首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims/hypothesis

Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin signalling. Hepatic PTP1B deficiency, using the Alb-Cre promoter to drive Ptp1b deletion from birth in mice, improves glucose homeostasis, insulin sensitivity and lipid metabolism. The aim of this study was to investigate the therapeutic potential of decreasing liver PTP1B levels in obese and insulin-resistant adult mice.

Methods

Inducible Ptp1b liver-specific knockout mice were generated using SA-Cre-ER T2 mice crossed with Ptp1b floxed (Ptp1b fl/fl) mice. Mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity and insulin resistance. Tamoxifen was administered in the HFD to induce liver-specific deletion of Ptp1b (SA-Ptp1b ?/? mice). Body weight, glucose homeostasis, lipid homeostasis, serum adipokines, insulin signalling and endoplasmic reticulum (ER) stress were examined.

Results

Despite no significant change in body weight relative to HFD-fed Ptp1b fl/fl control mice, HFD-fed SA-Ptp1b ?/? mice exhibited a reversal of glucose intolerance as determined by improved glucose and pyruvate tolerance tests, decreased fed and fasting blood glucose and insulin levels, lower HOMA of insulin resistance, circulating leptin, serum and liver triacylglycerols, serum NEFA and decreased HFD-induced ER stress. This was associated with decreased glycogen synthase, eukaryotic translation initiation factor-2α kinase 3, eukaryotic initiation factor 2α and c-Jun NH2-terminal kinase 2 phosphorylation, and decreased expression of Pepck.

Conclusions/interpretation

Inducible liver-specific PTP1B knockdown reverses glucose intolerance and improves lipid homeostasis in HFD-fed obese and insulin-resistant adult mice. This suggests that knockdown of liver PTP1B in individuals who are already obese/insulin resistant may have relatively rapid, beneficial therapeutic effects.  相似文献   

2.

Aim/hypothesis

Protein tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signalling. PTP1B deficiency improves obesity-induced insulin resistance and consequently improves type 2 diabetes in mice. Here, the small molecule norathyriol reversed obesity- and high-fat-diet-induced insulin resistance by inhibiting PTP1B.

Methods

The inhibitory mode of PTP1B was evaluated by using the double-reciprocal substrate in the presence of norathyriol. Primary cultured hepatocytes, myoblasts and white adipocytes were used to investigate the effect of norathyriol on insulin signalling. Glucose homeostasis and insulin sensitivity were characterised by glucose and insulin tolerance tests.

Results

Norathyriol was identified as a competitive inhibitor of PTP1B, with an IC50 of 9.59?±?0.39 μmol/l. In cultured hepatocytes and myoblasts, norathyriol treatment blocked the PTP1B-mediated dephosphorylation of the insulin receptor. Intraperitoneal injection of norathyriol inhibited liver and muscle PTP1B activity in mice, thus contributing to the improved glucose homeostasis and insulin sensitivity. However, these beneficial effects were abolished in PTP1B-deficient mice. Notably, oral administration of norathyriol protected mice from diet-induced obesity and insulin resistance through inhibition of hypothalamic PTP1B activity.

Conclusions/interpretation

Our results indicate that the small molecule norathyriol is a potent PTP1B inhibitor with good cell permeability and oral availability.  相似文献   

3.

Background and Aim

Endoplasmic reticulum (ER) stress has been implicated in the development of nonalcoholic steatohepatitis. A methionine–choline-deficient (MCD) diet induces robust ER stress response and steatohepatitis, but the effects of ER stress modulation on the course of steatohepatitis remain uncertain. The present study evaluated whether reducing ER stress using the chemical chaperone tauroursodeoxycholic acid (TUDCA) could limit hepatocyte lipoapoptosis and progression of MCD diet-induced steatohepatitis.

Methods

HuH7 cells stably transfected with sodium taurocholate cotransporting polypeptide (HuH-Ntcp cells) and palmitate (PA) were used. Experimental steatohepatitis was induced in male C57BL/6 mice using an MCD diet, and three different doses of TUDCA (500, or 1,000 mg/kg, once daily; or 500 mg/kg twice daily) were administered by gavage from the start of the MCD diet regimen or after 4 weeks.

Results

TUDCA reduced PA-induced ER stress as manifested by decreased eIF2α phosphorylation, XBP1 splicing and expression of BiP, ATF4, and CHOP in HuH-Ntcp cells. TUDCA also decreased PA-induced JNK phosphorylation, Puma up-regulation and Bax activation, which in turn suppressed caspase-dependent hepatocyte lipoapoptosis. Mice given TUDCA did not show a significant decrease in the intrahepatic triglyceride contents and steatosis. However, TUDCA treatment significantly reduced hepatic damage compared to controls for both early and late treatment groups. TUDCA treatment reduced the expression of ER stress markers and pro-apoptotic proteins, leading to decreased apoptosis and oxidative stress. Finally, TUDCA reduced histological fibrosis along with the down-regulation of pro-fibrotic gene expression in both early and late treatment groups.

Conclusions

These results show that TUDCA attenuates the progression of MCD diet-induced steatohepatitis by reducing ER stress.  相似文献   

4.

Background and aim

Impaired fatty liver regeneration has already been reported in many genetic modification models. However, in diet-induced simple hepatic steatosis, which showed similar phenotype with clinical pathology, whether liver regeneration is impaired or not remains unclear. In this study, we evaluated liver regeneration in mice with diet-induced simple hepatic steatosis, and focused on excess lipid accumulation occurring during liver regeneration.

Methods

Mice were fed high fat diet (HFD) or control diet for 9–10 weeks. We analyzed intrahepatic lipid accumulation, DNA replication, and various signaling pathways including cell proliferation and ER stress during liver regeneration after partial hepatectomy. In addition, some of mice were pretreated with tauroursodeoxycholic acid (TUDCA), a chemical chaperone which alleviates ER stress, and then we estimated TUDCA effects on liver regeneration.

Results

The peak of hepatocyte BrdU incorporation, the expression of proliferation cell nuclear antigen (PCNA) protein, and the expressions of cell cycle-related genes were observed in delayed time in HFD mice. The expression of phosphorylated Erk1/2 was also delayed in HFD mice. The amounts of liver triglyceride were at least twofold higher in HFD mice at each time point. Intrahepatic palmitic acid was increased especially in HFD mice. ER stress induced during liver regeneration was significantly higher in HFD mice. In HFD mice, pretreatment with TUDCA reduced ER stress and resulted in improvement of delayed liver regeneration.

Conclusion

In simple hepatic steatosis, lipid overloading occurring during liver regeneration might be caused ER stress and results in delayed hepatocyte DNA replication.  相似文献   

5.

Aims/hypothesis

Regulation of insulin secretion along the secretory pathway is incompletely understood. We addressed the expression of SIL1, a nucleotide exchange factor for the endoplasmic reticulum (ER) chaperone glucose-regulated protein 78 kD (GRP78), in pancreatic beta cells and investigated whether or not SIL1 is involved in beta cell function.

Methods

SIL1 expression was analysed by immunoblotting and immunofluorescence. Metabolic and islet variables, including glucose tolerance, beta cell mass, insulin secretion, islet ultrastructure, insulin content and levels of ER stress marker proteins, were addressed in Sil1 knockout (Sil1 ?/?) mice. Insulin, proinsulin and C-peptide release was addressed in Sil1 ?/? islets, and SIL1 overexpression or knockdown was explored in MIN6 cells in vitro. Models of type 1 diabetes and insulin resistance were induced in Sil1 ?/? mice by administration of streptozotocin (STZ) and a high-fat diet (HFD), respectively.

Results

We show that SIL1 is expressed in pancreatic beta cells and is required for islet insulin content, islet sizing, glucose tolerance and glucose-stimulated insulin secretion in vivo. Levels of pancreatic ER stress markers are increased in Sil1 ?/? mice, and Sil1 ?/? beta cell ER is ultrastructurally compromised. Isolated Sil1 ?/? islets show lower proinsulin and insulin content and impaired glucose-stimulated insulin secretion. Modulation of SIL1 protein levels in MIN6 cells correlates with changes in insulin content and secreted insulin. Furthermore, Sil1 ?/? mice are more susceptible to STZ-induced type 1 diabetes with increased apoptosis. Upon HFD feeding, Sil1 ?/? mice show markedly lower insulin secretion and exacerbated glucose intolerance compared with control mice. Surprisingly, however, HFD-fed Sil1 ?/? mice display pronounced islet hyperplasia with low amounts of insulin in total pancreas.

Conclusions/interpretation

These results reveal a novel role for the nucleotide exchange factor SIL1 in pancreatic beta cell function under physiological and disease conditions such as diabetes and the metabolic syndrome.  相似文献   

6.

Aims/hypothesis

Pancreatic beta cell destruction in type 1 diabetes may be mediated by cytokines such as IL-1β, IFN-γ and TNF-α. Endoplasmic reticulum (ER) stress and nuclear factor-κB (NFκB) signalling are activated by cytokines, but their significance in beta cells remains unclear. Here, we investigated the role of cytokine-induced ER stress and NFκB signalling in beta cell destruction.

Methods

Isolated mouse islets and MIN6 beta cells were incubated with IL-1β, IFN-γ and TNF-α. The chemical chaperone 4-phenylbutyric acid (PBA) was used to inhibit ER stress. Protein production and gene expression were assessed by western blot and real-time RT-PCR.

Results

We found in beta cells that inhibition of cytokine-induced ER stress with PBA unexpectedly potentiated cell death and NFκB-regulated gene expression. These responses were dependent on NFκB activation and were associated with a prolonged decrease in the inhibitor of κB-α (IκBα) protein, resulting from increased IκBα protein degradation. Cytokine-mediated NFκB-regulated gene expression was also potentiated after pre-induction of ER stress with thapsigargin, but not tunicamycin. Both PBA and thapsigargin treatments led to preferential upregulation of ER degradation genes over ER-resident chaperones as part of the adaptive unfolded protein response (UPR). In contrast, tunicamycin activated a balanced adaptive UPR in association with the maintenance of Xbp1 splicing.

Conclusions/interpretation

These data suggest a novel mechanism by which cytokine-mediated ER stress interacts with NFκB signalling in beta cells, by regulating IκBα degradation. The cross-talk between the UPR and NFκB signalling pathways may be important in the regulation of cytokine-mediated beta cell death.  相似文献   

7.
8.

Aims/hypothesis

Previous studies have shown that saturated fatty acids cause insulin resistance (IR) that is prevented by unsaturated fatty acids. Tribbles homologue 3 (TRIB3) is a putative endogenous inhibitor of insulin signalling, but its role in insulin signalling is controversial. This study aimed to determine whether fatty acids regulate IR via TRIB3.

Methods

We treated HepG2 cells with saturated and unsaturated fatty acids and evaluated TRIB3 expression. We then tested whether regulation of TRIB3 occurred through endoplasmic reticulum (ER) stress, and whether modulating TRIB3 and ER stress marker genes was necessary and/or sufficient for regulation of insulin signalling. To test the in vivo significance of this mechanism, we fed mice obesogenic diets with different fatty acid profiles and assessed physiological variables of diabetes, ER stress markers and Trib3 expression in the liver.

Results

Our data show that fatty acids differentially regulate IR through ER stress-mediated induction of TRIB3. Intriguingly, a standard and widely used obesogenic diet high in unsaturated fats failed to induce ER stress, TRIB3 or IR. However, an alternative obesogenic diet with lower unsaturated fat recapitulated the cell studies by causing ER stress, TRIB3 induction and IR.

Conclusions/interpretation

This study revealed a novel mechanism linking dietary fat composition to IR. Given the emerging roles for ER stress in non-alcoholic liver disease, we conclude that dietary fat composition rather than total amount may mediate hepatic pathology associated with obesity.  相似文献   

9.

Aims/hypothesis

Although the substitution of saturated fatty acids with oleate has been recommended in the management of type 2 diabetes mellitus, the mechanisms by which oleate improves insulin resistance in skeletal muscle cells are not completely known. Here, we examined whether oleate, through activation of AMP-activated protein kinase (AMPK), prevented palmitate-induced endoplasmic reticulum (ER) stress, which is involved in the link between lipid-induced inflammation and insulin resistance.

Methods

Studies were conducted in mouse C2C12 myotubes and in the human myogenic cell line LHCN-M2. To analyse the involvement of AMPK, activators and inhibitors of this kinase and overexpression of a dominant negative AMPK construct (K45R) were used.

Results

Palmitate increased the levels of ER stress markers, whereas oleate did not. In palmitate-exposed cells incubated with a lower concentration of oleate, the effects of palmitate were prevented. The induction of ER stress markers by palmitate was prevented by the presence of the AMPK activators AICAR and A-769662. Moreover, the ability of oleate to prevent palmitate-induced ER stress and inflammation (nuclear factor-kappa B [NF-κB] DNA-binding activity and expression and secretion of IL6) as well as insulin-stimulated Akt phosphorylation and 2-deoxyglucose uptake was reversed in the presence of the AMPK inhibitor compound C or by overexpression of a dominant negative AMPK construct. Finally, palmitate reduced phospho-AMPK levels, whereas this was not observed in oleate-exposed cells or in palmitate-exposed cells supplemented with oleate.

Conclusions/interpretation

Overall, these findings indicate that oleate prevents ER stress, inflammation and insulin resistance in palmitate-exposed skeletal muscle cells by activating AMPK.  相似文献   

10.

Aims/hypothesis

Endoplasmic reticulum (ER) stress has been implicated in glucose-induced beta cell dysfunction. However, its causal role has not been established in vivo. Our objective was to determine the causal role of ER stress and its link to oxidative stress in glucose-induced beta cell dysfunction in vivo.

Methods

Healthy Wistar rats were infused i.v. with glucose for 48?h to achieve 20?mmol/l hyperglycaemia with or without the co-infusion of the superoxide dismutase mimetic tempol (TPO), or the chemical chaperones 4-phenylbutyrate (PBA) or tauroursodeoxycholic acid (TUDCA). This was followed by assessment of beta cell function and measurement of ER stress markers and superoxide in islets.

Results

Glucose infusion for 48?h increased mitochondrial superoxide and ER stress markers and impaired beta cell function. Co-infusion of TPO, which we previously found to reduce mitochondrial superoxide and prevent glucose-induced beta cell dysfunction, reduced ER stress markers. Similar to findings with TPO, co-infusion of PBA, which decreases mitochondrial superoxide, prevented glucose-induced beta cell dysfunction in isolated islets. TUDCA was also effective. Also similar to findings with TPO, PBA prevented beta cell dysfunction during hyperglycaemic clamps in vivo and after hyperglycaemia (15?mmol/l) for 96?h.

Conclusions/interpretation

Here, we causally implicate ER stress in hyperglycaemia-induced beta cell dysfunction in vivo. We show that: (1) there is a positive feedback cycle between oxidative stress and ER stress in glucose-induced beta cell dysfunction, which involves mitochondrial superoxide; and (2) this cycle can be interrupted by superoxide dismutase mimetics as well as chemical chaperones, which are of potential interest to preserve beta cell function in type 2 diabetes.  相似文献   

11.

Background

ATP-sensitive potassium (K-ATP) channels couple cellular metabolism to electric activity. Although Kir6.2-composed K-ATP channel (Kir6.2/K-ATP channel) has been demonstrated to regulate inflammation, a common cause of most liver diseases, its role in liver injury remains elusive.

Methods

Kir6.2 knockout mice were used to prepared LPS-induced liver injury model so as to investigate the role of Kir6.2/K-ATP channels in the injury. Histochemistry was applied to evaluate the extent of liver injury. Proinflammatory cytokines were analyzed by ELISA. Endoplasmic reticulum (ER) stress and autophagy were assessed by western blotting.

Results

We showed that Kir6.2 knockout markedly promoted the infiltration of lymphocytes and neutrophils in liver and significantly elevated serum levels of alanine transaminase (ALT) in respond to LPS treatment. We further found that Kir6.2 deficiency enhanced the activation of NF-κB and NLRP3 inflammasome following LPS challenge, and thereby increased the levels of pro-inflammatory cytokines IL-1β, IL-18 and TNF-α. Treatment of wild-type mice with the K-ATP channel opener iptakalim (IPT) could protect against LPS-induced liver injury through attenuating NLRP3 inflammasome-mediated inflammatory responses. Furthermore, Kir6.2 knockout-induced activation of NLRP3 inflammasome aggravated endoplasmic reticulum (ER) stress, autophagy and subsequent hepatocyte death.

Conclusion

Kir6.2 deficiency exacerbated LPS-induced liver injury by enhancing NLRP3 inflammasome-mediated inflammatory response. Thus, Kir6.2/K-ATP channel may be a potential candidate target for the treatment and prevention of liver injury.  相似文献   

12.

Aims/hypothesis

Pantothenate kinase (PANK) is the first enzyme in CoA biosynthesis. Pank1-deficient mice have 40% lower liver CoA and fasting hypoglycaemia, which results from reduced gluconeogenesis. Single-nucleotide polymorphisms in the human PANK1 gene are associated with insulin levels, suggesting a link between CoA and insulin homeostasis. We determined whether Pank1 deficiency (1) modified insulin levels, (2) ameliorated hyperglycaemia and hyperinsulinaemia, and (3) improved acute glucose and insulin tolerance of leptin (Lep)-deficient mice.

Methods

Serum insulin and responses to glucose and insulin tolerance tests were determined in Pank1-deficient mice. Levels of CoA and regulating enzymes were measured in liver and skeletal muscle of Lep-deficient mice. Double Pank1/Lep-deficient mice were analysed for the diabetes-related phenotype and global metabolism.

Results

Pank1-deficient mice had lower serum insulin and improved glucose tolerance and insulin sensitivity compared with wild-type mice. Hepatic and muscle CoA was abnormally high in Lep-deficient mice. Pank1 deletion reduced hepatic CoA but not muscle CoA, reduced serum glucose and insulin, but did not normalise body weight or improve acute glucose tolerance or protein kinase B phosphorylation in Lep-deficient animals. Pank1/Lep double-deficient mice exhibited reduced whole-body metabolism of fatty acids and amino acids and had a greater reliance on carbohydrate use for energy production.

Conclusions/interpretation

The results indicate that Pank1 deficiency drives a whole-body metabolic adaptation that improves aspects of the diabetic phenotype and uncouples hyperglycaemia and hyperinsulinaemia from obesity in leptin-deficient mice.  相似文献   

13.

Aims/hypothesis

Endoplasmic reticulum (ER) stress has been detected in pancreatic beta cells and in insulin-sensitive tissues, such as adipose and liver, in obesity-linked rodent models of type 2 diabetes. The contribution of ER stress to pancreatic beta cell dysfunction in type 2 diabetes is unclear. We hypothesised that increased chaperone capacity protects beta cells from ER stress and dysfunction caused by obesity and improves overall glucose homeostasis.

Methods

We generated a mouse model that overproduces the resident ER chaperone GRP78 (glucose-regulated protein 78 kDa) in pancreatic beta cells under the control of a rat insulin promoter. These mice were subjected to high-fat diet (HFD) feeding for 20 weeks and metabolic variables and markers of ER stress in islets were measured.

Results

As expected, control mice on the HFD developed obesity, glucose intolerance and insulin resistance. In contrast, GRP78 transgenic mice tended to be leaner than their non-transgenic littermates and were protected against development of glucose intolerance, insulin resistance and ER stress in islets. Furthermore, islets from transgenic mice had a normal insulin content and normal levels of cell-surface GLUT2 (glucose transporter 2) and the transgenic mice were less hyperinsulinaemic than control mice on the HFD.

Conclusions/interpretation

These data show that increased chaperone capacity in beta cells provides protection against the pathogenesis of obesity-induced type 2 diabetes by maintaining pancreatic beta cell function, which ultimately improves whole-body glucose homeostasis.  相似文献   

14.
15.

Aims/hypothesis

Cardiotrophin 1 (CT-1) is a recently described cytokine originally isolated from the heart where it has been shown to play an important role in apoptotic protection of cardiomyocytes and heart hypertrophy. Its beneficial properties have also been described in other organs such as liver and neuromuscular tissue. In the present study, we investigated whether CT-1 can confer protection against pro-apoptotic stimuli in pancreatic beta cells, and its role in insulin secretion and diabetes development.

Methods

The effects of CT-1 on apoptosis and function were studied using MIN6B1 cells and freshly isolated murine pancreatic islets. The impact on the development of diabetes was evaluated in Ct1-null (Ct1 ?/?) mice (the gene Ct1 is also known as Ctf1) using two streptozotocin (STZ)-induced models of diabetes.

Results

CT-1 has a protective effect in MIN6B1 cells and murine islets under the pro-apoptotic stimulus of serum deprivation, which correlates with the expression of B cell lymphoma-extra large, or following exposure to a mixture of cytokines. In addition, CT-1 enhances glucose-stimulated insulin secretion in MIN6B1 cells and this was repressed by inhibitors of phospholipase C. Furthermore, Ct1 ?/? mice were more prone to develop diabetes, and their glucose tolerance test showed impaired plasma glucose clearance which correlated with decreased pancreatic insulin secretion.

Conclusions/interpretation

The results obtained from both in vitro and in vivo experiments show that CT-1 improves beta cell function and survival, and protects mice against STZ-induced diabetes.  相似文献   

16.

Aims/hypothesis

The small G-protein ras-related C3 botulinum toxin substrate 1 (RAC1) plays various roles in mammalian cells, such as in the regulation of cytoskeletal organisation, cell adhesion, migration and morphological changes. The present study examines the effects of RAC1 ablation on pancreatic beta cell function.

Methods

Isolated islets from pancreatic beta cell-specific Rac1-knockout (betaRac1 ?/?) mice and RAC1 knockdown INS-1 insulinoma cells treated with small interfering RNA were used to investigate insulin secretion and cytoskeletal organisation in pancreatic beta cells.

Results

BetaRac1 ?/? mice showed decreased glucose-stimulated insulin secretion, while there were no apparent differences in islet morphology. Isolated islets from the mice had blunted insulin secretion in response to high glucose levels. In RAC1 knockdown INS-1 cells, insulin secretion was also decreased in response to high glucose levels, consistent with the phenotype of betaRac1 ?/? mice. Even under high glucose levels, RAC1 knockdown INS-1 cells remained intact with F-actin, which inhibits the recruitment of the insulin granules, resulting in an inhibition of insulin secretion.

Conclusions/interpretation

In RAC1-deficient pancreatic beta cells, F-actin acts as a barrier for insulin granules and reduces glucose-stimulated insulin secretion.  相似文献   

17.

Aims/hypothesis

Adaptor protein, phosphotyrosine interaction, pleckstrin homology domain and leucine zipper containing 1 (APPL1) is an adapter protein that positively mediates adiponectin signalling. Deficiency of APPL1 in the target tissues of insulin induces insulin resistance. We therefore aimed, in the present study, to determine its role in regulating pancreatic beta cell function.

Methods

A hyperglycaemic clamp test was performed to determine insulin secretion in APPL1 knockout (KO) mice. Glucose- and adiponectin-induced insulin release was measured in islets from APPL1 KO mice or INS-1(832/13) cells with either APPL1 knockdown or overproduction. RT-PCR and western blotting were conducted to analyse gene expression and protein abundance. Oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential were assayed to evaluate mitochondrial function.

Results

APPL1 is highly expressed in pancreatic islets, but its levels are decreased in mice fed a high-fat diet and db/db mice compared with controls. Deletion of the Appl1 gene leads to impairment of both the first and second phases of insulin secretion during hyperglycaemic clamp tests. In addition, glucose-stimulated insulin secretion (GSIS) is significantly decreased in islets from APPL1 KO mice. Conversely, overproduction of APPL1 leads to an increase in GSIS in beta cells. In addition, expression levels of several genes involved in insulin production, mitochondrial biogenesis and mitochondrial OCR, ATP production and mitochondrial membrane potential are reduced significantly in APPL1-knockdown beta cells. Moreover, suppression or overexproduction of APPL1 inhibits or stimulates adiponectin-potentiated GSIS in beta cells, respectively.

Conclusions/interpretation

Our study demonstrates the roles of APPL1 in regulating GSIS and mitochondrial function in pancreatic beta cells, which implicates APPL1 as a therapeutic target in the treatment of type 2 diabetes.  相似文献   

18.

Aims/Hypothesis

To determine if acute overexpression of peroxisome proliferator-activated receptor, gamma, coactivator 1 beta (Pgc-1?? [also known as Ppargc1b]) in skeletal muscle improves insulin action in a rodent model of diet-induced insulin resistance.

Methods

Rats were fed either a low-fat or high-fat diet (HFD) for 4?weeks. In vivo electroporation was used to overexpress Pgc-1?? in the tibialis cranialis (TC) and extensor digitorum longus (EDL) muscles. Downstream effects of Pgc-1?? on markers of mitochondrial oxidative capacity, oxidative stress and muscle lipid levels were characterised. Insulin action was examined ex vivo using intact muscle strips and in vivo via a hyperinsulinaemic?Ceuglycaemic clamp.

Results

Pgc-1?? gene expression was increased >100% over basal levels. The levels of proteins involved in mitochondrial function, lipid metabolism and antioxidant defences, the activity of oxidative enzymes, and substrate oxidative capacity were all increased in muscles overexpressing Pgc-1??. In rats fed a HFD, increasing the levels of Pgc-1?? partially ameliorated muscle insulin resistance, in association with decreased levels of long-chain acyl-CoAs (LCACoAs) and increased antioxidant defences.

Conclusions

Our data show that an increase in Pgc-1?? expression in vivo activates a coordinated subset of genes that increase mitochondrial substrate oxidation, defend against oxidative stress and improve lipid-induced insulin resistance in skeletal muscle.  相似文献   

19.

Aims/hypothesis

We analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function.

Methods

A bioinformatics approach was used to identify miR-153’s genomic organisation. To analyse the co-regulation of miR-153 and IA-2β, quantitative PCR analysis of miR-153 and Ia-2β (also known as Ptprn2) was performed after a glucose stimulation assay in MIN6B cells and isolated murine pancreatic islets, and also in wild-type Ia-2 (also known as Ptprn), Ia-2β single knockout and Ia-2/Ia-2β double knockout mouse brain and pancreatic islets. Bioinformatics identification of miR-153 target genes and validation via luciferase reporter assays, western blotting and quantitative PCR were also carried out.

Results

Two copies of miR-153, miR-153-1 and miR-153-2, are localised in intron 19 of Ia-2 and Ia-2β, respectively. In rodents, only miR-153-2 is conserved. We demonstrated that expression of miR-153-2 and Ia-2β in rodents is partially co-regulated as demonstrated by a strong reduction of miR-153 expression levels in Ia-2β knockout and Ia-2/Ia-2β double knockout mice. miR-153 levels were unaffected in Ia-2 knockout mice. In addition, glucose stimulation, which increases Ia-2 and Ia-2β expression, also significantly increased expression of miR-153. Several predicted targets of miR-153 were reduced after glucose stimulation in vitro, correlating with the increase in miR-153 levels.

Conclusions/interpretation

This study suggests the involvement of miR-153, IA-2β and miR-153 target genes in a regulatory network, which is potentially relevant to insulin and neurotransmitter release.  相似文献   

20.

Aims/hypothesis

Manoeuvres aimed at increasing beta cell mass have been proposed as regenerative medicine strategies for diabetes treatment. Raf-1 kinase inhibitor protein 1 (RKIP1) is a common regulatory node of the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and therefore may be involved in regulation of beta cell homeostasis. The aim of this study was to investigate the involvement of RKIP1 in the control of beta cell mass and function.

Methods

Rkip1 (also known as Pebp1) knockout (Rkip1 ?/?) mice were characterised in terms of pancreatic and glucose homeostasis, including morphological and functional analysis. Glucose tolerance and insulin sensitivity were examined, followed by assessment of glucose-induced insulin secretion in isolated islets and beta cell mass quantification through morphometry. Further characterisation included determination of endocrine and exocrine proliferation, apoptosis, MAPK activation and whole genome gene expression assays. Capacity to reverse a diabetic phenotype was assessed in adult Rkip1 ?/? mice after streptozotocin treatment.

Results

Rkip1 ?/? mice exhibit a moderately larger pancreas and increased beta cell mass and pancreatic insulin content, which correlate with an overall improvement in whole body glucose tolerance. This phenotype is established in young postnatal stages and involves enhanced cellular proliferation without significant alterations in cell death. Importantly, adult Rkip1 ?/? mice exhibit rapid reversal of streptozotocin-induced diabetes compared with control mice.

Conclusions/interpretation

These data implicate RKIP1 in the regulation of pancreatic growth and beta cell expansion, thus revealing RKIP1 as a potential pharmacological target to promote beta cell regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号