首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to analyze the functions of the hippocampus in the primate, and to advance the understanding of amnesia, the activity of 994 single hippocampal neurons in the monkey was analyzed during the performance of a task known to be affected by hippocampal damage in which both an object, and its position in space, must be remembered. The serial multiple object-place memory task required a memory for the position on a video monitor in which a given object had appeared previously. It was found that 9.3% of neurons recorded in the hippocampus and hippocampal gyrus had spatial fields in this and related tasks, in that they responded whenever there was a stimulus in some but not in other positions on the screen. We found that 2.4% of the neurons responded to a combination of spatial information and information about the object seen, in that they responded more the first time a particular object was seen in any position. Six of these neurons were found that showed this combination even more clearly, in that, for example, they responded only to some positions and only if it was the first time that a particular stimulus had appeared there. It is concluded that there are neurons in the primate hippocampus which (1) respond to position in space and (2) in some cases combine information about stimuli and their position in space, responding to a stimulus only the first time it is seen in a position in space, for example. Thus, not only is spatial information processed by the primate hippocampus, but it can be combined with information about which stimuli have been seen before. The ability of the hippocampus to form such conjunctions may be an important property for its role in memory.  相似文献   

2.
The memory for where in the environment a particular visual stimulus has been seen is one of the types of memory relatively specifically impaired by hippocampal damage in primates including man. In order to investigate what processing might be performed by the hippocampus related to this type of memory, the activity of hippocampal neurons was recorded while monkeys performed an object-place memory task. In this task, the monkey was shown a sample stimulus in one position on a video screen, there was a delay of 2 s, and then the same or a different stimulus was shown in the same or in a different position. The monkey remembered the sample and its position, and if both matched the delayed stimulus, he licked to obtain fruit juice. Of the 600 neurons analysed in this task, 3.8% responded differently for the different spatial positions, with some of these responding differentially during the sample presentation, some in the delay period, and some in the match period. Thus some hippocampal neurons respond differently for stimuli shown in different positions in space, and some respond differently when the monkey is remembering different positions in space. In addition some of the neurons responded to a combination of object and place information, in that they responded only to a novel object in a particular place. These neuronal responses were not due to any response being made or prepared by the monkey, for information about which behavioral response was required was not available until the match stimulus was shown. This is the first demonstration that some hippocampal neurons in the primate have activity related to the spatial position of stimuli. The activity of these neurons was also measured in a delayed spatial response task, in which the monkey was shown a stimulus in one position, and, after a 2 s delay when two identical stimuli were shown, had to reach to touch the stimulus which was in the position in which it had previously been seen. It was found that the majority of the neurons which responded in the object-place memory task did not respond in the delayed response task. Instead, a different population of neurons (5.7% of the total) responded in the delayed spatial response task, with differential left-right responses in the sample, delay, or match periods.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
E T Rolls 《Hippocampus》1999,9(4):467-480
The information represented in the primate hippocampus is being analysed by making recordings in monkeys actively walking in the laboratory. In a sample of 352 cells recorded in this situation, no "place" cells have so far been found. Instead, we have found a considerable population of "spatial view" cells tuned to respond when the monkey looks at small parts of the environment. We have been able to demonstrate (1) that these hippocampal neurons respond to a view of space "out there," not to the place where the monkey is; (2) that the responses depend on where the monkey is looking, by measuring eye position; (3) that the responses in some cases (e.g., CA1 but not CA3) still occur if the view details are obscured with curtains; (4) that the cells (in, e.g., CA1) retain part of their "space" tuning even in complete darkness, for several minutes; and (5) that the spatial representation is allocentric. The spatial representation is, thus, different from that in the rat hippocampus, in which place cells respond based on where the rat is located. The representation is also different from that described in the parietal cortex, where neurons respond in egocentric coordinates. This representation of space "out there" provided by primate spatial view cells would be an appropriate part of a memory system involved in memories of particular events or episodes, for example, of where in an environment an object was seen. Spatial view cells (in conjunction with whole body motion cells in the primate hippocampus, and head direction cells in the primate presubiculum) would also be useful as part of a spatial navigation system, for which they would provide a memory component.  相似文献   

4.
The hippocampus is thought to represent nonspatial information in the context of spatial information. An animal can derive both spatial information as well as nonspatial information from the objects (landmarks) it encounters as it moves around in an environment. In this article, correlates of both object‐derived spatial as well as nonspatial information in the hippocampus of rats foraging in the presence of objects are demonstrated. A new form of CA1 place cells, called landmark‐vector cells, that encode spatial locations as a vector relationship to local landmarks is described. Such landmark vector relationships can be dynamically encoded. Of the 26 CA1 neurons that developed new fields in the course of a day's recording sessions, in eight cases, the new fields were located at a similar distance and direction from a landmark as the initial field was located relative to a different landmark. In addition, object‐location memory in the hippocampus is also described. When objects were removed from an environment or moved to new locations, a small number of neurons in CA1 and CA3 increased firing at the locations where the objects used to be. In some neurons, this increase occurred only in one location, indicating object + place conjunctive memory; in other neurons, the increase in firing was seen at multiple locations where an object used to be. Taken together, these results demonstrate that the spatially restricted firing of hippocampal neurons encode multiple types of information regarding the relationship between an animal's location and the location of objects in its environment. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
We studied the cognitive performance of rats with colchicine-induced lesions of the hippocampal dentate gyrus (DG) on a range of spatial, non-spatial and mixed spatial/procedural tasks. Rats were assigned to three experimental groups receiving large colchicine lesions (7 microg per hippocampus), small colchicine lesions (1.75 microg per hippocampus) or sham lesions. Stereological estimates of cell density indicated that the colchicine treatments induced dose-dependent damage to the DG, while sparing in large part other hippocampal subfields. Remarkably, the behavioural results showed that the colchicine lesions did not affect the performance of rats in an object discrimination task, in an object-place associative task in which a familiar object was displaced from a given position nor in a spontaneous spatial discrimination task performed in the T-maze. However, rats in both lesion groups were severely impaired in a reinforced non-matching-to-position working memory task conducted in the T-maze. Importantly, performance in the working memory task correlated strongly with cell density in the DG but not with cell density in the CA1 and CA3 areas. Only rats with large-lesions showed a transient deficit in a reinforced rule-based conditional discrimination task. These data demonstrated that rats with selective lesions of the DG readily acquire and retain neural representations relative to objects and places but are specifically impaired in their ability to update rapidly and flexibly spatial information that is essential to guide goal-directed actions.  相似文献   

6.
Loss of cholinergic cortical input is associated with diseases in which episodic memory impairment is a prominent feature, but the degree to which this neurochemical lesion can account for memory impairment in humans with neurodegenerative diseases remains unclear. Removal of cholinergic input to hippocampus impairs some of its functions in memory, perhaps by reducing the plasticity of information representation within the hippocampus, but the role of cholinergic hippocampal input in episodic‐like memories has not been investigated. To address this question, we tested rats with selective lesions of basal forebrain neurons in the medial septum and vertical limb of the diagonal band (MS/VDB), which contains hippocampal‐projecting cholinergic neurons, on a task of integrated memory for objects, places, and contexts (“what–where–which” memory). This task serves as a rodent model of human episodic memory (episodic‐like memory) and is sensitive to damage to the hippocampal system. Rats with lesions of cholinergic MS/VDB neurons performed as well on the what–where–which task as controls, but were impaired in a task that simply required them to associate places with contexts (“where–which” memory). Thus, episodic‐like memories that rely on the hippocampus do not require cholinergic neuromodulation to be formed. Nevertheless, some more specific aspects of where–which memory, which may be more dependent on the plasticity of hippocampal spatial representations, require acetylcholine. These results suggest that cholinergic projections to hippocampus are not necessary for episodic memory and, furthermore, that hippocampal spatial representations may be to some extent dissociable from episodic memory function. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Sato N  Yamaguchi Y 《Hippocampus》2005,15(7):963-978
Object-place associative memory, the storage of object and place conjunctions based on a one-time experience, is hippocampal-dependent in humans. Theta phase precession, a type of neural dynamics observed in the rat hippocampus, has recently been suggested to serve a role in instantaneous memory formation based on a one-time experience, while its functional role in associating distinct types of information (object and place information) is unclear. In this study, we hypothesize that theta phase encoding with theta phase precession contributes to the storage of object-place associations. To examine this hypothesis, we propose a neural network model of the corticohippocampal system, including central-peripheral visual pathways and theta phase coding in the hippocampus. Memory storage computer experiments demonstrate that the hippocampal network successfully stores the object-place associations of a one-time experience. Interestingly, it is also found that a random visual input sequence results in a robust formation of asymmetric connections between objects and scenes instantaneously after a single trial. Furthermore, it is found that scene-object connections and scene-scene connections form a hierarchical network representing the spatial alignment of scenes and objects in the environment. Our findings indicate that the theta phase coding, as observed in the rat hippocampus, can facilitate the online memory storage of complex environments in humans as a hierarchical cognitive map.  相似文献   

8.
The hippocampus plays critical roles in both object‐based event memory and spatial navigation, but it is largely unknown whether the left and right hippocampi play functionally equivalent roles in these cognitive domains. To examine the hemispheric symmetry of human hippocampal functions, we used an fMRI scanner to measure BOLD activity while subjects performed tasks requiring both object‐based event memory and spatial navigation in a virtual environment. Specifically, the subjects were required to form object‐place paired associate memory after visiting four buildings containing discrete objects in a virtual plus maze. The four buildings were visually identical, and the subjects used distal visual cues (i.e., scenes) to differentiate the buildings. During testing, the subjects were required to identify one of the buildings when cued with a previously associated object, and when shifted to a random place, the subject was expected to navigate to the previously chosen building. We observed that the BOLD activity foci changed from the left hippocampus to the right hippocampus as task demand changed from identifying a previously seen object (object‐cueing period) to searching for its paired‐associate place (object‐cued place recognition period). Furthermore, the efficient retrieval of object‐place paired associate memory (object‐cued place recognition period) was correlated with the BOLD response of the left hippocampus, whereas the efficient retrieval of relatively pure spatial memory (spatial memory period) was correlated with the right hippocampal BOLD response. These findings suggest that the left and right hippocampi in humans might process qualitatively different information for remembering episodic events in space. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

9.
C B Cave  L R Squire 《Hippocampus》1991,1(3):329-340
The hippocampus has sometimes been proposed to function as a cognitive map, a memory system that stores information about allocentric space. Work with experimental animals and memory-impaired patients has raised difficulties with this view by showing that the hippocampus is not performing an exclusively spatial function. However, the possibility has remained that the hippocampus plays a special role in spatial memory or a disproportionately large role in spatial memory compared to other kinds of memory. This study compared spatial and nonspatial memory in amnesic patients with lesions of the hippocampal formation or diencephalon. Subjects studied an array of 16 toy objects and were subsequently tested for object recall, object recognition, and memory for the location of the objects. Control subjects were tested after long retention intervals in order to equate their object memory performance with that of the patients. The main finding was that, when the performance of amnesic patients on the object memory tests was matched to the object memory performance of control subjects, spatial memory performance of the amnesic patients also matched the spatial memory performance of the control subjects. The results were the same for the two groups of patients. These findings suggest that the hippocampus is not especially involved in spatial memory. Spatial memory is simply one instance of a broader category of memory that requires the hippocampus. While cognitive mapping in its most abstract sense may describe hippocampal function, our results support alternative formulation, suggesting that the hippocampus is necessary for the rapid acquisition of relational, configural, or declarative (as opposed to purely spatial) information.  相似文献   

10.
Spatial View Cells in the Primate Hippocampus   总被引:3,自引:0,他引:3  
Hippocampal function was analysed by making recordings in rhesus monkeys actively walking in the laboratory. In a sample of 352 cells recorded in the hippocampus and parahippocampal cortex, a population of 'spatial view' cells was found to respond when the monkey looked at a part of the environment. The responses of these hippocampal neurons (i) occur to a view of space 'out there', not to the place where the monkey is, (ii) depend on where the monkey is looking, as shown by measuring eye position, (iii) do not encode head direction, and (iv) provide a spatial representation that is allocentric, i.e. in world coordinates. This representation of space 'out there' would be an appropriate part of a primate memory system involved in memories of where in an environment an object was seen, and more generally in the memory of particular events or episodes, for which a spatial component normally provides part of the context.  相似文献   

11.
The hippocampus is thought to be required for the associative recognition of objects together with the spatial or temporal contexts in which they occur. However, recent data showing that rats with fornix lesions perform as well as controls in an object‐place task, while being impaired on an object‐place‐context task (Eacott and Norman ( 2004 ) J Neurosci 24:1948–1953), suggest that not all forms of context‐dependent associative recognition depend on the integrity of the hippocampus. To examine the role of the hippocampus in context‐dependent recognition directly, the present study tested the effects of large, selective, bilateral hippocampus lesions in rats on performance of a series of spontaneous recognition memory tasks: object recognition, object‐place recognition, object‐context recognition and object‐place‐context recognition. Consistent with the effects of fornix lesions, animals with hippocampus lesions were impaired only on the object‐place‐context task. These data confirm that not all forms of context‐dependent associative recognition are mediated by the hippocampus. Subsequent experiments suggested that the object‐place task does not require an allocentric representation of space, which could account for the lack of impairment following hippocampus lesions. Importantly, as the object‐place‐context task has similar spatial requirements, the selective deficit in object‐place‐context recognition suggests that this task requires hippocampus‐dependent neural processes distinct from those required for allocentric spatial memory, or for object memory, object‐place memory or object‐context memory. Two possibilities are that object, place, and context information converge only in the hippocampus, or that recognition of integrated object‐place‐context information requires a hippocampus‐dependent mode of retrieval, such as recollection. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Monkeys were trained preoperatively on a one-trial learning task in which they were required to associate in memory a novel object and the place in which it had just appeared. After learning the task to a level of 80% correct responses, they received bilateral ablations of either the hippocampal formation or the amygdaloid complex. The monkeys with amygdalectomy showed a small drop in performance initially but then regained their preoperative level. By contrast, the monkeys with hippocampectomy dropped to near-chance levels of performance and remained there throughout postoperative testing. Both groups performed at better than 90% correct responses on a test of recognition memory. These results, taken together with earlier work, suggest that although the hippocampus and amygdala appear to participate equally in object recognition, only the hippocampus is critical for the rapid formation of object-place associations.  相似文献   

13.
A virtual reality environment was used to test memory performance for simulated "real-world" spatial and episodic information in a 22-year-old male, Jon, who has selective bilateral hippocampal pathology caused by perinatal anoxia. He was allowed to explore a large-scale virtual reality town and was then tested on his memory for spatial layout and for episodes experienced. Topographical memory was tested by assessing his ability to navigate, recognize previously visited locations, and draw maps of the town. Episodic memory was assessed by testing the retrieval of simulated events which consisted of collecting objects from characters while following a route through the virtual town. Memory for the identity of objects, as well as for where they were collected, from whom, and in what order, was also tested. While the first task tapped simple recognition memory, the latter three tested memory for context. Jon was impaired on all topographical tasks and on his recall of the context-dependent questions. However, his recognition of objects from the virtual town, and of "topographical" scenes (as evaluated by standard neuropsychological tests), was not impaired. These findings are consistent with the view that the hippocampus is involved in navigation, recall of long term allocentric spatial information and context-dependent episodic memory, but not visual pattern matching.  相似文献   

14.
The hippocampus, a medial temporal lobe brain region, is critical for the consolidation of information from short-term memory into long-term episodic memory and for spatial memory that enables navigation. Hippocampal damage in humans has been linked to amnesia and memory loss, characteristic of Alzheimer's disease and other dementias. Numerous studies indicate that the rodent hippocampus contributes significantly to long-term memory for spatial and nonspatial information. For example, muscimol-induced depression of CA1 neuronal activity in the dorsal hippocampus impairs the encoding, consolidation, and retrieval of nonspatial object memory in mice. Here, a chemogenetic designer receptor exclusively activated by designer drugs (DREADDs) approach was used to test the selective involvement of CA1 pyramidal neurons in memory retrieval for objects and for spatial location in a cohort of male C57BL/6J mice. Activation of the inhibitory (hM4Di) DREADDs receptor expressed in CA1 neurons significantly impaired the retrieval of object memory in the spontaneous object recognition task and of spatial memory in the Morris water maze. Silencing of CA1 neuronal activity in hM4Di-expressing mice was confirmed by comparing Fos expression in vehicle- and clozapine-N-oxide-treated mice after exploration of a novel environment. Histological analyses revealed that expression of the hM4Di receptor was limited to CA1 neurons of the dorsal hippocampus. These results suggest that a common subset of CA1 neurons (i.e., those expressing hM4Di receptors) in mouse hippocampus contributed to the retrieval of long-term memory for nonspatial and spatial information. Our findings support the view that the contribution of the rodent hippocampus is like that of the primate hippocampus, specifically essential for global memory. Our results further validate mice as a suitable model system to study the neurobiological mechanisms of human episodic memory, but also in developing treatments and understanding the underlying causes of diseases affecting long-term memory, such as Alzheimer's disease.  相似文献   

15.
Memory for object-location was investigated by testing subjects with small unilateral thermolesions to the medial temporal lobe using small-scale 2D (Abstract) or large-scale 3D (Real) recall conditions. Four patients with lesions of the left hippocampus (LH), 10 patients with damage to the right hippocampus (RH) and 9 matched normal controls (NC) were tested. Six task levels were presented in a pseudorandom order. During each level, subjects viewed one to six different objects on the floor of a circular curtained arena 2.90 m in diameter for 10 s. Recall was tested by marking the locations of objects on a map of the arena (Abstract recall) and then by replacing the objects in the arena (Real recall). Two component errors were studied by calculating the Location Error (LE), independent of the object identity and the configuration error by finding the best match to the presented configuration. The RH group was impaired relative to the NC for nearly all combinations of recall and error types. An impairment was observed in this group even for one object and it deepened sharply with an increasing object number. Damage to the right perirhinal or parahippocampal cortices did not add to the impairment. Deficits in the LH group were also observed, but less consistently. The data indicate that spatial memory is strongly but not exclusively lateralised to the right medial temporal lobe.  相似文献   

16.
Although the hippocampus experiences age‐related anatomical and functional deterioration, the effects of aging vary across hippocampal‐dependent cognitive processes. In particular, whether or not the hippocampus is known to be required for a spatial memory process is not an accurate predictor on its own of whether aging will affect performance. Therefore, the primary objective of this study was to compare the effects of healthy aging on a test of spatial pattern separation and a test of spatial relational processing, which are two aspects of spatial memory that uniquely emphasize the use of multiple hippocampal‐dependent processes. Spatial pattern separation supports spatial memory by preserving unique representations for distinct locations. Spatial relational processing forms relational representations of objects to locations or between objects and other objects in space. To test our primary objective, 30 young (18–30 years; 21F) and 30 older participants (60–80 years; 21F) all completed a spatial pattern separation task and a task designed to require spatial relational processing through spatial reconstruction. To ensure aging effects were not due to inadequate time to develop optimal strategies or become comfortable with the testing devices, a subset of participants had extended practice across three sessions on each task. Results showed that older adults performed more poorly than young on the spatial reconstruction task that emphasized the use of spatial relational processing, and that age effects persisted even after controlling for pattern separation performance. Further, older adults performed more poorly on spatial reconstruction than young adults even after three testing sessions each separated by 7–10 days, suggesting effects of aging are resistant to extended practice and likely reflect genuine decline in hippocampal memory abilities.  相似文献   

17.
Hippocampal spatial view cells found in primates respond to a region of visual space being looked at, relatively independently of where the monkey is located. Rat place cells have responses which depend on where the rat is located. We investigate the hypothesis that in both types of animal, hippocampal cells respond to a combination of visual cues in the correct spatial relation to each other. In rats, which have a wide visual field, such a combination might define a place. In primates, including humans, which have a much smaller visual field and a fovea which is directed towards a part of the environment, the same mechanism might lead to spatial view cells. A computational model in which the neurons become organized by learning to respond to a combination of a small number of visual cues spread within an angle of a 30 degrees receptive field resulted in cells with visual properties like those of primate spatial view cells. The same model, but operating with a receptive field of 270 degrees, produced cells with visual properties like those of rat place cells. Thus a common hippocampal mechanism operating with different visual receptive field sizes could account for some of the visual properties of both place cells in rodents and spatial view cells in primates.  相似文献   

18.
The hippocampus is widely considered to be a critical component of a medial temporal lobe memory system, necessary for normal performance on tests of declarative memory. Object recognition memory is thought to be a classic test of declarative memory function. However, previous tests of the effects of hippocampal lesions on object recognition memory have not always supported this view. One possible reason for this inconsistency is that previously reported effects of hippocampal lesions on object recognition memory tasks may have stemmed not from a deficit in object recognition memory per se, but as a result of spatial and contextual confounds in the task. Thus, in the present study, we used a spontaneous object recognition test in a modified apparatus designed to minimize spatial and contextual factors. A group of rats with complete excitotoxic lesions of the hippocampus and a group of control rats were tested on this modified spontaneous object recognition task with retention delays of up to 48 h. These rats were also tested on a spatial nonmatching-to-place task. Spatial memory performance was abolished following hippocampal lesions, whereas performance on the recognition memory task was intact at all delays tested.  相似文献   

19.
Compared with the dorsal hippocampus, relatively few studies have characterized neuronal responses in the ventral hippocampus. In particular, it is unclear whether and how cells in the ventral region represent space and/or respond to contextual changes. We recorded from dorsal and ventral CA1 neurons in freely moving mice exposed to manipulations of visuospatial and olfactory contexts. We found that ventral cells respond to alterations of the visuospatial environment such as exposure to novel local cues, cue rotations, and contextual expansion in similar ways to dorsal cells, with the exception of cue rotations. Furthermore, we found that ventral cells responded to odors much more strongly than dorsal cells, particularly to odors of high valence. Similar to earlier studies recording from the ventral hippocampus in CA3, we also found increased scaling of place cell field size along the longitudinal hippocampal axis. Although the increase in place field size observed toward the ventral pole has previously been taken to suggest a decrease in spatial information coded by ventral place cells, we hypothesized that a change in spatial scaling could instead signal a shift in representational coding that preserves the resolution of spatial information. To explore this possibility, we examined population activity using principal component analysis (PCA) and neural location reconstruction techniques. Our results suggest that ventral populations encode a distributed representation of space, and that the resolution of spatial information at the population level is comparable to that of dorsal populations of similar size. Finally, through the use of neural network modeling, we suggest that the redundancy in spatial representation along the longitudinal hippocampal axis may allow the hippocampus to overcome the conflict between memory interference and generalization inherent in neural network memory. Our results indicate that ventral population activity is well suited for generalization across locations and contexts. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Recordings were made from single neurons in the hippocampus and parahippocampal gyrus while macaques were moved on a platform mounted on a free-moving robot or on wheels in a cue-controlled 2 m × 2 m × 2 m environment, in order to investigate the representation of space and of spatial memory in the primate hippocampus. The test conditions allowed factors that might account for spatial firing of the cells, including the spatial location where the monkey looked, the place were the monkey was, and the head direction of the monkey, to be identified. The responses of some (“view”) neurons depended on where the monkey was looking in the enviornment, but not on the place of the monkey in the environment. The responses of one other neuron depended on a combination of where the monkey was facing and his place in the test chamber. The response of view-dependent neurons was affected by occlusion of the visual field. It was possible to show for one neuron that its “view” response rotated with rotation of the test chamber. Some neurons responded to a combination of whole-body motion and view or place, and one neuron responded in relation to whole-body movement to a particular place. One neuron responded depending on the place where the monkey was in the environment and relatively independently of view. The representations of space provided by hippocampal view-responsive neurons may be useful in forming memories of spatial environments (for example, of where an object has been seen and of where the monkey is as defined by seen views) and, together with whole-body motion cells, in remembering trajectories through environments, which is of use, for example, in short range spatial navigation. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号