首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure–function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure–function of dendritic spine, a “hot site” of synaptic plasticity.  相似文献   

2.
Recent findings in epigenetics shed new light on the regulation of gene expression in the central nervous system (CNS) during stress. The most frequently studied epigenetic mechanisms are DNA methylation, histone modifications and microRNA activity. These mechanisms stably determine cell phenotype but can also be responsible for dynamic molecular adaptations of the CNS to stressors. The limbic–hypothalamic–pituitary–adrenal axis (LHPA) is the primary circuit that initiates, regulates and terminates a stress response. The same brain areas that control stress also react to stress dynamically and with long-term consequences. One of the biological processes evoking potent adaptive changes in the CNS such as changes in behavior, gene activity or synaptic plasticity in the hippocampus is psychogenic stress. This review summarizes the current data regarding the epigenetic basis of molecular adaptations in the brain including genome-wide epigenetic changes of DNA methylation and particular genes involved in epigenetic responses that participate in the brain response to chronic psychogenic stressors. It is concluded that specific epigenetic mechanisms in the CNS are involved in the stress response.  相似文献   

3.
4.
BackgroundSevere putamen dopamine depletion characterizes Parkinson's disease (PD) and multiple system atrophy (MSA). The extent of the depletion is greater than can be accounted for by loss of nigrostriatal dopaminergic terminals alone. We used putamen tissue levels and ratios of cysteinyl and parent catechols to explore possible denervation-independent abnormalities of dopamine synthesis and fate in PD and MSA. 5-S-Cysteinyldopa (Cys-DOPA) is produced from spontaneous oxidation of DOPA and 5-S-cysteinyldopamine (Cys-DA) from spontaneous oxidation of DA.MethodsPost-mortem putamen tissue samples from 17 PD and 25 MSA patients and 30 controls were assayed for endogenous catechols including DA, its cytoplasmic metabolites (Cys-DA, 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxyphenylethanol, and 3,4-dihydroxyphenylacetaldehyde), and tyrosine hydroxylation products proximal to DA (DOPA and Cys-DOPA).ResultsThe PD and MSA groups did not differ in mean values of parent or cysteinyl catechols, and the data for the two groups were lumped. In the patients an index of vesicular storage of DA (the ratio of DA to the sum of its cytoplasmic metabolites) averaged 54% of control (p = 0.001), and an index of L-aromatic-amino-acid decarboxylase (LAAAD) activity (the ratio of DA and the sum of its cytoplasmic metabolites to the sum of DOPA + Cys-DOPA) averaged 21% of control (p < 0.0001). An index of innervation (the sum of DOPA + Cys-DOPA) averaged 63% of control (p = 0.01).InterpretationBased on patterns of parent and cysteinyl catechols in putamen, PD and MSA involve decreased vesicular uptake and decreased LAAAD activity in the residual dopaminergic terminals. The combination seems to contribute importantly to dopamine depletion in these diseases.  相似文献   

5.
The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration.  相似文献   

6.
《Seizure》2014,23(10):878-881
PurposeTo assess the utility of retigabine (RTG) for epilepsy in clinical practice at a single UK tertiary centre.MethodsWe identified all individuals who were offered RTG from April 2011 to May 2013. We collected demographics, seizure types, previous and current antiepileptic drugs (AEDs), starting and maximum attained daily dose of RTG, clinical benefits, side effects, and reason to discontinue RTG from in- and outpatient encounters until February 28, 2014.Results145 people who had failed a median of 11 AEDs took at least one dose of RTG. One year retention was 32% and decreased following the safety alert by the US Federal Drug Administration (FDA) in April 2013. None became seizure free. 34 people (24%) reported a benefit that was ongoing at last assessment in five (3%). The most relevant benefit was the significant reduction or cessation of drop attacks or seizure-related falls in four women, this persisted at last assessment in two. The presence of simple partial seizures was associated with longer retention, as was a higher attained dose of RTG. Adverse effects were seen in 74% and largely CNS-related or nonspecific and affected the genitourinary system in 13%.ConclusionRetention of RTG was less favourable compared to data from open label extension studies of the regulatory trials. In comparison with historical data on similar retention audits retention of RTG at one year appears to be less than lamotrigine, topiramate, levetiracetam, pregabalin, zonisamide, and lacosamide, and slightly higher than gabapentin.  相似文献   

7.
Methylmercury (MeHg) is an environmental neurotoxicant of public health concern. It readily accumulates in exposed humans, primarily in neuronal tissue. Exposure to MeHg, either acutely or chronically, causes severe neuronal dysfunction in the central nervous system and spinal neurons; dysfunction of susceptible neuronal populations results in neurodegeneration, at least in part through Ca2+-mediated pathways. Biochemical and morphologic changes in peripheral neurons precede those in central brain regions, despite the fact that MeHg readily crosses the blood-brain barrier. Consequently, it is suggested that unique characteristics of spinal cord afferents and efferents could heighten their susceptibility to MeHg toxicity. Transient receptor potential (TRP) ion channels are a class of Ca2+-permeable cation channels that are highly expressed in spinal afferents, among other sensory and visceral organs. These channels can be activated in numerous ways, including directly via chemical irritants or indirectly via Ca2+ release from intracellular storage organelles. Early studies demonstrated that MeHg interacts with heterologous TRP channels, though definitive mechanisms of MeHg toxicity on sensory neurons may involve more complex interaction with, and among, differentially-expressed TRP populations. In spinal efferents, glutamate receptors of the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and possibly kainic acid (KA) classes are thought to play a major role in MeHg-induced neurotoxicity. Specifically, the Ca2+-permeable AMPA receptors, which are abundant in motor neurons, have been identified as being involved in MeHg-induced neurotoxicity. In this review, we will describe the mechanisms that could contribute to MeHg-induced spinal cord afferent and efferent neuronal degeneration, including the possible mediators, such as uniquely expressed Ca2+-permeable ion channels.  相似文献   

8.
Agmatine is an endogenous neuromodulator which, based on animal and human studies, is a putative novel antidepressant drug. In this study, we investigated the ability of sub-chronic (21 days) p.o. agmatine administration to produce an antidepressant-like effect in the tail suspension test and examined the hippocampal cell signaling pathways implicated in such an effect. Agmatine at doses of 0.01 and 0.1 mg/kg (p.o.) produced a significant antidepressant-like effect in the tail suspension test and no effect in the open-field test. Additionally, agmatine (0.001–0.1 mg/kg, p.o.) increased the phosphorylation of protein kinase A substrates (237–258% of control), protein kinase B/Akt (Ser473) (116–127% of control), glycogen synthase kinase-3β (Ser9) (110–113% of control), extracellular signal-regulated kinases 1/2 (119–137% and 121–138% of control, respectively) and cAMP response elements (Ser133) (127–152% of control), and brain-derived-neurotrophic factor (137–175% of control) immunocontent in a dose-dependent manner in the hippocampus. Agmatine (0.001–0.1 mg/kg, p.o.) also reduced the c-jun N-terminal kinase 1/2 phosphorylation (77-71% and 65-51% of control, respectively). Neither protein kinase C nor p38MAPK phosphorylation was altered under any experimental conditions. Taken together, the present study extends the available data on the mechanisms that underlie the antidepressant action of agmatine by showing an antidepressant-like effect following sub-chronic administration. In addition, our results are the first to demonstrate the ability of agmatine to elicit the activation of cellular signaling pathways associated with neuroplasticity/cell survival and the inhibition of signaling pathways associated with cell death in the hippocampus.  相似文献   

9.
Patulin (PAT) is a secondary toxic metabolite produced principally by Penicillium expansum. This mycotoxin is known to be teratogenic, mutagenic, immunotoxic and neurotoxic, and it has been shown to cause damage in several organs in laboratory animals. This study focuses on the prevention of experimental murine PAT-induced nephrotoxicity and hepatotoxicity. We investigate the ability of a natural product, crocin (CRO), to counteract the toxic effects of PAT. Pre-treatment of mice with CRO prevented PAT-induced oxidative damage in both liver and kidney. CRO reduced lipid peroxidation, protein oxidation and restored redox status by regulating the endogenous antioxidant enzymatic system. These data corroborate and extend findings in PAT-induced nephrotoxicity and hepatotoxicity, and further suggest that preventive effect of CRO towards other forms of PAT toxicity, including neurotoxicity, may be warranted.  相似文献   

10.
It is increasingly appreciated that perinatal events can set an organism on a life-long trajectory for either health or disease, resilience or risk. One early life variable that has proven critical for optimal development is the nutritional environment in which the organism develops. Extensive research has documented the effects of both undernutrition and overnutrition, with strong links evident for an increased risk for obesity and metabolic disorders, as well as adverse mental health outcomes. Recent work has highlighted a critical role of the immune system, in linking diet with long term health and behavioral outcomes. The present review will summarize the recent literature regarding the interactions of diet, immunity, and behavior.  相似文献   

11.
Sevoflurane is a general anesthetic commonly used in the pediatric setting because it is sweet-smelling, nonflammable, fast acting and has a very short recovery time. Although recent clinical data suggest that early anesthesia exposure is associated with subsequent learning and memory problems, it is difficult to determine the exact scope of developmental neurotoxicity associated with exposure to specific anesthetics such as sevoflurane. This is largely due to inconsistencies in the literature. Thus, in the present studies we evaluated the effect of early life exposure to sevoflurane (1%, 2%, 3% or 4%) on adulthood memory impairment in Sprague-Dawley rats. Animals were exposed to different regimens of sevoflurane anesthesia on postnatal days (PNDs) 3, 7, or 14 or at 7 weeks (P7W) of age and spatial memory performance was assessed in adulthood using the Morris Water Maze (MWM). Rats exposed to sevoflurane exhibited significant memory impairment which was concentration and exposure duration dependent. Disruption of MWM performance was more severe in animals exposed on both PNDs 3 and 7 than in animals exposed on both PNDs 3 and 14. The younger the animal's age at the time of exposure, the more significant the effect on later MWM performance. Compared to the neonates, animals exposed at P7W were relatively insensitive to sevoflurane: memory was impaired in this group only after repeated exposures to low doses or single exposures to high doses. Early life exposure to sevoflurane can result in spatial memory impairments in adulthood and the shorter the interval between exposures, the greater the deficit.  相似文献   

12.
《Brain stimulation》2014,7(6):836-840
BackgroundThe motor cortex in the human brain can be modulated by the application of transcranial static magnetic field stimulation (tSMS) through the scalp. However, the effect of tSMS on the excitability of the primary somatosensory cortex (S1) in humans has never been examined.ObjectiveThis study was performed to investigate the possibility of non-invasive modulation of S1 excitability by the application of tSMS in healthy humans.MethodstSMS and sham stimulation over the sensorimotor cortex were applied to 10 subjects for periods of 10 and 15 min. Somatosensory evoked potentials (SEPs) following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3′ and F3 of the international 10-20 system of electrode placement. In another session, SEPs were recorded from 6 of the 10 subjects every 3 min during 15 min of tSMS.ResultsAmplitudes of the N20 component of SEPs at C3′ significantly decreased immediately after 10 and 15 min of tSMS by up to 20%, returning to baseline by 10 min after intervention. tSMS applied while recording SEPs every 3 min and sham stimulation had no effect on SEP.ConclusionstSMS is able to modulate cortical somatosensory processing in humans, and thus might be a useful tool for inducing plasticity in cortical somatosensory processing. Lack of change in the amplitude of SEPs with tSMS implies that use of peripheral nerve stimulation to cause SEPs antagonizes alteration of the function of membrane ion channels during exposure to static magnetic fields.  相似文献   

13.
Thirst and sodium appetite are the sensations responsible for the motivated behaviors of water and salt intake, respectively, and both are essential responses for the maintenance of hydromineral homeostasis in animals. These sensations and their related behaviors develop very early in the postnatal period in animals. Many studies have demonstrated several pre- and postnatal stimuli that are responsible for the developmental programing of thirst and sodium appetite and, consequently, the pattern of water and salt intake in adulthood in need-free or need-induced conditions. The literature systematically reports the involvement of dietary changes, hydromineral and cardiovascular challenges, renin–angiotensin system and steroid hormone disturbances, and lifestyle in these developmental factors. Therefore, this review will address how pre- and postnatal challenges can program lifelong thirst and sodium appetite in animals and humans, as well as which neuroendocrine substrates are involved. In addition, the possible epigenetic molecular mechanisms responsible for the developmental programing of drinking behavior, the clinical implications of hydromineral disturbances during pre- and postnatal periods, and the developmental origins of adult hydromineral behavior will be discussed.  相似文献   

14.
Zearalenone (ZEN) and its metabolites are found in many food products and are known to induce many toxic effects. The major ZEN metabolites are α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL). The mechanisms by which they mediate their cytotoxic effects are not well known and seem to differ depending on the type of cells. We investigated the possible underlying mechanism in α-ZOL and β-ZOL-induced toxicity in HCT116 cells. We showed that cell treatment with α-ZOL/β-ZOL generated endoplasmic reticulum (ER) stress and activated the Unfolded Protein Response (UPR) as evidenced by XBP1 mRNA splicing and up-regulation of GADD34, GRP78, ATF4 and CHOP. Apoptosis was triggered by ZEN metabolites-induced ER stress, and executed through a mitochondria-dependent pathway, characterized by a loss of mitochondrial transmembrane potential (ΔΨm), a downstream generation of O2 and caspase 3 activation. Cellular deficiency of the pro-apoptotic proteins Bax and Bak protected cells against α/β-ZOL-induced toxicity. However, treatment with α-ZOL or β-ZOL combined with Quercetin (QUER), a common dietary flavonoid with well-known antioxidant activity, significantly reduced damage induced by α and β-ZOL in all tested markers. We concluded that QUER protects against the cellular toxicity of α and β-ZOL.×  相似文献   

15.
This project describes health-related quality of life (HRQoL) of parents of children with autism spectrum disorders (ASDs) using mixed methods. Parents of children with ASDs (N = 224) reported on their HRQoL, depression, and caregiving burden using quantitative tools. HRQoL scores were slightly worse than from those in normative populations especially related to stress and mental health. For example, parents reported average HRQoL scores from SF-6D of 0.74, which was clinically significant lower than an average normative U.S. population. 40% of parents reported having clinical depression symptoms. Married parents reported lower depression symptoms than parents who were not. In addition, families with three or more children with special health care needs (CSHCN) reported lower HRQL and higher caregiving burden than families with less CSHCN. In the qualitative study, we conducted five focus groups to gain insight as to the reasons a child's ASD might influence a parent's HRQoL. Qualitative data further supports the notion that parental HRQoL was negatively influenced by their child's ASDs. Studies that seek to quantify the influence of ASDs and to assess the effect of interventions for children with ASDs may consider measuring the effects on family members as well.  相似文献   

16.
The clinical use of chronic electrode implants for measurement or stimulation of neuronal activity has increased over the past decade with the advent of deep brain stimulation and the use of brain–computer interfaces. However, despite the wide-spread application of electrode implants, their chronic use is still limited by technical difficulties. Many of the reported issues, ranging from short-circuits to loss of signal due to increased electrical impedance, may be traced back to the reaction of the cortical tissue to the implanted devices: the foreign body response (FBR). This response consists of several phases that ultimately result in neuronal loss and the formation of a dense glial sheath that encapsulates the implant.Empirical evidence suggests that reducing the FBR has a positive effect on the electrical properties of implants, which can potentially expand their clinical use by improving their chronic usability. The primary focus of this work is to review the consequences of the FBR and recent developments that can be considered to control and limit its development.We will discuss how the choice of device material and electrode-architecture influences the tissue reaction, as well as modifications that allow for less stiff implants, increase electrode conductivity, or improve the implant–tissue integration. Several promising biological solutions include the local release of anti-inflammatory compounds to weaken the initial inflammatory phase of the FBR, as well as methods to diminish the negative effects of the glial sheath on neuronal regrowth.  相似文献   

17.
Bipolar disorder (BD) is characterized by an alternated occurrence between acute mania episodes and depression or remission moments. The objective of this study is to analyze the information processing changes in BP (Bipolar Patients) (euthymia, depression and mania) during the oddball paradigm, focusing on the P300 component, an electric potential of the cerebral cortex generated in response to external sensorial stimuli, which involves more complex neurophysiological processes related to stimulus interpretation. Twenty-eight bipolar disorder patients (BP) (17 women and 11 men with average age of 32.5, SD: 9.5) and eleven healthy controls (HC) (7 women and 4 men with average age of 29.78, SD: 6.89) were enrolled in this study. The bipolar patients were divided into 3 major groups (i.e., euthymic, depressive and maniac) according to the score on the Clinical Global Impression – Bipolar Version (CGI-BP). The subjects performed the oddball paradigm simultaneously to the EEG record. EEG data were also recorded before and after the execution of the task. A one-way ANOVA was applied to compare the P300 component among the groups. After observing P300 and the subcomponents P3a and P3b, a similarity of amplitude and latency between euthymic and depressive patients was observed, as well as small amplitude in the pre-frontal cortex and reduced P3a response. This can be evidence of impaired information processing, cognitive flexibility, working memory, executive functions and ability to shift the attention and processing to the target and away from distracting stimuli in BD. Such neuropsychological impairments are related to different BD symptoms, which should be known and considered, in order to develop effective clinical treatment strategies.  相似文献   

18.
BackgroundBiological theories on respiratory regulation have linked separation anxiety disorder (SAD) to panic disorder (PD). We tested if SAD children show similarly increased anxious and psychophysiological responding to voluntary hyperventilation and compromised recovery thereafter as has been observed in PD patients.MethodsParticipants were 49 children (5–14 years old) with SAD, 21 clinical controls with other anxiety disorders, and 39 healthy controls. We assessed cardiac sympathetic and parasympathetic, respiratory (including pCO2), electrodermal, electromyographic, and self-report variables during baseline, paced hyperventilation, and recovery.ResultsSAD children did not react with increased anxiety or panic symptoms and did not show signs of slowed recovery. However, during hyperventilation they exhibited elevated reactivity in respiratory variability, heart rate, and musculus corrugator supercilii activity indicating difficulty with respiratory regulation.ConclusionsReactions to hyperventilation are much less pronounced in children with SAD than in PD patients. SAD children showed voluntary breathing regulation deficits.  相似文献   

19.
PurposeTo further elucidate possible immune-modulatory effects of valproate (VPA) or levetiracetam (LEV), we investigated their influence on apoptosis and cytotoxic function of CD8+ T lymphocytes in humans.MethodsIn 15 healthy subjects (9 female (60%), 35.7 ± 12.1 years), apoptosis and cytotoxic function of CD8+ T lymphocytes were measured using flow cytometry following in vitro exposure to LEV (5 mg/L and 50 mg/L) and VPA (10 mg/L and 100 mg/L). Apoptosis rates were determined after incubation with LEV or VPA for 1 h or 24 h. Cytotoxic function was assessed following 2 h stimulation with mixed virus peptides, using perforin release, CD107a/b expression and proliferation. The presence of synaptic vesicle protein 2A (SV2A) was investigated in human CD8+ T lymphocytes by flow cytometry analysis, Western blot and real time polymerase chain reaction (rtPCR).ResultsHigh concentration of LEV decreased perforin release of CD8+ T lymphocytes (LEV 50 mg/L vs. CEF only: 21.4% (interquartile range (IQR) 16.5–35.9%) vs. 16.6% (IQR 12–24.9%), p = 0.002). LEV had no influence on apoptosis and proliferation (p > 0.05). VPA (100 mg/L) slowed apoptosis of CD8+ T lymphocytes after 24 h (VPA 100 mg/L vs. control: 7.3% (IQR 5.4–9.5%) vs. 11.3% (IQR 8.2–15.1%), p < 0.001), but had no effects on perforin release (p > 0.05). SV2A protein was detected in CD8+ T lymphocytes.ConclusionLEV decreased degranulation of CD8+ T lymphocytes which may contribute to the increased incidence of upper respiratory tract infections in LEV treated patients. Inhibition of SV2A may be responsible for this effect.  相似文献   

20.
Bipolar disorder (BD) is one of the most serious psychiatric disorders in the world, but its pathophysiology is still unclear. Regulation of neurotrophic factors have been thought to play a role in this process. There have been inconsistent findings regarding the differences in blood neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) between patients with BD and healthy controls (HCs). The aim of the current meta-analysis is to examine the changes in the levels of NT-3 and NT-4/5 in BD patients at different affective states. Eight articles (including 465 BD patients and 353 HCs) were included in the analysis, and their results were pooled by using a random effects model. We found the levels of both NT-3 (p = 0.0046) and NT-4/5 (p = 0.0003) were significantly increased in BD patients, compared to HCs. Through subgroup analysis, this increase persisted only in patients in depressed state (p = 0.0038 for NT-3 and p = 0.0001 for NT-4/5), but not in manic or euthymic state. In addition, we found the differences in NT-3 and NT-4/5 were significantly associated with the duration of illness, but not by the mean age or female proportion. Our results suggest a state-dependent increase in NT-3 and NT-4/5 levels in patients with BD. Further studies are needed to examine dynamic changes of these neurotrophins in BD patients along the disease course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号