首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I present measurements of the spatial structure of simple-cell receptive fields in macaque primary visual cortex (area V1). Similar to previous findings in cat area 17, the spatial profile of simple-cell receptive fields in the macaque is well described by two-dimensional Gabor functions. A population analysis reveals that the distribution of spatial profiles in primary visual cortex lies approximately on a one-parameter family of filter shapes. Surprisingly, the receptive fields cluster into even- and odd-symmetry classes with a tendency for neurons that are well tuned in orientation and spatial frequency to have odd-symmetric receptive fields. The filter shapes predicted by two recent theories of simple-cell receptive field function, independent component analysis and sparse coding, are compared with the data. Both theories predict receptive fields with a larger number of subfields than observed in the experimental data. In addition, these theories do not generate receptive fields that are broadly tuned in orientation and low-pass in spatial frequency, which are commonly seen in monkey V1. The implications of these results for our understanding of image coding and representation in primary visual cortex are discussed.  相似文献   

2.
Yu S  Wang Y  Li X  Zhou Y  Leventhal AG 《Neuroscience》2006,140(3):1023-1029
The receptive field properties of striate cortical (V1) cells degrade in senescent macaque monkeys. We have now carried out extracellular single unit studies of the receptive field properties of cells in extrastriate visual cortex (area V2) in very old rhesus (Macaca mulatta) monkeys. This study provides evidence that both the orientation and direction selectivities of V2 cells in old monkeys degrade significantly. Decreased selectivity is accompanied by increased visually driven and spontaneous responses. As a result, V2 cells in old animals exhibit markedly decreased signal-to-noise ratios. A significant degradation of neural function in extrastriate cortex may underlie the declines in higher order visual function that accompany normal aging.  相似文献   

3.
In primary visual cortex (V1) of macaque monkeys, motion selective cells form three parallel pathways. Two sets of direction selective cells, one in layer 4B, and the other in layer 6, send parallel direct outputs to area MT in the dorsal cortical stream. We show that these two outputs carry different types of spatial information. Direction selective cells in layer 4B have smaller receptive fields than those in layer 6, and layer 4B cells are more selective for orientation. We present evidence for a third direction selective pathway that flows through V1 layers 4Cm (the middle tier of layer 4C) to layer 3. Cells in layer 3 are very selective for orientation, have the smallest receptive fields in V1, and send direct outputs to area V2. Layer 3 neurons are well suited to contribute to detection and recognition of small objects by the ventral cortical stream, as well as to sense subtle motions within objects, such as changes in facial expressions.  相似文献   

4.
We used gratings and shapes defined by relative motion to study selectivity for static kinetic boundaries in macaque V4 neurons. Kinetic gratings were generated by random pixels moving in opposite directions in the neighboring bars, either parallel to the orientation of the boundary (parallel kinetic grating) or perpendicular to the boundary (orthogonal kinetic grating). Neurons were also tested with static, luminance defined gratings to establish cue invariance. In addition, we used eight shapes defined either by relative motion or by luminance contrast, as used previously to test cue invariance in the infero-temporal (IT) cortex. A sizeable fraction (10-20%) of the V4 neurons responded selectively to kinetic patterns. Most neurons selective for kinetic contours had receptive fields (RFs) within the central 10 degrees of the visual field. Neurons selective for the orientation of kinetic gratings were defined as having similar orientation preferences for the two types of kinetic gratings, and the vast majority of these neurons also retained the same orientation preference for luminance defined gratings. Also, kinetic shape selective neurons had similar shape preferences when the shape was defined by relative motion or by luminance contrast, showing a cue-invariant form processing in V4. Although shape selectivity was weaker in V4 than what has been reported in the IT cortex, cue invariance was similar in the two areas, suggesting that invariance for luminance and motion cues of IT originates in V4. The neurons selective for kinetic patterns tended to be clustered within dorsal V4.  相似文献   

5.
Mapping of stimulus energy in primary visual cortex   总被引:1,自引:0,他引:1  
A recent optical imaging study of primary visual cortex (V1) by Basole, White, and Fitzpatrick demonstrated that maps of preferred orientation depend on the choice of stimuli used to measure them. These authors measured population responses expressed as a function of the optimal orientation of long drifting bars. They then varied bar length, direction, and speed and found that stimuli of a same orientation can elicit different population responses and stimuli with different orientation can elicit similar population responses. We asked whether these results can be explained from known properties of V1 receptive fields. We implemented an "energy model" where a receptive field integrates stimulus energy over a region of three-dimensional frequency space. The population of receptive fields defines a volume of visibility, which covers all orientations and a plausible range of spatial and temporal frequencies. This energy model correctly predicts the population response to bars of different length, direction, and speed and explains the observations made with optical imaging. The model also readily explains a related phenomenon, the appearance of motion streaks for fast-moving dots. We conclude that the energy model can be applied to activation maps of V1 and predicts phenomena that may otherwise appear to be surprising. These results indicate that maps obtained with optical imaging reflect the layout of neurons selective for stimulus energy, not for isolated stimulus features such as orientation, direction, and speed.  相似文献   

6.
Response properties of single neurons in the middle temporal visual area (MT) of anesthetized owl monkeys were determined and quantified for flashed and moving bars of light under computer control for position, orientation, direction of movement, and speed. Receptive-field sizes, ranging from 4 to 25 degrees in width, were considerably larger than receptive fields with corresponding eccentricities in the striate cortex. Neurons were highly binocular with most cells equally or nearly equally activated by either eye. Neurons varied in selectivity for axis and direction of moving bars. Some neurons demonstrated little or no selectivity, others were bidirectional on a single axis, while the largest group was highly selective for direction with little or no response to bar movement opposite to the preferred direction. Over 70% of neurons were classified as highly selective and 90% showed some preference for direction and/or axis of stimulus movement. Neurons typically responded to bar movement only over a restricted range of velocities. The majority of neurons responded best to a particular velocity within the 5-60 degrees/s range, with marked attenuation of the response for velocities greater or less than the preferred. Some neurons failed to show significant response attenuation even at the lowest tested velocity, while other neurons preferred velocities of 100 degrees/s or more and failed to attenuate to the highest velocities. Response magnitude varied with stimulus dimensions. Increasing the length of the moving bar typically increased the magnitude of the response slightly until the stimulus exceeded the receptive-field borders. Other neurons responded less to increases in bar length within the excitatory receptive field. Neurons preferred narrow bars less than 1 degree in width, and marked reductions in responses characteristically occurred with wider stimuli. Moving patterns of randomly placed small dots were often as effective as or more effective than single bars in activating neurons. Selectivity for direction of movement remained for the dot pattern. for the dot pattern. Poststimulus time (PST) histograms of responses to bars flashed at a series of 21 different positions across the receptive field, in the "response-plane" format, indicated a spatially and temporally homogeneous receptive-field structure for nearly all neurons. Cells characteristically showed transient excitation at both stimulus onset and offset for all effective stimulus locations. Some cells responded mainly at bright stimulus onset or offset.  相似文献   

7.
1. Receptive-field properties of neurons in the different layers of the visual cortex of normal adult cats were analyzed quantitatively. Neurons were classified into one of two groups: 1) S-cells, which have discrete on- and/or off-regions in their receptive fields and possess inhibitory side bands; 2) C-cells, which do not have discrete on- and off-regions in their receptive fields but display an on-off response to flashing stimuli. Neurons of this type rarely display side-band inhibition. 2. As a group, S-cells display lower relative degrees of binocularity and are more selective for stimulus orientation than C-cells. In addition, within a given lamina the S-cells have smaller receptive fields, lower cutoff velocities, lower peak responses to visual stimulation, and lower spontaneous activity than do the C-cells. 3. S-cells in all layers of the cortex display similar orientation sensitivities, mean spontaneous discharge rates, peak response to visual stimulation, and degrees of binocularity. 4. Many of the receptive-field properties of cortical cells vary with laminar location. Receptive-field sizes and cutoff velocities of S-cells and of C-cells are greater in layers V and VI than in layers II-IV. For S-cells, preferred velocities are also greater in layers V and VI than in layers II-IV. Furthermore, C-cells in layers V and VI display high mean spontaneous discharge rates, weak orientation preferences, high relative degrees of binocularity, and higher peak responses to visual stimulation when compared to C-cells in layers II and III. 5. The receptive-field properties of cells in layers V-VI of the striate cortex suggest that most neurons that have their somata in these laminae receive afferents from LGNd Y-cells. Hence, our results suggest that afferents from LGNd Y-cells may play a major part in the cortical control of subcortical visual functions.  相似文献   

8.
Three-dimensional orientation tuning in macaque area V4   总被引:5,自引:0,他引:5  
Tuning for the orientation of elongated, linear image elements (edges, bars, gratings), first discovered by Hubel and Wiesel, is considered a key feature of visual processing in the brain. It has been studied extensively in two dimensions (2D) using frontoparallel stimuli, but in real life most lines, edges and contours are slanted with respect to the viewer. Here we report that neurons in macaque area V4, an intermediate stage in the ventral (object-related) pathway of visual cortex, were tuned for 3D orientation--that is,for specific slants as well as for 2D orientation. The tuning for 3D orientation was consistent across depth position (binocular disparity) and position within the 2D classical receptive field. The existence of 3D orientation signals in the ventral pathway suggests that the brain may use such information to interpret 3D shape.  相似文献   

9.
Receptive field properties of single neurons in rat primary visual cortex.   总被引:5,自引:0,他引:5  
The rat is used widely to study various aspects of vision including developmental events and numerous pathologies, but surprisingly little is known about the functional properties of single neurons in the rat primary visual cortex (V1). These were investigated in the anesthetized (Hypnorm-Hypnovel), paralyzed animal by presenting gratings of different orientations, spatial and temporal frequencies, dimensions, and contrasts. Stimulus presentation and data collection were automated. Most neurons (190/205) showed sharply tuned (相似文献   

10.
One hundred and forty two neurons in V1 and V2 were quantitatively tested using a multihistogram technique in paralyzed and anesthetized macaque monkeys. V1 neurons with receptive fields within 2 degrees from the fixation point (central V1 sample) and V1 neurons with eccentric receptive fields (15-25 degrees eccentricity, peripheral V1 sample) were compared to assess changes in velocity sensitivity and direction selectivity with eccentricity. The central V1 sample was compared with V2 neurons with receptive fields in the same part of the visual field (central V2 sample) to compare the involvement of both areas in the analysis of motion. Velocity sensitivity of V1 neurons shifts to faster velocities with increasing eccentricity. V1 and V2 neurons subserving central vision have similar preference for slow movements. All neurons could be classified into three categories according to their velocity-response curves: velocity low pass, velocity broad band, and velocity tuned. Most cells in parts of V1 and V2 subserving central vision are velocity low pass. As eccentricity increases in V1, velocity low-pass cells give way to velocity broad-band cells. There is a significant correlation between velocity upper cutoff and receptive field width among V1 neurons. The change in upper cutoff velocity with eccentricity depends both on temporal and spatial factors. Direction selectivity depends on stimulus velocity in most V1 cells. Neurons in the central V1 sample retain their direction selectivity at lower speeds than do neurons in the peripheral V1 sample. The proportion of direction-selective cells is low in both V1 and V2. In V1, direction selectivity decreases with eccentricity. In V1, both velocity upper cutoff and direction selectivity correlate more with laminar position than with receptive field type. The similarity between V1 of the monkey and area 17 of the cat, and the dissimilarity between V2 of the monkey and area 18 of the cat, are discussed.  相似文献   

11.
Spatial coding of position and orientation in primary visual cortex   总被引:5,自引:0,他引:5  
We examined the spatial distribution of population activity in primary visual cortex (V1) of tree shrews with optical imaging and electrophysiology. A line stimulus, thinner than the average V1 receptive field, evoked a broad strip of neural activity of nearly constant size for all stimulus locations tested within the central 10 degrees of visual space. Stimuli in adjacent positions activated highly overlapping populations of neurons; nevertheless, small changes in stimulus position produced orderly changes in the location of the peak of the population response. Statistically significant shifts in the population response were found for stimulus displacements an order of magnitude smaller than receptive field width, down to the limit of optical imaging resolution. Based on the pattern of population activity, we conclude that the map of visual space in V1 is orderly at a fine scale and has uniform coverage of position and orientation without local relationships in the mapping of these features.  相似文献   

12.
Summary Detailed examination is made of the responses of visual cortical cells (area 17, border 17–18 and adjacent area 18) in the anaesthetized cat to stationary flashing bars and to bars (lines) and edges moving at their optimal velocities. Particular attention is given to the receptive field organization of cells in the simple family. While there is good general agreement between the main receptive field subregions revealed by stationary and moving stimuli, the responses to moving light and dark bars, supplemented by the responses to moving light and dark edges, provide a much more rapid, accurate and complete guide to the spatial organization of the receptive fields than do the response profiles to a stationary flashing bar. Moving light and dark bars between them generally reveal more subregions in the receptive fields of simple cells than is evident from the response profiles to a stationary flashing bar, particularly when the receptive fields have many subregions. In addition the responses to moving edges provide a rapid guide to spatial summation across the width of a subregion and the possible antagonistic effects of the next subregion in sequence.Two subclasses of cells in the simple family have been recognized: ordinary simple and fast simple cells. Two cell classes (A-cells and silent periodic cells) having properties intermediate between simple and complex types are discriminated and their properties described.  相似文献   

13.
Naito T  Sadakane O  Okamoto M  Sato H 《Neuroscience》2007,149(4):962-975
We previously suggested that orientation-tuned surround suppression of responses of cells in the primary visual cortex (V1) is primarily caused by a decrease in geniculocortical input for the cell [Ozeki H, Sadakane O, Akasaki T, Naito T, Shimegi S, Sato H (2004) Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex. J Neurosci 24:1428-1438]. To further test this hypothesis, we compared the strength of orientation and spatial phase selectivity of surround suppression, and the spatial extent of the extraclassical receptive field (ECRF) between the lateral geniculate nucleus (LGN) and V1 neurons of anesthetized cats. Extraclassical surround suppression in the LGN was well tuned to orientation-contrast and relative spatial phase between the classical receptive field (CRF) and ECRF stimuli. Significant orientation-tuned surround suppression was observed in 72.6% of the LGN neurons and the 66.7% of the V1 neurons tested. The degree of orientation selectivity of ECRF in LGN was comparable to that in V1; however, the strength of the relative spatial phase selectivity of ECRF in LGN was higher than that previously reported for V1 [Akasaki T, Sato H, Yoshimura Y, Ozeki H, Shimegi S (2002) Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neurosci Res 43:207-220; DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurons in the cat's primary visual cortex. J Neurophysiol 71:347-374]. In 70% of the LGN neurons that exhibited significant orientation-tuned extraclassical surround suppression, the effective orientation of the suppression varied according to a change in the orientation of CRF stimulus, while the remaining 30% exhibited a fixed preferred orientation of the suppression regardless of the orientation of the CRF grating. These results suggest that the basic properties of surround suppression, such as orientation and spatial phase tuning, already exist in cat LGN and that a decrease of surround suppression in excitatory inputs from LGN by surround suppression is the primary cause of surround suppression in V1. Corticogeniculate feedback may further elaborate the properties of surround suppression in LGN.  相似文献   

14.
The functional organization of the receptive field of neurons in striate cortex of kittens from 8 days to 3 mo of age was studied by extracellular recordings. A quantitative dual-stimulus technique was used, which allowed for analysis of both enhancement and suppression zones in the receptive field. Furthermore the development of orientation selectivity was studied quantitatively in the same cells. Already in the youngest kittens the receptive fields were spatially organized like adult fields, with a central zone and adjacent flanks that responded in opposite manner to the light stimulus. The relative suppression in the subzones was as strong as in adult cells. Both simple and complex cells were found from 8 days. The receptive fields were like magnified adult fields. The width of the dominant discharge-field zone and the distance between the positions giving maximum discharge and maximum suppression decreased with age in the same proportions. The decrease could be explained by a corresponding decrease of the receptive-field-center size of retinal ganglion cells. Forty percent of the cells were orientation selective before 2 wk, and the fraction increased to 94% at 4 wk. Cells whose responses could be attenuated to at least half of the maximal response by changes of slit orientation were termed orientation selective. The half-width of the orientation-tuning curves narrowed during the first 5 wk, and this change was most marked in simple cells. The ability of the cells to discriminate between orientations in statistical terms was weak in the youngest kittens due to a large response variability, and showed a more pronounced development than the half-width did. The orientation-tuning curves were fitted by an exponential function, which showed the shape to be adultlike in all age groups. Two kittens were dark reared until recording at 1 mo of age. The spatial receptive-field organization and the orientation selectivity in these kittens were similar to normal-reared kittens at 1 mo. The responsivity of the cells of the dark-reared kittens was lower, and the latency before firing was longer than in the normal-reared kittens of the same age, and these response properties were more similar to those in 1- to 2-wk-old normal kittens. Our results indicate that the spatial organization of the receptive field is innate in most cells and that visual experience is unnecessary for the organization to be maintained and for the receptive-field width to mature during the first month postnatally.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Electrical microstimulation of macaque striate cortex (area V1) delays the execution of saccadic eye movements made to a visual target placed in the receptive field of the stimulated neurons. The region of visual space within which saccades are delayed is called a delay field. We examined the effects of changing the parameters of stimulation and target size on the size of a delay field. Rhesus monkeys were required to generate a saccadic eye movement to a punctate and white visual target presented within or outside the receptive field of the neurons under study. On 50% of trials, a train of stimulation consisting of 0.2-ms anode-first pulses was delivered to the neurons before the onset of the visual target. Stimulations were performed in the operculum at 0.9–2.0 mm below the cortical surface. It was found that increases in current (50–100 μA), pulse frequency (100–300 Hz), or train duration (75–300 ms) increased the size of a delay field and increases in target size (0.1°–0.2° of visual angle) decreased the size of a delay field. Delay fields varied in size between 0.1 and 0.6° of visual angle. These results are related to the properties of phosphenes induced by electrical stimulation of V1 in humans and compared to the interference effects observed following transcranial magnetic stimulation of human V1.  相似文献   

16.
1. Responses of single geniculate cells to moving light and dark bars and light/dark edges were studied in cats anaesthetized with nitrous oxide/oxygen (70%/30%).2. Over 95% (230 out of 241) of geniculate cells had antagonistic centre-surround receptive fields. Their responses could be characterized as centre-activated or centre-suppressed depending on the receptive field type (ON- or OFF-centre) and the contrast between stimulus and the background (brighter or darker than the background). Moving light and dark edges evoked responses which were very similar to the responses evoked by these stimuli in simple cells of striate cortex.3. A number of cells (45) with antagonistic centre-surround receptive fields were classified according to their X/Y (sustained/transient) properties. Units with sustained properties (X-cells) did not increase their firing rate with an increase of stimulus velocity and some of them showed a clear-cut preference for slow movement (around 1-2 degrees /sec). On the other hand, units with transient properties (Y-cells) showed a clear-cut preference for fast-moving stimuli (50-100 degrees /sec.)4. Elongation of the stimulus beyond the antagonistic surround in both X- and Y-cells produced a clear-cut reduction of amplitude of both centre and surround components of the response. Thus the existence of a suppressive field component beyond the antagonistic surround is confirmed.5. About 5% of cells had receptive fields which did not have an antagonistic centre-surround organization but gave a mixed ON-OFF discharge from the central region of the field. Around the central region there was a silent suppressive zone. These units were not directionally selective, responded preferentially to fast-moving stimuli (25-100 degrees /sec) and had a substantial (spontaneous) maintained activity.  相似文献   

17.
Many psychophysical experiments on perceptual learning in humans show increases of performance that are most probably based on functions of early visual cortical areas. Long-term plasticity of the primary visual cortex has so far been shown in vivo with the use of visual stimuli paired with electrical or pharmacological stimulation at the cellular level. Here, we report that plasticity in the adult visual cortex can be achieved by repetitive visual stimulation. First, spatial receptive field profiles of single units (n=38) in area 17 or 18 of the anesthetized cat were determined with optimally oriented flashing light bars. Then a conditioning protocol was applied to induce associative synaptic plasticity. The receptive field center and an unresponsive region just outside the excitatory receptive field were synchronously stimulated ('costimulation', repetition rate 1 Hz; for 10-75 min). After costimulation the receptive field and its adjacent regions were mapped again. We observed specific increases of the receptive field size, changes of the receptive field subfield structure as well as shifts in response latency.In 37% of the cells the receptive field size increased specifically towards the stimulated side but not towards the non-stimulated opposite side of the receptive field. In addition, changes in the relative strength and size of the on and off subfield regions were observed. These specific alterations were dependent on the level of neuronal activity during costimulation. During recovery, the new responses dropped down to 120% of the preconditioning value on average within 103 min; however, the decay times significantly depended on the response magnitude after costimulation. In the temporal domain, the latency of new responses appeared to be strongly influenced by the latency of the response during costimulation.Twenty-nine percent of the units displayed no receptive field enlargement, most likely because the activity during costimulation was significantly lower than in the cases with enlarged receptive fields. An unspecific receptive field enlargement towards both the stimulated and non-stimulated side was observed in 34% of the tested cells. In contrast to the cells with specifically enlarged receptive fields, the unspecific increase of receptive field size was always accompanied by a strong increase of the general activity level.We conclude that the receptive field changes presumably took place by strengthening of synaptic inputs at the recorded cells in a Hebbian way as previously shown in the visual cortex in vitro and in vivo. The observed receptive field changes may be related to preattentive perceptual learning and could represent a basis of the 'filling in' of cortical scotomas obtained with specific training procedures in human patients suffering from visual cortex lesions.  相似文献   

18.
The visual receptive fields of 213 cells in the lateral suprasylvian visual cortex (LS, or Clare-Bishop area) were studied in cats anesthetized with nitrous oxide. Eighty-one percent of the cells were directionally selective. They responded poorly to stationary stimuli flashed on or off, but gave a directionally selective response to stimuli moving through the receptive field. Most of these had a single preferred direction and an opposite null direction. They typically responded to a range of directions of stimulus movement from 45 to 90 degrees to either side of the preferred direction. Small stimuli (1-2 degrees or smaller) typically were effective and 87% of the directionally selective cells showed spatial summation. About 32% had inhibitory mechanisms which decreased the response of the cell if the stimulus exceeded a maximum size. There was little or no evidence that LS area cells were orientation selective or sensitive to variations in stimulus shape independent of size.  相似文献   

19.
Electrical microstimulation of the striate cortex (area V1) in monkeys delays the execution of saccadic eye movements generated to a visual target located in the receptive field of the stimulated neurons. We have argued that this effect is because of disruption of the visual signal transmitted along the geniculostriate pathway. The delivery of electrical stimulation to V1 evokes a punctate light or dark phosphene in human subjects. If electrical stimulation of V1 in monkeys evokes a light or dark phosphene, then one might expect that the delay effect might vary according to whether monkeys are required to detect a light or a dark visual target. For instance, if the stimulation is activating V1 elements coding for a light visual stimulus but not a dark visual stimulus then stimulation may delay saccades generated to a light target but not to a dark target. We tested this idea by having monkeys generate saccadic eye movements to light or dark visual targets immediately after the stimulation was delivered to V1. We found that the delay effect induced by stimulation varied with target contrast, but remained invariant to whether a bright or dark visual target was presented in the receptive field of the stimulated neurons. The significance of these results is discussed with regard to using monkeys to develop a visual prosthesis for the blind.  相似文献   

20.
Summary The receptive fields of units in the visual cortex of anaesthetised cats were studied using spots or slits of light. Some fields were found to be stable when they were repeatedly plotted with the cat maintained in the horizontal position: other fields were not stable and the sharpness of spatial tuning varied though the orientation of the axis did not shift. When the cat was tilted the field axis of the majority of cells followed the tilt. In 14 cells, however, changes occurred in the receptive field which were not observed when the animal remained in the horizontal plane. These changes included drifts of the field axis in a direction which, with one exception, was opposite to the tilt, and alterations in the spatial extent of the field. On returning the animal to horizontal the axis of 4 fields drifted past the original orientation. These effects were not eliminated by either bilateral destruction of the labyrinth or high cervical transection of the spinal cord. The time of onset of the tilt effects varied from cell to cell: some of this variability is probably an effect of anaesthesia.The findings are consistent with the view that the receptive field of certain cells in the visual cortex are capable of being modified, one of the modifying influences being the orientation of the body in space.This work was supported by grants from the Science Research Council to G. Horn and from the U.S. Public Health Service to G. Stechler (Grant MH 16215) and R.M. Hill (Grant NB 05653).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号