased the levels of nitric oxide synthetase and xanthine oxidase (p < 0.001 for both). Also, trauma caused significant elevation in the nitric oxide levels (p < 0.001); darbepoetin-α administration caused statistically significant reduction in the nitric oxide levels (p < 0.001). On the other hand, malondialdehyde levels were increased following trauma (p < 0.001), and darbepoetin α significantly reduced the malondialdehyde levels (p < 0.001). Due to the elevated apoptotic activity following the injury, caspase-3 activity increased significantly. Darbepoetin-α treatment significantly inhibited apoptosis by lowering the caspase-3 activity (p < 0.001). In the darbepoetin group, histopathological score was lower than the trauma group (p = 0.016).

Conclusions

In this study, darbepoetin-α was shown to be at least as effective as methylprednisolone in protecting brain from oxidative stress, lipid peroxidation and apoptosis.  相似文献   

3.
The role of ATP-sensitive potassium (KATP) channels in cerebral ischemia–reperfusion has been well documented. KATP channel openers protect neuron by mimicking ischemic preconditioning. However, the different protection between the mitochondrial and sarcolemma KATP openers has been seldom studied. In the experiment, we investigated the effects of KATP channel openers diazoxide and pinacidil on the hypoxia–ischemia–reperfusion in cultured hippocampal neurons and gerbil brain. The cultured hippocampal neurons and gerbil brain were pretreated with diazoxide or pinacidil before oxygen-glucose deprivation (OGD) and cerebral ischemia–reperfusion, respectively. Survival rate, apoptosis rate and lactate dehydrogenase (LDH) releasing after the reperfusion were subsequently detected. Then the subunits mRNA was detected by RT-PCR. The survival rate and LDH content in diazoxide group increased more than that in pinacidil group (86.21 ± 2.73% vs. 78.59 ± 1.94%, P < 0.05; 133.29 ± 15.00 U/L vs. 193.47 ± 3.39 U/L, P < 0.01). The apoptosis rate in diazoxide group decreased significantly more than that in pinacidil group (23.82 ± 0.14% vs. 37.05 ± 0.67%, P < 0.01). Diazoxide pretreatment increased the expression of Kir6.1 mRNA obviously. The results suggested that mitoKATP channels opener diazoxide played a major protective role on cerebral ischemia–reperfusion. Furthermore, diazoxide might become a new treatment for cerebral ischemia diseases through increasing the expression of Kir6.1 mRNA.  相似文献   

4.
This experimental study examined the effect of erythropoietin (Epo) in a rat model and particularly in an ischemia–reperfusion protocol. The potential beneficial effect of Epo was studied pathologically using endometrial edema (EE) lesions. Endometrial edema was evaluated 60 min after reperfusion (Groups A and C) and 120 min after reperfusion (Groups B and D) in rats. Epo was administered only in Groups C and D. Epo administration non-significantly increased the EE scores by 0.05 (p = 0.9315). Reperfusion non-significantly increased the EE scores by 0.15 (p = 0.6508). Epo administration and reperfusion together non-significantly increased the EE scores by 0.027 (p = 0.8898). Epo administration, reperfusion, and their interaction reduced the EE scores from significant to non-significant levels. Perhaps a study time longer than 2 h or a higher Epo dose could result in complete resolution of the endometrial edema formed as a result of the ischemia–reperfusion injury in this rat model.  相似文献   

5.
Deferoxamine (DFO) and erythropoietin (EPO) have each been shown to provide neuroprotection in neonatal rodent models of brain injury. In view of the described anti-oxidative actions of DFO and the anti-apoptotic and anti-inflammatory effects of EPO, we hypothesized that the combination of DFO and EPO would increase neuroprotection after neonatal hypoxic–ischemic brain injury as compared to single DFO or EPO treatment. At postnatal day 7 rats underwent right common carotid artery occlusion followed by a 90-min exposure to 8% oxygen. Rats were treated intraperitoneally with DFO (200 mg/kg), recombinant human EPO (1 kU/kg), a combination of DFO–EPO or vehicle at 0, 24 and 48 h after hypoxia–ischemia (HI) and were sacrificed at 72 h. DFO–EPO administration reduced the number of cleaved caspase 3-positive cells in the ipsilateral cerebral cortex. Early neuronal damage was assessed by staining for microtubuli-associated protein (MAP)-2. In our model 63 ± 9% loss of ipsilateral MAP-2 was observed after HI, indicating extensive brain injury. DFO, EPO or DFO–EPO treatment did not improve neuronal integrity as defined by MAP-2. Cerebral white matter tracts were stained for myelin basic protein (MBP), a constituent of myelin. Hypoxia–ischemia strongly reduced MBP staining which suggests white matter damage. However, DFO, EPO and DFO–EPO treatment had no effect on the loss of MBP staining. Finally, HI-induced loss of striatal tyrosine hydroxylase staining was not attenuated by DFO, EPO or DFO–EPO. Although DFO–EPO treatment reduced the number of cleaved caspase 3+ cells, treatment with DFO, EPO, or with the combination of DFO and EPO did not protect against gray or white matter damage in the experimental setting applied.  相似文献   

6.

Aim

Retrospective studies suggest that mild traumatic brain injury (mTBI) in pediatric patients may lead to an increased risk of cardiac events. However, the exact functional and temporal dynamics and the associations between heart and brain pathophysiological trajectories are not understood.

Methods

A single impact to the left somatosensory cortical area of the intact skull was performed on juvenile mice (17 days postnatal). Cerebral 3D photoacoustic imaging was used to measure the oxygen saturation (sO2) in the impacted area 4 h after mTBI followed by 2D and 4D echocardiography at days 7, 30, 90, and 190 post-impact. At 8 months, we performed a dobutamine stress test to evaluate cardiac function. Lastly, behavioral analyses were conducted 1 year after initial injury.

Results

We report a rapid and transient decrease in cerebrovascular sO2 and increased hemoglobin in the impacted left brain cortex. Cardiac analyses showed long-term diastolic dysfunction and a diminished systolic strain response under stress in the mTBI group. At the molecular level, cardiac T-p38MAPK and troponin I expression was pathologic modified post-mTBI. We found linear correlations between brain sO2 measured immediately post-mTBI and long-term cardiac strain after 8 months. We report that initial cerebrovascular hypoxia and chronic cardiac dysfunction correlated with long-term behavioral changes hinting at anxiety-like and memory maladaptation.

Conclusion

Experimental juvenile mTBI induces time-dependent cardiac dysfunction that corresponds to the initial neurovascular sO2 dip and is associated with long-term behavioral modifications. These imaging biomarkers of the heart–brain axis could be applied to improve clinical pediatric mTBI management.  相似文献   

7.
This study examined the hypothesis that apoptotic inhibition via mitochondrial pathway was involved in hyperbaric oxygen preconditioning (HBO-PC)–induced neuroprotection on ischemia–reperfusion injury in rat brain. Male Sprague–Dawley rats (250∼280 g, n=144) were divided into control, middle cerebral artery occlusion (MCAO) for 90 min, and HBO-PC plus MCAO groups. HBO-PC was conducted four times by giving 100% oxygen at 2.5 atm absolute (ATA), for 1 h at 12 h intervals for 2 days. At 24 h after the last HBO-PC, MCAO was performed and at 24 h after MCAO, neurological function, brain water content, infarct volume, and cell death were evaluated. Enzymatic activity of capase-3 and −9, and expression of cytochrome c, Bcl-2 and Bax proteins were performed in the samples from hippocampus, ischemic penumbra and core of the brain cortex, respectively. HBO-PC reduced brain edema, decreased infarction volume, and improved neurological recovery. HBO-PC reduced cytoplasm cytochrome c levels, decreased caspase enzyme activity, upregulated the ratio of Bcl-2 and Bax expression, and abated the apoptosis of ischemic tissue. HBO-PC protects brain tissues from ischemia–reperfusion injury by suppressing mitochondrial apoptotic pathways.  相似文献   

8.
Regarding therapeutic hypothermia for human neonatal hyperthermic hypoxic–ischemic encephalopathy (HIE), we investigated the motor function of a neonatal hyperthermic HIE rat model, and also performed systemic hypothermia using the model. Forty-two neonatal Wistar rats at 7-days-old were used in this study. The left common carotid artery of 34 neonatal rats was ligated under isoflurane anesthesia. We also established a sham group (S group, n = 8). After 1-h recovery, all rats were exposed to 8% oxygen at an ambient temperature (T a) of 40°C for 15 min. Following insult, 16 rats were placed in a chamber at a T a of 30°C (H group) and the other 18 rats at a T a of 37°C after arterial ligation (N group), and all rats in the S group were placed in a chamber at a T a of 37°C for 12 h. A Rota-Rod test was performed involving all rats at 8 weeks old. The rod was rotated at 5, 5, and 7 rpm on three consecutive days, respectively. Rats in the N group stayed on the rotating rod for a significantly shorter period than those in S and H groups only on the second day of measurement. The width of the insulted hemisphere in N group rats was significantly smaller than those in S and H groups. There was no significant correlation between S and H groups regarding the motor function and anatomy. These results suggest that neonatal hyperthermic hypoxic–ischemic insult impairs the motor function, which may be rescued by systemic hypothermia after insult.  相似文献   

9.

Objective  

To compare cardioprotective and anti-inflammatory effects of ischemia preconditioning (IPC) and ischemia postconditioning (IPOC) in a rat myocardial ischemia–reperfusion injury (IRI) model.  相似文献   

10.
The role of neuronal nitric oxide synthase (nNOS) in cardiac ischemia–reperfusion (IR) and ischemia preconditioning (IP) is still controversial. Here, we focused on the possible roles of nNOS in cardiac IR and IP. Wild type C57BL/6 (WT) mice were subjected to coronary artery occlusion for 30 min followed by 24-h reperfusion (IR). Cardiac injury (infarct size and apoptotic cell number) was increased, associated with elevation of oxidative stress (lipid peroxidation) and nitrative stress (nitrotyrosine formation). A potent nNOS inhibitor, L-VNIO, and a superoxide dismutase mimetic and peroxynitrite scavenger, MnTBAP, significantly reduced IR-induced increases of oxidative/nitrative stress and cardiac injury. IR-induced cardiac injury in nNOS−/− (KO) mice was significantly lower than that in WT mice. MnTBAP markedly reduced IR-induced cardiac injury by suppression of oxidative/nitrative stress in KO mice. Cardiac IP was performed by three cycles of 5-min IR before 30-min ischemia followed by 24-h reperfusion. IP attenuated IR-induced cardiac injury in WT mice associated with reductions of oxidative/nitrative stress. IP-induced reduction of cardiac injury and oxidative/nitrative stress were eliminated by pretreatment with L-VNIO. In contrast with WT mice, IP had no protective effects in nNOS KO mice. In conclusion, nNOS played a dual role during cardiac IR and IP; nNOS exacerbated IR-induced injury by increasing oxidative/nitrative stress and contributed to IP-induced protection by inhibition of oxidative/nitrative stress.  相似文献   

11.
12.
The expression of hypoxia-inducible factor-1-alpha (HIF-1α) is upregulated in ischemic stroke, but its function is still unclear. In the present study, biphasic expression of HIF-1α was observed during 1-12 h and after 48 h in neurons exposed to ischemic stress in vitro and in vivo. Treating neurons with 2-methoxyestradiol (2ME2) 0.5 h after ischemic stress or pre-silencing HIF-1α with small interfering RNA (siRNA) decreased brain injury, brain edema and number of apoptotic cell, and downregulates Nip-like protein X (Nix) expression. Conversely, applying 2ME2 to neurons 8 h after ischemic stress or silencing the HIF-1α with siRNA 12 h after oxygen-glucose deprivation (OGD) increased neuron damage and decreased vascular endothelial growth factor (VEGF) expression. Taken together, these results demonstrate that HIF-1α induced by ischemia in early and late times leads cellular apoptosis and survival, respectively, and provides a new insight into the divergent roles of HIF-1α expression in neurons after ischemic stroke.  相似文献   

13.
ENOLASE enzymes are abundantly expressed, cytosolic carbon–oxygen lyases known for their role in glucose metabolism. Recent accumulation of evidence revealed that, in addition to its glycolytic function, enolase is also associated with ischemia, hypoxia and to be a neurotrophic factor. To analysis the certain expression and biological function in central nervous system, we performed an acute spinal cord contusion injury model in adult rats. Western blot analysis indicated a marked upregulation of ENOLASE after spinal cord injury (SCI). Immunohistochemistry revealed wide distribution of enolase in spinal cord, including neurons and glial cells. Double immunofluorescent staining for proliferating cell nuclear antigen and phenotype-specific markers showed increases of enolase expression in proliferating microglia and astrocytes. Our data suggest that enolase may be implicated in the proliferation of microglia and astrocytes after SCI.  相似文献   

14.
Emulsified isoflurane (EIso) preconditioning can induce cardioprotection. We investigated whether EIso application after ischemia protects hearts against reperfusion injury and whether it is mediated by the inhibition of apoptosis. Rats were subjected to 30-min coronary occlusion followed by 180-min reperfusion. At the onset of reperfusion, rats were intravenously administered saline (sham, control group), 30 % intralipid (IL group) or 2 ml kg?1 EIso (EIso group) for 30 min. After reperfusion, infarct sizes, myocardial apoptosis and expression of Bcl-2, Bax and caspase-3 proteins were determined. Hemodynamic parameters were not different among groups. Compared with control and intralipid group, EIso limited infarct size, inhibited apoptosis, increased the expression of Bcl-2, decreased the expression of Bax, cleaved caspase-3, and enhanced Bcl-2/Bax ratio. EIso protects hearts against reperfusion injury when administered at the onset of reperfusion, which may be mediated by the inhibition of apoptosis via modulation of the expression of pro- and anti-apoptotic proteins.  相似文献   

15.
16.
Previously, it was proposed that sedative and anesthetic effects of alpha2-adrenergic receptor (alpha2-AR) agonists may be exerted via neuronal networks normally implicated in the regulation of wakefulness. The aim of this study was to evaluate the role of A subtype of alpha2-ARs in the development of drug-independent anesthetic state induced by hypothermia in newborn rats. Using short interfering RNA (siRNA) gene-targeting strategy, we found that down-regulation of the brainstem alpha2A-AR expression resulted in a delay in the onset of hypothermia-induced anesthesia assessed by loss of righting reflex. Involvement of the brain alpha2A-ARs in this delay was confirmed by inability of clonidine, a subtype-nonselective alpha2-AR agonist, to prolong duration of hypothermia-induced anesthesia in siRNA-treated animals, while significant prolongation of this anesthetic state by the alpha2A-AR agonist was observed in control pups. The data suggest that negative regulation of the animal's waking state is an intrinsic function of the brainstem alpha2A-ARs activated by exogenous agonists, as well as by endogenous noradrenaline, also.  相似文献   

17.
18.
《Neuroscience research》2010,66(4):326-334
The regional and cellular distribution of heme oxygenase (HO)-1 and -2 following cerebral ischemia has not been ascertained. Employing the transient middle cerebral artery occlusion (MCAO) and hypoxia–ischemia (HI) models of unilateral brain injury, the aim was to elucidate immunolocalization of HO-1 and HO-2. Animals were sacrificed 3 days post-ischemia and immunohistochemistry and Western blotting were utilized to determine HO-1 and HO-2 expression. In the ipsilateral hemisphere following HI, HO-1 immunoreactivity was significantly upregulated in many neuronal and glial populations (including the cortex, hippocampus and thalamus). HO-1 was also detected in macrophages/microglia within the infarct. In addition to widespread neuronal HO-2 labelling, HO-2 was also expressed in vascular endothelial cells. Inflammatory cells within the infarct of MCAO and HI animals were surprisingly immunoreactive for HO-2, but only HI animals had significantly elevated HO-2 protein expression in the ipsilateral hemisphere. This may be due to the presence of global hypoxia in the HI model which can upregulate vascular endothelial growth factor and subsequent proliferation of endothelial cells. This report of HO-2 protein expression upregulation following HI coupled with an increase in HO-1 immunoreactivity suggests that this response may be implicated in reducing cell death or repairing damage induced by cerebral ischemia.  相似文献   

19.
20.
Perinatal hypoxic–ischemic (HI) is a major cause of brain injury in the newborn, and there is a lack of effective therapies to reduce injury-related disorders. The aim of the present study was to evaluate the effect of a combination of ephedrine and hyperbaric oxygen (HBO) on neonatal hypoxic–ischemic brain injury. 7-day-old Sprague–Dawley rat pups were randomly divided into sham operation, HI, ephedrine, HBO, and combined group. The ephedrine group was intraperitoneally injected with ephedrine, HBO group was treated for 2 h at 2.5 absolute atmosphere (ATA) per day, the combined group received both ephedrine and HBO treatments, the sham operation and HI groups were intraperitoneally injected with normal saline. Rat brains at 7 days after HI, were collected to determine histopathological damage and the expression levels of Caspase-3 and Nogo-A. Four weeks after insult, animals were challenged with Morris water maze test. The expressions of Caspase-3 and Nogo-A were reduced in treating groups compared to those in HI group (< 0.01). Compared with the single treatment groups, the expression levels of Caspase-3 and Nogo-A were significantly reduced in the combined group (< 0.01). Compared with the single treatment groups, the average time of escape latency was significantly shorter (< 0.01) and the number of platform location crossing was more (P < 0.05) in combined group. These findings indicate that the combination of ephedrine and HBO can enhance the neuroprotective effect in the neonatal rat HI model partially mediated by inhibiting Caspase-3 and Nogo-A pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号