首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alendronate decreases the risk of femoral neck fracture by suppressing bone turnover, and also decreases the serum total osteocalcin level. A low serum carboxylated osteocalcin level or high undercarboxylated osteocalcin level could be risk factors for femoral neck fracture. Vitamin K mediates the carboxylation of osteocalcin, but the effect of alendronate therapy with or without vitamin K2 supplementation remains unknown. Forty-eight postmenopausal women were enrolled in a 1-year prospective randomized trial and assigned to alendronate monotherapy (5 mg/day) (group A, n = 26) or vitamin K2 (45 mg/day) plus alendronate (5 mg/day) (group AK, n = 22). Bone mineral density was measured by dual-energy X-ray absorptiometry at 0 and 12 months; bone turnover parameters were measured at 0, 3, and 12 months. Four patients discontinued alendronate therapy, and we analyzed the remaining 44 patients (23 in group A and 21 in group AK) who completed 1 year of treatment. Alendronate decreased undercarboxylated osteocalcin; carboxylated osteocalcin was not affected. Addition of vitamin K2 enhanced the decrease of undercarboxylated osteocalcin levels and led to a greater increase of femoral neck bone mineral density. Alendronate monotherapy does not decrease carboxylation of osteocalcin, and combination of vitamin K2 and alendronate brings further benefits on both osteocalcin carboxylation and BMD of femoral neck in postmenopausal women with osteoporosis.  相似文献   

2.

Summary

We have investigated whether low-dose vitamin K2 supplements (menaquinone-7, MK-7) could beneficially affect bone health. Next to an improved vitamin K status, MK-7 supplementation significantly decreased the age-related decline in bone mineral density and bone strength. Low-dose MK-7 supplements may therefore help postmenopausal women prevent bone loss.

Introduction

Despite contradictory data on vitamin K supplementation and bone health, the European Food Safety Authorities (EFSA) accepted the health claim on vitamin K’s role in maintenance of normal bone. In line with EFSA’s opinion, we showed that 3-year high-dose vitamin K1 (phylloquinone) and K2 (short-chain menaquinone-4) supplementation improved bone health after menopause. Because of the longer half-life and greater potency of the long-chain MK-7, we have extended these investigations by measuring the effect of low-dose MK-7 supplementation on bone health.

Methods

Healthy postmenopausal women (n?=?244) received for 3 years placebo or MK-7 (180 μg MK-7/day) capsules. Bone mineral density of lumbar spine, total hip, and femoral neck was measured by DXA; bone strength indices of the femoral neck were calculated. Vertebral fracture assessment was performed by DXA and used as measure for vertebral fractures. Circulating uncarboxylated osteocalcin (ucOC) and carboxylated OC (cOC) were measured; the ucOC/cOC ratio served as marker of vitamin K status. Measurements occurred at baseline and after 1, 2, and 3 years of treatment.

Results

MK-7 intake significantly improved vitamin K status and decreased the age-related decline in BMC and BMD at the lumbar spine and femoral neck, but not at the total hip. Bone strength was also favorably affected by MK-7. MK-7 significantly decreased the loss in vertebral height of the lower thoracic region at the mid-site of the vertebrae.

Conclusions

MK-7 supplements may help postmenopausal women to prevent bone loss. Whether these results can be extrapolated to other populations, e.g., children and men, needs further investigation.  相似文献   

3.
Although several observational studies have demonstrated an association between vitamin K status and bone mineral density (BMD) in postmenopausal women, no placebo-controlled intervention trials of the effect of vitamin K1 supplementation on bone loss have been reported thus far. In the trial presented here we have investigated the potential complementary effect of vitamin K1 (1 mg/day) and a mineral + vitamin D supplement (8 µg/day) on postmenopausal bone loss. The design of our study was a randomized, double-blind, placebo-controlled intervention study; 181 healthy postmenopausal women between 50 and 60 years old were recruited, 155 of whom completed the study. During the 3-year treatment period, participants received a daily supplement containing either placebo, or calcium, magnesium, zinc, and vitamin D (MD group), or the same formulation with additional vitamin K1 (MDK group). The main outcome was the change in BMD of the femoral neck and lumbar spine after 3 years, as measured by DXA. The group receiving the supplement containing additional vitamin K1 showed reduced bone loss of the femoral neck: after 3 years the difference between the MDK and the placebo group was 1.7% (95% Cl: 0.35–3.44) and that between the MDK and MD group was 1.3% (95% Cl: 0.10–3.41). No significant differences were observed among the three groups with respect to change of BMD at the site of the lumbar spine. If co-administered with minerals and vitamin D, vitamin K1 may substantially contribute to reducing postmenopausal bone loss at the site of the femoral neck.  相似文献   

4.
Femoral neck geometry and hip fracture risk: the Geelong osteoporosis study   总被引:2,自引:0,他引:2  
To determine the relationship between femoral neck geometry and the risk of hip fracture in post-menopausal Caucasian women, we conducted a retrospective study comparing the femoral neck dimensions of 62 hip fracture cases to those of 608 randomly selected controls. Measurements were made from dual-energy X-ray absorptiometry scans (Lunar DPX-L), using the manufacturers ruler function, and included: hip axis length (HAL), femoral neck axis length (FNAL), femoral neck width (FNW), femoral shaft width (FSW), medial femoral shaft cortical thickness (FSCTmed), and lateral femoral shaft cortical thickness (FSCTlat). The fracture group was older (median age 78.3 years vs 73.8 years), lighter (median weight 59.9 kg vs 64.5 kg), and, after adjustment for age, taller (mean height 158.7±0.8 cm vs 156.7±0.2 cm) than the controls. Furthermore, bone mineral density was lower in this group (0.682±0.016 g/cm2 vs 0.791±0.006 g/cm2). After adjustment for age, bone mineral content (BMC) or height, hip fracture patients had greater FNW (up to 6.6%) and FSW (up to 6.3%) than did the controls. Each standard deviation increase in FNW and FSW was associated with a 1.7-fold (95% CI 1.3–2.3) and a 2.4-fold (95% CI 1.8–3.2) increase in the fracture risk, respectively. BMC-adjusted FNAL was greater in the fracture group (+2.1%) than in the controls, while the age-adjusted FSCTmed was reduced (–7.2%). There was a trend towards longer HAL (up to 2.1%) after adjustment for age or BMC, and thinner age-adjusted FSCTlat (–1.7%) in fracture patients that did not reach statistical significance. In multivariate analysis, the risk of hip fracture was predicted by the combination of age, FNW, FSW, BMC and FSCTmed. HAL was not analyzed because of the small number of HAL measurements among fracture cases. We conclude that post-menopausal women with hip fractures have wider femoral necks and shafts, thinner femoral cortices and longer femoral neck axis lengths than do women with no fractures. Alteration in hip geometry is associated with the risk of hip fracture.The authors declare no conflicts of interest with regard to this article  相似文献   

5.
We evaluated the skeletal effects of two osteoporosis therapies in an ovariectomized rat model, raloxifene and vitamin K2, as well as the vitamin K2 plus raloxifene (K + Ral) combination. In two studies, 6-month-old rats were ovariectomized, except for sham-ovariectomy controls (Sham), and dosed orally with vehicle, 30 mg/kg vitamin K2, 1 mg/kg raloxifene, or the combination of K + Ral for 6 weeks following surgery. Vitamin K2 had no effect on serum estrogen, low-density lipoprotein cholesterol (LDL-C), or urinary deoxypyridinoline levels, but slightly increased osteocalcin levels compared to Ovx. Raloxifene lowered total cholesterol, LDL-C, osteocalcin, and urinary deoxypyridinoline levels to below Ovx levels, while having no effect on estrogen levels. Raloxifene, but not vitamin K2, prevented ovariectomy-induced loss of bone in the distal femoral metaphysis and proximal tibial metaphysis, as did the K + Ral combination. Raloxifene, but not vitamin K2, partially prevented, loss of vertebral bone mineral density (BMD), whereas K + Ral had BMD greater than that of Ovx. Vitamin K2 increased bone formation rate to above Ovx, whereas raloxifene and K + Ral reduced bone formation rate to Sham levels. Vitamin K2 had no effect on eroded surface compared to Ovx, while raloxifene and K + Ral reduced eroded surface to Sham levels. Groups were not different in the BMD of femoral midshaft; however vitamin K2 was observed to increase periosteal mineralizing surface of the tibial shaft to above Ovx, while raloxifene reduced periosteal mineralizing surface toward Sham levels. Femoral neck strength was not different between groups, indicating no significant beneficial effect of either raloxifene or vitamin K2 at this site. However, K + Ral had reproducibly greater femoral neck strength than Ovx or Sham. Raloxifene, but not vitamin K2, partially prevented loss of lumbar vertebra strength; but K + Ral was not different from Sham or Ovx. Therefore, raloxifene and vitamin K2 had complementary effects on bone resorption and formation activities, respectively, resulting in a reproducible, significant improvement of femoral neck strength. These rat data suggest interesting therapeutic possibilities that may require clinical verification. This work was supported by Lilly Research Laboratories.  相似文献   

6.
Introduction Vitamin K functions as a co-factor in the post-translational carboxylation of several bone proteins, including osteocalcin.Aim The aim of this study was to investigate the relationship between vitamin K1 intake and bone mineral density (BMD) and fracture risk in a perimenopausal Danish population.Design The study was performed within the Danish Osteoporosis Prevention Study (DOPS), including a population-based cohort of 2,016 perimenopausal women. During the study approximately 50% of the women received hormone replacement therapy (HRT). Associations between vitamin K1 intake and BMD were assessed at baseline and after 5-years of follow-up (cross-sectional design). Moreover, associations between vitamin K1 intake and 5-year and 10-year changes in BMD were studied (follow-up design). Finally, fracture risk was assessed in relation to vitamin K1 intake (nested case–control design).Results In our cohort, dietary vitamin K1 intake (60 μg/day) was close to the daily intake recommended by the Food and Agriculture Organization (FAO). Cross-sectional and longitudinal analyses showed no associations between intake of vitamin K1 and BMD of the femoral neck or lumbar spine. Neither did BMD differ between those 5% that had the highest vitamin K1 intake and those 5% that had the lowest. During the 10-years of follow-up, 360 subjects sustained a fracture (cases). In a comparison between the cases and 1,440 controls, logistic regression analyses revealed no difference in vitamin K1 intake between cases and controls.Conclusion In a group of perimenopausal and early postmenopausal women, vitamin K1 intake was not associated with effects on BMD or fracture risk.  相似文献   

7.
Renal insufficiency induces cortical bone loss in rats. The present study examined the influence of vitamin K2 on renal function, cortical bone mass, and bone strength in rats with renal insufficiency. Thirty male Sprague-Dawley rats (8 weeks old) were randomized by the stratified weight method to the following three groups of 10 animals each: sham operation (control), 5/6 nephrectomy, and 5/6 nephrectomy + oral vitamin K2 (menaquinone-4, menatetrenone, 30 mg/kg, 5 days/week). Treatment was initiated 10 days after surgery. After 6 weeks of treatment, samples of serum, urine, and bone (femur and tibia) were obtained. Renal function was evaluated, bone histomorphometric analysis was performed on the tibial diaphysis, and the bone mineral density (BMD) and mechanical strength of the femoral diaphysis were determined by peripheral quantitative computed tomography and a three-point bending test, respectively. Nephrectomy induced renal dysfunction, as indicated by increased levels of serum creatinine and urea nitrogen along with a decrease of creatinine clearance; and it also decreased BMD without significantly affecting bone strength at the femoral diaphysis. Vitamin K2 improved renal function parameters but did not significantly influence BMD at the femoral diaphysis. However, vitamin K2 decreased the bone marrow area of the tibial diaphysis and increased the stiffness of the femoral diaphysis. These findings suggest that administration of vitamin K2 improves renal function and increases cortical bone strength without altering BMD in rats with renal insufficiency.  相似文献   

8.
Vitamin C supplement use and bone mineral density in postmenopausal women.   总被引:9,自引:0,他引:9  
Vitamin C is known to stimulate procollagen, enhance collagen synthesis, and stimulate alkaline phosphatase activity, a marker for osteoblast formation. Studies of dietary vitamin C intake and the relation with bone mineral density (BMD) have been conflicting, probably because of the well-known limitations of dietary nutrient assessment questionnaires. The purpose of this study was to evaluate the independent relation of daily vitamin C supplement use with BMD in a population-based sample of postmenopausal women. Subjects were 994 women from a community-based cohort of whom 277 women were regular vitamin C supplement users. Vitamin C supplement use was validated. Daily vitamin C supplement intake ranged from 100 to 5,000 mg; the mean daily dose was 745 mg. Average duration of use was 12.4 years; 85% had taken vitamin C supplements for more than 3 years. BMD levels were measured at the ultradistal and midshaft radii, hip, and lumbar spine. After adjusting for age, body mass index (BMI), and total calcium intake, vitamin C users had BMD levels approximately 3% higher at the midshaft radius, femoral neck, and total hip (p < 0.05). In a fully adjusted model, significant differences remained at the femoral neck (p < 0.02) and marginal significance was observed at the total hip (p < 0.06). Women taking both estrogen and vitamin C had significantly higher BMD levels at all sites. Among current estrogen users, those also taking vitamin C had higher BMD levels at all sites, with marginal significance achieved at the ultradistal radius (p < 0.07), femoral neck (p < 0.07), and total hip (p < 0.09). Women who took vitamin C plus calcium and estrogen had the highest BMD at the femoral neck (p = 0.001), total hip (p = 0.05), ultradistal radius (p = 0.02), and lumbar spine. Vitamin C supplement use appears to have a beneficial effect on levels of BMD, especially among postmenopausal women using concurrent estrogen therapy and calcium supplements.  相似文献   

9.
Odanacatib, a selective cathepsin K inhibitor, increases areal bone mineral density (aBMD) at the spine and hip of postmenopausal women. To gain additional insight into the effects on trabecular and cortical bone, we analyzed quantitative computed tomography (QCT) data of postmenopausal women treated with odanacatib using Medical Image Analysis Framework (MIAF; Institute of Medical Physics, University of Erlangen, Erlangen, Germany). This international, randomized, double‐blind, placebo‐controlled, 2‐year, phase 3 trial enrolled 214 postmenopausal women (mean age 64 years) with low aBMD. Subjects were randomized to odanacatib 50 mg weekly (ODN) or placebo (PBO); all participants received calcium and vitamin D. Hip QCT scans at 24 months were available for 158 women (ODN: n = 78 women; PBO: n = 80 women). There were consistent and significant differential treatment effects (ODN‐PBO) for total hip integral (5.4%), trabecular volumetric BMD (vBMD) (12.2%), and cortical vBMD (2.5%) at 24 months. There was no significant differential treatment effect on integral bone volume. Results for bone mineral content (BMC) closely matched those for vBMD for integral and trabecular compartments. However, with small but mostly significant differential increases in cortical volume (1.0% to 1.3%) and thickness (1.4% to 1.9%), the percentage cortical BMC increases were numerically larger than those of vBMD. With a total hip BMC differential treatment effect (ODN‐PBO) of nearly 1000 mg, the proportions of BMC attributed to cortical gain were 45%, 44%, 52%, and 40% for the total, neck, trochanter, and intertrochanter subregions, respectively. In postmenopausal women treated for 2 years, odanacatib improved integral, trabecular, and cortical vBMD and BMC at all femur regions relative to placebo when assessed by MIAF. Cortical volume and thickness increased significantly in all regions except the femoral neck. The increase in cortical volume and BMC paralleled the increase in cortical vBMD, demonstrating a consistent effect of ODN on cortical bone. Approximately one‐half of the absolute BMC gain occurred in cortical bone. © 2014 American Society for Bone and Mineral Research.  相似文献   

10.
The purpose of the present study was to examine the effect of vitamin K2 on cancellous and cortical bone mass in rats with streptozotocin (STZ)-induced type 1 diabetes. Twenty-seven male Sprague-Dawley rats aged 12 weeks were randomized by the weight-stratified method into the following three groups: age-matched control group, STZ + vehicle group, and STZ + vitamin K2 group. STZ (40 + 50 mg/kg) was administered intravenously twice during the initial 1-week period. Vitamin K2 (menatetrenone, 30 mg/kg) was administered orally 5 days a week. After 12 weeks of treatment, the serum glucose concentration and femoral length and weight were measured and histomorphometric analysis was performed on the cancellous and cortical bone of the distal femoral metaphysis and femoral diaphysis, respectively. STZ administration induced hyperglycemia and a decrease in femoral weight. The STZ + vehicle group also showed cancellous osteopenia due to a decrease in the number of osteoblasts/bone surface (N.Ob/BS) and the osteoblast surface (ObS)/BS without any significant changes in bone-resorption parameters, but it did not have a significant decrease in cortical bone mass. Administration of vitamin K2 to STZ-treated rats prevented the development of hyperglycemia and a decrease in femoral weight. Vitamin K2 also prevented cancellous osteopenia by inhibiting the decrease in N.Ob/BS and ObS/BS without significantly affecting bone-resorption parameters, but it did not significantly increase cortical bone mass. These results suggest that vitamin K2 has beneficial effects on glucose concentration and cancellous bone mass in rats with STZ-induced type 1 diabetes.  相似文献   

11.
目的探索围绝经期妇女血清铁蛋白与股骨颈强度综合指数之间的关系。方法选择2014年7月至2017年12月在我院就诊的116例围绝经期妇女纳入本研究。使用双能X射线吸收扫描仪测量髋部骨几何结构性质,包括髋轴长度(HAL)和股骨颈宽度(FNW),并将其与BMD,体重和身高结合以产生股骨颈的综合指数(CSI)、弯曲(BSI)和冲击强度指数(ISI)三种不同的失效模式下的强度。结果在对年龄、体质量指数(BMI)、生活方式因素、血清25-羟基维生素D、钙和磷摄入量、糖尿病和更年期状态进行校正后,多元回归分析显示血清铁蛋白与腰椎和股骨颈,以及股骨颈皮质厚度密切相关。重要的是,在所有的调整模型中,血清铁蛋白与三种股骨颈综合指数(如CSI、BSI和ISI)显示负相关(P0.05)。结论本研究表明高血清铁蛋白反映的全身铁储存增加可能与骨强度相对于负荷的减少有关。  相似文献   

12.
In South Africa, appendicular and lumbar spine bone mineral density (BMD) have been found to be similar in black and white women. However, femoral BMD has been found to be higher in black than in white women. Two different techniques were used to recalculate BMD to eliminate the possible confounding influence of ethnic differences in height on areal BMD measurements. Volumetric bone mineral apparent density (BMAD) values were calculated and bone mineral content (BMC) was corrected for body and bone size. This report analyses differences in BMD (corrected for height and weight), BMAD, BMC (corrected for body and bone size), femoral neck axis length (FNAL), mineral homeostasis and bone turnover (BT) in a group of 20 to 49-year-old premenopausal (105 whites and 74 blacks) and 45 to 64-year-old postmenopausal (50 whites and 65 blacks) female South African nurses. The corrected BMD and BMC findings were congruous, showing that both pre- and postmenopausal blacks and whites have similar distal radius and lumbar spine bone mass but that whites have lower femoral neck bone mass than blacks. In contrast, BMAD findings suggest that pre- and postmenopausal whites have lower bone mass at the lumbar spine and femoral neck than blacks but similar bone mass at the distal radius to blacks. There is a greater rate of decline in BMD in postmenopausal whites than in blacks. BMD at the femoral neck was 12.1% lower in premenopausal whites and 16.5% lower in postmenopausal whites than in blacks. There was a positive association between femoral neck BMD and weight in premenopausal blacks (R 2=0.5,p=0.0001) but not in whites. Blacks had shorter FNAL than whites in both the pre- and postmenopausal groups. Blacks had lower serum 25-hydroxyvitamin D (25-(OH)D) and higher 1,25-dihydroxyvitamin D (1,25-(OH)2D) levels than whites. There were no ethnic differences in biochemical markers of bone formation (serum alkaline phosphatase and osteocalcin) or bone resorption (urine hydroxyproline and pyridinoline), or in dietary calcium intake in either the pre- or postmenopausal groups. In the postmenopausal group, whites had higher ionized serum calcium (p=0.003), similar serum albumin, lower serum parathyroid hormone (p=0.003) and higher urinary calcium excretion (p=0.0001) than blacks. These results suggest that the higher peak femoral neck BMD in South African blacks than in whites might be determined by greater weight-bearing in blacks and that the significantly lower femoral neck BMD in postmenopausal whites than in blacks is determined by lower peak femoral neck BMD and a faster postmenopausal decline in BMD in whites. The higher incidence of femoral neck fractures in South African whites than in blacks is probably determined by the lower femoral neck BMD and longer FNAL in whites. The greater rate of decline in BMD in postmenopausal whites than in blacks is associated with an increase in urinary calcium excretion in whites. Measurement of biochemical markers of BT has not contributed to the understanding of ethnic differences in BMD and skeletal metabolism in our subjects.  相似文献   

13.
Calcium plus vitamin D (CaD) supplementation has a modest but significant effect on slowing loss of femoral bone mass and reducing risk of hip fractures in adherent postmenopausal women. The goal of this study was to determine if CaD supplementation influences hip structural parameters that are associated with fracture risk. We studied 1,970 postmenopausal women enrolled in the Women??s Health Initiative randomized controlled trial of CaD at one of three bone mineral density (BMD) clinical centers. Hip structural analysis software measured BMD and strength parameters on DXA scans at three regions: femoral narrow neck, intertrochanter, and shaft. Random effects models were used to test the average differences in hip BMD and geometry between intervention and placebo. There was greater preservation of hip BMD at the narrow neck with CaD relative to placebo across 6?years of intervention. CaD also altered the underlying cross-sectional geometry at the narrow neck in the direction of greater strength, with small increases in cross-sectional area and section modulus and a decrease in buckling ratio with CaD relative to placebo. While trends at both the intertrochanter and shaft regions were similar to those noted at the narrow neck, no significant intervention effects were evident. There was no significant interaction of CaD and age or baseline calcium levels for hip structural properties. CaD supplementation is associated with modest beneficial effects on hip structural features at the narrow neck, which may explain some of the benefit of CaD in reducing hip fracture risk.  相似文献   

14.
Summary  The effects of physical activity on bone strength acquisition during growth are not well understood. In our cluster randomized trial, we found that participation in a novel school-based physical activity program enhanced bone strength acquisition and bone mass accrual by 2–5% at the femoral neck in girls; however, these benefits depended on teacher compliance with intervention delivery. Our intervention also enhanced bone mass accrual by 2–4% at the lumbar spine and total body in boys. Introduction  We investigated the effects of a novel school-based physical activity program on femoral neck (FN) bone strength and mass in children aged 9–11 yrs. Methods  We used hip structure analysis to compare 16-month changes in FN bone strength, geometry and bone mineral content (BMC) between 293 children who participated in Action Schools! BC (AS! BC) and 117 controls. We assessed proximal femur (PF), lumbar spine (LS) and total body (TB) BMC using DXA. We compared change in bone outcomes between groups using linear regression accounting for the random school effect and select covariates. Results  Change in FN strength (section modulus, Z), cross-sectional area (CSA), subperiosteal width and BMC was similar between control and intervention boys, but intervention boys had greater gains in BMC at the LS (+2.7%, p = 0.05) and TB (+1.7%, p = 0.03) than controls. For girls, change in FN-Z tended to be greater (+3.5%, p = 0.1) for intervention girls than controls. The difference in change increased to 5.4% (p = 0.05) in a per-protocol analysis that included girls whose teachers reported 80% compliance. Conclusion  AS! BC benefits bone strength and mass in school-aged children; however, our findings highlight the importance of accounting for teacher compliance in classroom-based physical activity interventions.  相似文献   

15.
Black women have lower serum 25-hydroxyvitamin D (25[OH]D) levels and higher parathyroid hormone (PTH) levels than white peers but lower bone turnover, suggesting skeletal resistance to PTH. Our objective was to determine if vitamin D supplementation (1,000?IU/day) would prevent bone loss and whether vitamin D receptor (VDR) polymorphisms modify the response. We performed a 2-year randomized, controlled, double-blind study of 1,000?IU vitamin D3 vs. placebo in postmenopausal black women with serum 25(OH)D levels <20?ng/mL (n?=?103). Measurements of 25(OH)D, PTH, and bone turnover were evaluated at baseline and 3, 6, 12, 18, and 24?months. DNA was extracted from peripheral blood leukocytes, and genotyping was conducted using standard techniques. Spine and hip bone mineral density (BMD) was measured at baseline and every 6?months. Serum 25(OH)D increased 11?ng/mL with vitamin D supplementation (p?<?0.001), with no change in the placebo group. Vitamin D supplementation produced a significant decline in PTH at 3?months only, with no differences in bone turnover between placebo and vitamin D at any time point. Two-year changes in BMD were not significantly different between placebo- and vitamin D-treated black women at any skeletal site. Despite similar elevations in 25(OH)D, femoral neck BMD was only responsive to vitamin D supplementation in FF subjects (n?=?47), not Ff/ff subjects (n?=?31). Vitamin D supplementation does not appear to influence bone loss in black women. However, in the FF polymorphism of the VDR gene group, vitamin D supplementation may retard the higher rate of bone loss.  相似文献   

16.
Hip geometry and bone mineral density (BMD) have been shown previously to relate, independently of each other, to risk of hip fracture. We used Lunar DPX "beta" versions of hip strength analysis (HSA) and hip axis length (HAL) software to analyze scans from ten representative age-stratified population samples in the European Prospective Osteoporosis Study (EPOS). All 1617 subjects were >50 years of age, and 1033 were women. The data were modeled with gender and center as categorical variables. The bone mineral density of the upper half of the femoral neck declined at a faster rate with age than that in the lower half. Femoral neck cross-sectional moment of inertia (CSMI), a measure of resistance to bending, showed no significant age reduction in either gender. However, height and weight effects on CSMI were significantly more beneficial in men than in women (0.002 < p < 0.012) and the weight effect appeared to be mediated by bone mineral content (BMC). Compressive stress (Cstress), defined as the stress in the femoral neck at its weakest cross section arising from a standardized fall, was higher in women. Although Cstress increased with body weight when BMC was held constant, in practice it fell through the association and statistical interaction of rising body weight with rising BMC. HAL, as expected, was strongly positively associated with male gender and also height (p < 0.0001). Hip strength-related indices were markedly center-dependent. Significant differences (p < 0.0001) were noted between the centers for all the variables investigated that related to hip geometry. Adjustment for femoral neck bone mineral content (totBMC) showed these center differences to account for >50% of center variation in hip strength, which remained highly significant (p < 0.0001). We conclude that there are substantial geographical differences in femoral neck geometry as well as in BMD. These geometric variations may contribute to the large variations in hip fracture risk across Europe. The effects of aging on hip strength need to be explored in longitudinal studies.  相似文献   

17.
This prospective study set out to determine factors that underlie changes in bone characteristics and physical performance during postmenopausal years. Of 101 peri-menopausal women that originally participated in a randomized, controlled exercise intervention trial, 80 attended the follow-up measurements 9 years later. At follow-up, bone mineral content (BMC) of the lumbar spine, femoral neck and distal radius, as well as the maximal isometric muscle strength of leg extensors and arm flexors, and maximal oxygen uptake, were measured with the same protocols and devices as at the baseline. In addition, the hip structure analysis (HSA) was used to assess changes in the structure and strength at the narrowest section of the femoral neck. Changes in physical fitness or bone characteristics were independent of the original exercise intervention. In general, physical fitness declined with age from 5% to 30% and bone characteristics from 3% to 10%, except for the lumbar spine BMC and the periosteal diameter of the femoral neck, where no changes were observed. The use of hormone therapy (HRT) was the major factor accounting for the maintenance of BMC. Use of HRT alone explained 44% of the variability in the change at the femoral neck BMC, but it was not associated with changes in physical fitness. Change in the body weight was the only factor associated with the change in physical fitness: better maintenance in body weight predicted better maintenance of physical fitness. In conclusion, our results indicate that HRT helps to maintain bone mass and structure, which are important factors in prevention of fragility fractures in later life. However, HRT had no effect on physical fitness, which is highly associated with the risk of falling, the most important cause of fractures.  相似文献   

18.
The width of long bone diaphyses apparently increase with age, a phenomenon that is suggested to have some positive impact on bone strength. On the other hand, these changes in size that are site-specific may cause a deterioration in the local mechanical integrity of the whole bone. Physical activity and calcium intake are known to be able to modify bone mass and size. It is, however, not known whether these lifestyle habits can modify the postulated disproportionate changes in bone size. To address this question, bone mineral content (BMC)-derived estimates of cross-sectional areas (CSA) of femur and radius in 158 premenopausal (mean age 43, standard deviation 2 years) and 134 postmenopausal (63 (2) years), clinically healthy women with contrasting long-term histories in physical activity and calcium intake were determined from dual-energy X-ray absorptiometry (DXA) data. The DXA-obtained BMC correlated strongly with the actual CSA (r= 0.94) determined with peripheral quantative computed tomography. The ratios between functionally interrelated CSA data (i.e., (radial shaft CSA/distal radius CSA), (trochanter CSA/femoral neck CSA), (femoral shaft CSA/trochanter CSA) and (femoral shaft CSA/femoral neck CSA)) were considered primary outcome variables. Neither physical activity nor calcium intake separately or interactively were associated with any CSA ratio. Age showed no interaction with physical activity or calcium intake but was independently associated with all CSA ratios, except the ratio of femoral shaft CSA to trochanteric CSA. This study indicated clearly that a preferential reduction in the cross-sectional area occupied by bone mineral occurs disproportionately at the long bone ends as compared with diaphyseal sites, and this apparently inherent, age-associated relative loss seems not to be prevented by physical activity or calcium intake. In particular, given the utmost clinical relevance of the proximal femur region, an observed loss in femoral neck CSA of about 10% in contrast to about a 5% loss in trochanteric CSA warrants further investigation regarding its potential role as a predictor for hip fracture. Not only the local differences in bone composition but also the biomechanical aspects are important factors underlying these apparent changes in CSA at the studied skeletal sites. Received: 10 September 1998 / Accepted: 17 March 1999  相似文献   

19.
FREEDOM was a phase 3 trial in 7808 women aged 60–90 yr with postmenopausal osteoporosis. Subjects received placebo or 60 mg denosumab subcutaneously every 6 mo for 3 yr in addition to daily calcium and vitamin D. Denosumab significantly decreased bone turnover; increased dual-energy X-ray absorptiometry (DXA) areal bone mineral density (aBMD); and significantly reduced new vertebral, nonvertebral, and hip fractures. In a subset of women (N = 209), lumbar spine, total hip, and femoral neck volumetric BMD (vBMD) were assessed by quantitative computed tomography at baseline and months 12, 24, and 36. Significant improvement from placebo and baseline was observed in aBMD and vBMD in the denosumab-treated subjects at all sites and time points measured. The vBMD difference from placebo reached 21.8%, 7.8%, and 5.9%, respectively, for the lumbar spine, total hip, and femoral neck at 36 mo (all p  0.0001). Compared with placebo and baseline, significant increases were also observed in bone mineral content (BMC) at the total hip (p < 0.0001) largely related to significant BMC improvement in the cortical compartment (p < 0.0001). These results supplement the data from DXA on the positive effect of denosumab on BMD in both the cortical and trabecular compartments.  相似文献   

20.
High parity is associated with increased bone size and strength   总被引:1,自引:1,他引:0  
Some, but not all, studies report an association between decreased hip fracture risk and high parity despite similar bone mineral density (BMD). Our hypothesis was that bone size, a major determinant of bone strength, is greater in women with high parity compared with low parity or nulliparous women. A cross-sectional study of 168 Hutterite women aged 40–80 years was conducted. BMD, bone mineral content (BMC) and bone area of the total body (TB), hip, femoral neck (FN), and lumbar spine (LS) were measured, as well as bone geometry at the 4% and 20% distal radius and bending strength at 20% radius. Diet and activity recall and strength measurements were obtained. Of the 168 women, 42 (25%) were nulliparous while the remaining women reported 1 to 16 births (median=6). Of the 126 parous women, 122 (97%) breast-fed their infants (range 1.5–24 months). Hip, FN and LS BMD were not associated with either parity or months of breast-feeding. TB BMC and bone area (both, p <0.05) and FN bone area ( p <0.01) were associated with parity. FN bone area was 4% greater in women with 7+ vs 1–4 children. Torsional bending strength, which includes structural and material bone properties, at the 20% distal radius was greater with higher parity ( p =0.01). No bone measure was associated with average months of breast-feeding. High parity is associated with increased radial torsional bending strength and femoral neck size. The greater femoral neck size, without higher BMD, may explain the reduced hip fracture risk among women with high parity previously reported in some studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号