首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NK cell function is regulated by a dual receptor system, which integrates signals from triggering receptors and MHC class I-specific inhibitory receptors. We show here that the src family kinase Fyn is required for efficient, NK cell-mediated lysis of target cells, which lack both self-MHC class I molecules and ligands for NKG2D, an activating NK cell receptor. In contrast, NK cell inhibition by the MHC class I-specific receptor Ly49A was independent of Fyn, suggesting that Fyn is specifically required for NK cell activation via non-MHC receptor(s). Compared to wild type, significantly fewer Fyn-deficient NK cells expressed the inhibitory Ly49A receptor. The presence of a transgenic Ly49A receptor together with its H-2(d) ligand strongly reduced the usage of endogenous Ly49 receptors in Fyn-deficient mice. These data suggest a model in which the repertoire of inhibitory Ly49 receptors is formed under the influenced of Fyn-dependent NK cell activation as well as the respective MHC class I environment. NK cells may acquire Ly49 receptors until they generate sufficient inhibitory signals to balance their activation levels. Such a process would ensure the induction of NK cell self-tolerance.  相似文献   

2.
Natural killer (NK) cells are an essential component of the innate immunity toward tumors and virally infected cells. The function of NK cells is regulated by a precise balance between inhibitory and activating signals. These signals are mediated by NK cell receptors that bind either classical MHC class I molecules or their structural relatives such as MICA, ULBP, RAE-1, and H-60. Two separate families of NK cell receptors have been identified: the immunoglobulin-like family (KIR, LIR) and C-type lectin-like family (Ly49, NKG2D, and CD94/NKG2). Here we summarize the structure of Ly49 C-type lectin-like proteins hitherto solved (Ly49A, Ly49C and Ly49I) and their interaction with MHC class I molecules as determined by the co-crystal structure of Ly49A/H-2Dd and Ly49C/H-2Kb.  相似文献   

3.
In the mouse, two families of MHC class I-specific receptors, namely Ly49 and CD94/NKG2, have been identified on NK cells. Individual NK cells can express several Ly49 molecules as well as members of the CD94/NKG2 family. The expression of multiple receptors with different specificities for MHC class I is thus thought to generate NK cells with diverse recognition patterns. To delineate the mechanism by which NK cells begin to express different patterns of Ly49 and CD94/NKG2 molecules, we developed a clonal assay in which NK1.1(-), IL-2/ IL-15 receptor beta+ NK precursors generated by culture of multipotential Lin(-), c-kit+ progenitors in IL-7, stem cell factor and flt3 ligand are induced to differentiate into NK1.1+ , Ly49+ NK cells. Examination of the clonal populations thus generated revealed heterogeneity in the pattern of Ly49 and CD94/NKG2 gene expression. In addition, a distinct kinetic pattern of expression was observed. CD94, NKG2A, NKG2C and Ly49B were expressed first followed by Ly49G, then Ly49C and I and finally, Ly49A, D, E and F. The data suggest a stochastic but ordered acquisition of class I receptors on NK cells in which developing NK cells become capable of expressing distinct receptors at different times but show no absolute prerequisite to express the receptors that are acquired early in NK development for the expression of those that are acquired later.  相似文献   

4.
5.
Downmodulation of major histocompatibility complex (MHC) class I molecules by cytomegalovirus (CMV) impairs the engagement of specific leucocyte-inhibitory receptors, rendering infected cells vulnerable to natural killer (NK) cells. Members of the murine Ly49 and human KIR families, CD85j (ILT2 or leucocyte Ig-like receptor-1), as well as the CD94/NKG2A-inhibitory killer lectin-like receptor (KLR) fulfil this surveillance role. On the other hand, NK-activating receptors specific to ligands expressed on virus-infected cells may overcome the control by inhibitory receptors. In this regard, NKG2D and Ly49H lectin-like molecules trigger NK-cell functions recognizing, respectively class I-related stress-inducible molecules and the m157 murine CMV glycoprotein. Among a variety of immune evasion strategies, CMV promotes the synthesis of class I surrogates and selectively preserves the expression of some class I molecules in infected cells; moreover, CMV interferes with the expression of ligands for NKG2D. We herein review these aspects of the host-pathogen interaction, discussing a number of open issues.  相似文献   

6.
When T effector cells meet antigen-bearing target cells, there is a specific accumulation of T-cell receptors, co-receptors and structural proteins at the point of cell-cell contact. Ly49 inhibitory receptors bind to murine major histocompatibility complex (MHC) class I molecules and prevent natural killer-(NK) cell cytotoxicity. In this study we have tested whether inhibitory receptors accumulate at the point of cell-cell contact when NK cells encounter target cells bearing MHC class I ligands for those inhibitory receptors. We have used RNK-16 effector cells that express Ly49A receptors and have found that there was a specific accumulation of Ly49A receptors at the point of NK cell-target cell contact when the target cells expressed H-2Dd. We also observed that engagement of Ly49A on NK cells resulted in an altered redistribution of potential triggering receptors CD2 and NKR-P1. These data indicate that inhibitory receptors, like activating receptors, may specifically aggregate at the point of cell-cell contact which may be necessary for them to mediate their full inhibitory effect.  相似文献   

7.
Murine natural killer (NK) cells are inhibited by target cell MHC class I molecules via Ly49 receptors. However, Ly49 receptors can be made inaccessible to target cell MHC class I by a cis interaction with its MHC class I ligand within the NK cell membrane. It has recently been demonstrated that MHC class I proteins transfer from the target cells to the NK cell. Here, we establish that the number of transferred MHC class I proteins is proportional to the number of Ly49A receptors at the NK cell surface. Ly49A+ NK cells from mice expressing the Ly49A ligand H-2D(d) showed a 90% reduction in Ly49A accessibility compared to Ly49A+ NK cells from H-2D(d)-negative mice. The reduction was caused both by lower expression of Ly49A and interactions in cis between Ly49A and H-2D(d) at the NK cell surface. Approximately 75% of the Ly49A receptors on H-2D(d)-expressing NK cells were occupied in cis with endogenous H-2D(d) and only 25% were free to interact with H-2D(d) molecules in trans. Thus, H-2D(d) ligands control Ly49A receptor accessibility through interactions both in cis and in trans.  相似文献   

8.
Natural killer cells fail to lyse target cells expressing sufficient levels of self MHC class I molecules, providing one mechanism to secure self tolerance. Inhibition of lysis is mediated by inhibitory receptors expressed by NK cells, such as the murine Ly49 receptors, human KIR receptors and CD94/NKG2A, expressed by both species. To ensure that most, if not all, NK cells express at least one inhibitory receptor for self MHC class I, selection processes have been postulated for murine NK cells regulating the number and identity of inhibitory receptors expressed by each cell. The presence of similar selection processes in human NK cells has not been demonstrated. In previous studies using mathematical modeling we have shown that, in the Ly49 system, the sequential model (in which gene expression and selection operate simultaneously) is most likely to explain the observed expression frequencies. We also predicted the parameters (such as receptor-ligand binding affinity levels) under which the models fit with the observed frequencies. This study aims to evaluate whether these models may be valid in the human system. Our data suggest that if selection operates during human NK cell development, it affects the co-expression of CD94/NKG2A and KIR rather than KIR expression alone, and is more likely to be governed by the two-step selection model.  相似文献   

9.
Natural killer (NK) cell responsiveness in the mouse is determined in an education process guided by inhibitory Ly49 and NKG2A receptors binding to MHC class I molecules. It has been proposed that inhibitory signalling in human NK cells involves Abl‐1 (c‐Abl)‐mediated phosphorylation of Crk, lowering NK cell function via disruption of a signalling complex including C3G and c‐Cbl, suggesting that NK cell education might involve c‐Abl. Mice deficient in c‐Abl expression specifically in murine NK cells displayed normal inhibitory and activating receptor repertoires. Furthermore, c‐Abl‐deficient NK cells fluxed Ca2+ normally after triggering of ITAM receptors, killed YAC‐1 tumour cells efficiently and showed normal, or even slightly elevated, capacity to produce IFN‐γ after activating receptor stimulation. Consistent with these results, c‐Abl deficiency in NK cells did not affect NK cell inhibition via the receptors Ly49G2, Ly49A and NKG2A. We conclude that signalling downstream of murine inhibitory receptors does not involve c‐Abl and that c‐Abl plays no major role in NK cell education in the mouse.  相似文献   

10.
Murine bone marrow (BM) cell preparations lack mature cytotoxic natural killer (NK) cells, but NK cells may be induced in these cell preparations by culturing with interleukin-2 (IL2). Present study was aimed at studying the role of interactions between Ly49 molecules and major histocompatibility complex (MHC) class I molecules during IL2-induced development of mature NK cells in BM cell cultures. Addition of monoclonal antibodies (mabs) specific to class I MHC molecules of H-2b haplotype, to block any interaction of MHC I molecules with their receptors, was found to inhibit NK cell development. Mouse NK cells express several types of Ly49 molecules including Ly49C, which is an inhibitory receptor specific to MHC I molecules of H-2b haplotype. Blocking Ly49-MHC I interaction by using anti-Ly49C mab inhibited the development of cytotoxic NK cells. Addition of anti-Ly49A (no specificity for H-2b MHC I molecules) or anti-Ly49D (activating receptor specific for MHC I molecules of many H-2 haplotypes including H-2b) mabs, however, had no effect on IL2-induced NK cell development in BM cells. Mabs specific to Ly49C molecule and MHC I molecules of H-2b haplotype inhibited the development of mature NK cells from highly purified NK precursor cell population. These results indicate that specific interaction between inhibitory self-reactive Ly49 molecules and MHC I molecules may be crucial for NK cell development. We propose a model in which Ly49-MHC I interaction may have a permissive role in allowing development of only such NK cell clones that expresses at least one self-reactive inhibitory Ly49 molecule so that lysis of autologous healthy cells by mature NK cells may be avoided.  相似文献   

11.
Expression of adenovirus E1A gene products in tumor cells enhances NK cell lysis in vitro and NK-mediated rejection in vivo, despite increasing class I molecules on tumor cells. It is unclear why the increased expression of MHC class I molecules does not appear to confer resistance to killing by NK cells. One possibility is the unique capacity of E1A to sensitize cells to multiple NK cell killing mechanisms including perforin/granzyme, Fas ligand, tumor necrosis factor-alpha and TRAIL. To examine this issue, MCA-102-E1A tumor cells (H-2(b)) that express E1A and are NK sensitive were transfected with H-2D(d), the ligand for the NK inhibitory receptor, Ly49A. Expression of H-2D(d) molecules by MCA-102-E1A cells protected them from lysis by a Ly49A(+) NK cell clone and Ly49A(+) NK cells isolated from C57BL/6 nude mice. In contrast, NK cell-mediated rejection of MCA-102-E1A tumor cells was not inhibited by the expression of H-2D(d) molecules, nor was killing by polyclonal populations of NK cells isolated from C57BL/6-nude mice. H-2D(d) interacts with several inhibitory Ly49 receptors that are non-clonally expressed on NK cells in C57BL/6 mice: Ly49A (20% of NK cells), Ly49G2 (54% of NK cells) and Ly49C/I (47% of NK cells). Our data indicate that while E1A sensitizes cells to NK cell killing, it does not interfere with signal transduction by inhibitory NK receptors. Therefore, a small population of NK cells that do not express Ly49A, Ly49G2 or Ly49C/I inhibitory receptors are likely responsible for the rejection of MCA-102-E1A-D(d) tumor cells in vivo.  相似文献   

12.
NK cells from long-term bone marrow culture (LTBMC) were compared with IL-2-activated splenic NK cells [short-term spleen cell culture (STSC)] with regard to expression of inhibitory Ly49 receptors and cytotoxic function. In the LTBMC, the total number of NK cells expressing either one of the Ly49 molecules A, C/I and G2 was strongly reduced (10-15% of NK1.1(+) cells) compared to the STSC (80-90% of NK1.1(+) cells). With regard to cytotoxic function, we confirmed that LTBMC-derived NK cells efficiently killed the prototype NK target YAC-1. However, against other targets, killing was more variable. First, while STSC-derived NK cells clearly distinguished MHC class I(-) from MHC class I(+) tumor cell targets, LTBMC-derived NK cells did not; they either killed both targets equally well or not at all. Secondly, LTBMC-derived NK cells were largely incapable of killing lymphoblast targets deficient in MHC class I expression. To test whether this cytotoxic defect was due to the low number of Ly49(+) NK cells in the LTBMC, we separated Ly49(+) and Ly49(-) NK cells by cell sorting and tested them individually. This experiment showed that only Ly49(+) NK cells in the LTBMC were able to kill MHC class I(-) lymphoblasts (and to distinguish them from MHC class I(+)), despite good cytotoxicity against YAC-1 cells in both populations. These data suggest that certain modes of NK cell triggering are dependent on Ly49 receptor expression. From our results, we speculate that inhibitory receptors are expressed before triggering receptors for normal self cells during NK cell development, which may be an important mechanism to preserve self tolerance during the early stages of NK cell maturation.  相似文献   

13.
Engagement of MHC class I-specific inhibitory receptors regulates natural killer (NK) cell development and function. Using both new and previously characterized anti-Ly49 monoclonal antibodies, we comprehensively determined expression and co-expression frequencies of four Ly49 receptors by NK cells from MHC-congenic, MHC class I-deficient, and Ly49A-transgenic mice to study mechanisms that shape the inhibitory Ly49 repertoire. All Ly49 receptors were expressed on partially overlapping subsets. Significantly, in the absence of class I MHC, several receptor pairs were co-expressed more frequently than predicted from a purely random expression model, indicating that biases independent of MHC class I underlie receptor co-expression in some cases. MHC interactions were found to inhibit Ly49 co-expression variably depending on the MHC allele and the receptor pair examined. These data extend previous evidence that interactions with MHC shape the repertoire. It was previously proposed that developing NK cells express Ly49 receptors sequentially and cumulatively, until self-MHC specific receptors are expressed and inhibit new receptor expression. Fulfilling a major prediction of this model, we found that class I recognition by a Ly49A transgene expressed by all developing NK cells equivalently inhibited expression of endogenous self-specific and nonself-specific Ly49 receptors.  相似文献   

14.
NK cells monitor expression of MHC class I by inhibitory receptors and preferentially kill cells that lose or down-regulate MHC class I expression. One possible mechanism by which tumor cells evade NK cell killing is continued expression of appropriate MHC class I ligands to engage inhibitory receptors on NK cells. We show here that small-mol.-wt blockers against the mouse inhibitory NK cell receptor Ly49A enhance NK cell killing of such tumor cells. We identified Ly49A-binding peptides by selecting phages with the capacity to bind recombinant Ly49A expressed in Escherichia coli from a phage display random peptide library. The Ly49A-binding peptides could also bind Ly49A expressed on mammalian cells. Importantly, the Ly49A-binding peptides blocked Ly49A recognition of its MHC class I ligands H-2Dd and H-2Dk. Moreover, blockade of Ly49A by the peptides enhanced cytotoxicity of Ly49A+ NK cells towards H-2Dd-expressing tumor cells. These results clearly indicate effectiveness of small-mol.-wt blockers of inhibitory NK cell receptors in enhancing NK cell-mediated killing of tumor cells that are otherwise resistant because of MHC class I expression.  相似文献   

15.
Natural killer (NK) cell function is negatively regulated by inhibitory receptors interacting with major histocompatibility complex class I molecules expressed on target cells. Here we show that the inhibitory Ly49A NK cell receptor not only binds to its H-2D(d) ligand expressed on potential target cells (in trans) but also is constitutively associated with H-2D(d) in cis (on the same cell). Cis association and trans interaction occur through the same binding site. Consequently, cis association restricts the number of Ly49A receptors available for binding of H-2D(d) on target cells and reduces NK cell inhibition through Ly49A. By lowering the threshold at which NK cell activation exceeds NK cell inhibition, cis interaction allows optimal discrimination of normal and abnormal host cells.  相似文献   

16.
Ly49 antigens, interacting with MHC class I molecules, enable NK cells to distinguish "self" from "non-self". Here, we investigated the activating receptor Ly49 D after allogeneic bone marrow transplantation (BMT). After transplantation of B6 bone marrow (BM) into BALB/c recipients we observed a significant reduction of Ly49 D+ NK cells and a decreased density of expression. We found a nonstochastic distribution of Ly49 D with Ly49 G2. In contrast to reduced coexpression with Ly49 A, a constant rate of Ly49 G2 on Ly49 D+ NK cells was observed in allogeneic chimeras. Cytotoxicity was reduced during the first two months after BMT After this time allogeneic chimeras showed tolerance against host-specific targets. We conclude that NK cells are able to shape their Lys49 repertoire fitting to a new environment after allogeneic BMT. This alteration seems to depend on the presence of new corresponding MHC class I molecules resulting in downregulation of respective receptors on donor cells. Analysing coexpression of Ly49 D and Ly49 G2, we found a relationship between these two receptors, showing a distinct effect after allogeneic BMT. Functional data indicate that a time of reduced NK cell cytotoxicity after BMT is followed by in vitro tolerance of allogeneic chimeras.  相似文献   

17.
Natural killer (NK) T lymphocytes are thought to act as regulatory cells directing early events during immune responses. Murine NKT cells express inhibitory receptors of the Ly49 family. These receptors have a well-established and crucial role in modulating NK cell activities, but their physiological role in regulating NKT cells is not well understood, nor is the influence of major histocompatibility (MHC) ligands on endogenous Ly49 expression. We have further investigated how the expression of inhibitory NK receptors is regulated on NKT cells, and demonstrate a non-random expression of ligated Ly49 molecules on CD1d-restricted NKT cells. The nature of the T-cell receptor on the NKT cell crucially determines the profile of expressed Ly49 isoforms. Further, we show that MHC class I ligands efficiently modulate the expression levels of the inhibitory receptors, and the frequencies of cells positive for the Ly49 members. In addition, we find a several-fold increase in Ly49C/I-expressing NKT cells in adult thymus, apparently independent of MHC class I molecules. Abundant expression of Ly49 receptors on NKT cells, and the striking differences found in Ly49 isoform patterns on NKT-cell subsets differing in T-cell receptor expression, suggest that the pattern of Ly49 expression is tuned to fit the T-cell receptor and to emphasize further a role for these receptors in NKT immunity.  相似文献   

18.
Mouse NK cells express MHC class I-specific inhibitory Ly49 receptors. Since these receptors display distinct ligand specificities and are clonally distributed, their expression generates a diverse NK cell receptor repertoire specific for MHC class I molecules. We have previously found that the D d (or Dk )-specific Ly49A receptor is usually expressed from a single allele. However, a small fraction of short-term NK cell clones expressed both Ly49A alleles, suggesting that the two Ly49A alleles are independently and randomly expressed. Here we show that the genes for two additional Ly49 receptors (Ly49C and Ly49G2) are also expressed in a (predominantly) mono-allelic fashion. Since single NK cells can co-express multiple Ly49 receptors, we also investigated whether mono-allelic expression from within the tightly linked Ly49 gene cluster is coordinate or independent. Our clonal analysis suggests that the expression of alleles of distinct Ly49 genes is not coordinate. Thus Ly49 alleles are apparently independently and randomly chosen for stable expression, a process that directly restricts the number of Ly49 receptors expressed per single NK cell. We propose that the Ly49 receptor repertoire specific for MHC class I is generated by an allele-specific, stochastic gene expression process that acts on the entire Ly49 gene cluster.  相似文献   

19.
NKG2D is a recently described activating receptor expressed by both NK cells and CTL. In this study we investigated the role of NKG2D in the natural cytolysis mediated by NK cell clones. The role of NKG2D varied depending on the type of target cells analyzed. Lysis of various tumors appeared to be exclusively natural cytotoxicity receptors (NCR) dependent. In contrast, killing of another group of target cells, including not only the epithelial cell lines HELA and IGROV-1, but also the FO-1 melanoma, the JA3 leukemia, the Daudi Burkitt lymphoma and even normal PHA-induced lymphoblasts, involved both NCR and NKG2D. Notably, NK cell clones expressing low surface densities of NCR (NCR(dull)) could lyse these tumors in an exclusively NKG2D-dependent fashion. Remarkably, not all of these targets expressed MICA/B, thus implying the existence of additional ligands recognized by NKG2D, possibly represented by GPI-linked molecules. Finally, we show that the engagement of different HLA class I-specific inhibitory receptors by either specific antibodies or the appropriate HLA class I ligand led to inhibition of NKG2D-mediated NK cell triggering.  相似文献   

20.
Ligands for natural killer cell receptors: redundancy or specificity   总被引:11,自引:0,他引:11  
Summary: Several inhibitory and activating receptors involved in natural killer cell activation have been characterized. The increasing knowledge about their ligands, including classical MHC class I molecules, non-classical MHC class I molecules and MHC class I-related molecules, is shedding new light on the targets of innate immune recognition. While classical MHC class I molecules are constitutively expressed, some MHC class I-related (MIC) molecules, however, are stress-induced by ill-defined stimuli. Two families of ligands for the human activating NKG2D receptor have been identified. These are the MIC proteins encoded by two highly polymorphic genes within the MHC class I and the retinoic acid-inducible early gene-1-like (also designated UL16-binding) proteins encoded by genes outside the MHC. For the mouse NKG2D receptor, one family, containing at least five distinct ligands, has been described. A better understanding about how targets signal their distress, which renders them susceptible to natural killer (NK)-cell attack, will help to define the role of NK cells in antimicrobial and antitumor immunity and transplantation.
Supported by NIH grants CA89294 and CA89189  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号