首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumour infiltration by regulatory T (Treg) cells contributes to suppression of the anti-tumour immune response, which limits the efficacy of immune-mediated cancer therapies. The phosphoinositide 3-kinase (PI3K) pathway has key roles in mediating the function of many immune cell subsets, including Treg cells. Treg function is context-dependent and depends on input from different cell surface receptors, many of which can activate the PI3K pathway. In this review, we explore how PI3Kδ contributes to signalling through several major immune cell receptors, including the T-cell receptor and co-stimulatory receptors such as CD28 and ICOS, but is antagonized by the immune checkpoint receptors CTLA-4 and PD-1. Understanding how PI3Kδ inhibition affects Treg signalling events will help to inform how best to use PI3Kδ inhibitors in clinical cancer treatment.  相似文献   

2.
3.
Interleukin‐2 (IL‐2) is a critical regulator of immune homeostasis through its non‐redundant role in regulatory T (Treg) cell biology. There is major interest in therapeutic modulation of the IL‐2 pathway to promote immune activation in the context of tumour immunotherapy or to enhance immune suppression in the context of transplantation, autoimmunity and inflammatory diseases. Antibody‐mediated targeting of the high‐affinity IL‐2 receptor α chain (IL‐2Rα or CD25) offers a direct mechanism to target IL‐2 biology and is being actively explored in the clinic. In mouse models, the rat anti‐mouse CD25 clone PC61 has been used extensively to investigate the biology of IL‐2 and Treg cells; however, there has been controversy and conflicting data on the exact in vivo mechanistic function of PC61. Engineering antibodies to alter Fc/Fc receptor interactions can significantly alter their in vivo function. In this study, we re‐engineered the heavy chain constant region of an anti‐CD25 monoclonal antibody to generate variants with highly divergent Fc effector function. Using these anti‐CD25 Fc variants in multiple mouse models, we investigated the in vivo impact of CD25 blockade versus depletion of CD25+ Treg cells on immune homeostasis. We report that immune homeostasis can be maintained during CD25 blockade but aberrant T‐cell activation prevails when CD25+ Treg cells are actively depleted. These results clarify the impact of PC61 on Treg cell biology and reveal an important distinction between CD25 blockade and depletion of CD25+ Treg cells. These findings should inform therapeutic manipulation of the IL‐2 pathway by targeting the high‐affinity IL‐2R.  相似文献   

4.
Foxp3‐expressing regulatory T (Treg) cells, which are indispensable for preventing autoimmunity, also suppress effective tumor immunity. Treg cells abundantly infiltrate into tumor tissues, which is often associated with poor prognosis in cancer patients. Removal of Treg cells enhances anti‐tumor immune responses but may also elicit autoimmunity. A key issue in devising Treg‐targeting cancer immunotherapy is, therefore, how to specifically deplete Treg cells infiltrating into tumor tissues without affecting tumor‐reactive effector T cells, while suppressing autoimmunity. This can be achieved by differentially controlling Treg and effector T cells by various ways. In this review, we discuss how tumor‐infiltrating Foxp3+ Treg cells hamper effective anti‐tumor immune responses especially in tumor tissues and how they can be specifically targeted for augmenting tumor immunity but not autoimmunity.  相似文献   

5.
Immunosuppressive activity of regulatory T cells (Tregs) is one of the mechanisms promoting carcinogenesis. Intratumoral Tregs have some phenotypic and functional traits that lower the efficiency of antitumor immune response, which makes them a good target for immunotherapy. Several approaches to cancer immunotherapy are being developed along this vector: deletion of tumor-infiltrating Tregs, inhibition of their homing to the tumor microenvironment, and functional downregulation of Tregs.Studies of the past decade have demonstrated the role of Tregs and ectonucleotidases CD39 and CD73 in the generation of immunosuppressive extracellular adenosine. Pharmacological targeting of CD39 and CD73 can restrain the activity of suppressor cells and promote the efficiency of cancer therapy.Here we review the latest data on issues regarding the role of extracellular adenosine and its receptors in antitumor immune response, adenosine generation mechanisms involving Tregs and the membrane proteins CD39 and CD73. Innovative approaches to antitumor immunotherapy and clinical studies of Treg targeting and application of anti-CD39/CD73 antibodies, adenosine receptor antagonists, and small-molecule inhibitors of ectonucleotidase activity are explored.  相似文献   

6.
Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8+ cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4+ T cells are essential for helping this CD8+ T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (TCM)/effector memory T cell (TEM) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-β and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-β and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.  相似文献   

7.
Monoclonal antibodies (mAbs) have an established role in current cancer therapy with seven approved for the treatment of a wide variety of tumors. The approved mAbs directly target tumor cells; however, it is becoming increasingly clear that as well as their direct effects, these mAbs can present antigens to the immune system. This stimulates long-lasting T-cell immunity, which may correlate with long-term survival. A more direct approach is to use mAbs to target antigens directly to antigen-presenting cells. One approach, ImmunoBody, which has just entered the clinic, stimulates antitumor immunity using mAbs genetically engineered to express tumor-specific T-cell epitopes. T cells not only respond via their T-cell receptors recognizing T-cell epitopes presented on MHC but are also influenced by stimulation of a wide variety of costimulatory molecules. mAbs targeting these molecules can also influence antitumor immunity. The main protagonist in this class of mAbs is ipilimumab, which has recently been shown to improve survival at 2 years in 23% of advanced melanoma patients. Combinations of mAbs targeting tumor antigens to activated antigen-presenting cells and mAbs targeting costimulatory receptors may provide effective therapy for a broad range of tumors.  相似文献   

8.
Aging influences the susceptibility and prognosis to various infectious diseases including tuberculosis (TB). Despite the impairment of T-cell function and immunity in older individuals, the mechanism for the higher incidence of TB in the elderly remains largely unknown. Here, we evaluated the age-associated immune alterations, particularly in effector and Treg responses in pulmonary TB patients. We also evaluated the impact of redox status and its modulation with N-acetyl-cysteine (NAC) in elderly TB. Higher frequency of Treg cells and reduced IFN-γ positive T cells were observed among older TB patients. The elevated number of Treg cells correlated tightly with bacillary load (i.e. disease severity); which declined significantly in response to successful anti-tubercular treatment. We could rescue Myobacterium tuberculosis-specific effector T cell (Th1) responses through various in vitro approaches, for example, Treg cell depletion and co-culture experiments, blocking experiments using antibodies against IL-10, TGF-β, and programmed death-1 (PD-1) as well as NAC supplementation. We report old age-associated enrichment of Treg cells and suppression of M. tuberculosis-specific effector T (Th1) cell immune responses. Monitoring these immune imbalances in older patients may assist in immune potentiation through selectively targeting Treg cells and/or optimizing redox status by NAC supplementation.  相似文献   

9.
10.
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses. Regulatory T (Treg) cells possess an immunosuppressive ability to inhibit effector T-cell responses, and Notch ligand Jagged1 (Jag1) is implicated in Treg cell differentiation. In this study, we evaluated whether bone marrow-derived DCs genetically engineered to express Jag1 (Jag1-DCs) would affect the maturation and function of DCs in vitro and further investigated the immunoregulatory ability of Jag1-DCs to manipulate T helper type 2 (Th2) -mediated allergic asthma in mice. We produced Jag1-DCs by adenoviral transduction. Overexpression of Jag1 by ovalbumin (OVA) -stimulated Jag1-DCs exhibited increased expression of programmed cell death ligand 1 (PD-L1) and OX40L molecules. Subsequently, co-culture of these OVA-pulsed Jag1-DCs with allogeneic or syngeneic CD4+ T cells promoted the generation of Foxp3+ Treg cells, and blocking PD-L1 using specific antibodies partially reduced Treg cell expansion. Furthermore, adoptive transfer of OVA-pulsed Jag1-DCs to mice with OVA-induced asthma reduced allergen-specific immunoglobulin E production, airway hyperresponsiveness, airway inflammation, and secretion of Th2-type cytokines (interleukin-4, interleukin-5, and interleukin-13). Notably, an increased number of Foxp3+ Treg cells associated with enhanced levels of transforming growth factor-β production was observed in Jag1-DC-treated mice. These data indicate that transgenic expression of Jag1 by DCs promotes induction of Foxp3+ Treg cells, which ameliorated Th2-mediated allergic asthma in mice. Our study supports an attractive strategy to artificially generate immunoregulatory DCs and provides a novel approach for manipulating Th2 cell-driven deleterious immune diseases.  相似文献   

11.
The major suppressive immune cells in tumor sites are myeloid derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and Treg cells, and the major roles of these suppressive immune cells include hindering T-cell activities and supporting tumor progression and survival. In this study, we analyzed the pattern of circulating MDSC subtypes in patients with non-small cell lung cancer (NSCLC) whether those suppressive immune cells hinder T-cell activities leading to poor clinical outcomes. First, we verified PMN-MDSCs, monocytic-MDSCs (M-MDSCs), and Treg cells increased according to the stages of NSCLC, and MDSCs effectively suppressed T-cell activities and induced T-cell exhaustion. The analysis of NSCLC patients treated with anti-PD-1 immunotherapy demonstrated that low PMN-MDSCs, M-MDSCs, and CD39+CD8+ T cells as an individual and all together were associated with longer progression free survival and overall survival, suggesting PMN-MDSCs, M-MDSCs, and CD39+CD8+ T cells frequencies in peripheral blood might be useful as potential predictive and prognostic biomarkers.  相似文献   

12.
Murine retinal pigment epithelial (RPE) cells suppress T-cell activation by releasing soluble inhibitory factors and promote the generation of regulatory T cells in vitro. These T cells exposed to RPE supernatants (RPE-induced Treg cells) can suppress the activation of bystander effector T cells via the production of transforming growth factor-beta (TGFβ). In the present study, we showed that human RPE-induced Treg cells are also able to acquire regulatory function when human RPE cell lines were pretreated with recombinant TGFβ2. These RPE-induced Treg cells produced TGFβ1 and IL-10 but not IFNγ, and they significantly suppressed the activation of target cell lines and intraocular T-cell clones established from patients with active uveitis. Moreover, CD4+CD25+ RPE-induced Treg cells expressed CTLA-4 and Foxp3 molecules, and the CD25+ Treg cells profoundly suppressed the T-cell activation. Thus, in vitro manipulated Treg cells acquire functions that participate in the establishment of immune tolerance in the eye.  相似文献   

13.
Regulatory T (Treg) cells are a specialized subpopulation of T cells that plays critical roles in the maintenance of immune homeostasis. Although efforts have been done, their role in human pregnancy is not fully understood. Numerous studies reported the presence of Treg cells throughout gestation by promoting maternal–fetal tolerance and fetal development. Furthermore, Treg population is heterogeneous as it is expressing different immune checkpoint molecules favoring immune suppressive function. Therefore, better understanding of the heterogeneity and function of Treg cells during pregnancy is critical for an effective immune intervention. Latest evidence has shown that several immune checkpoint molecules are closely associated with pregnancy outcome via multiple inhibitory mechanisms. Majority of these studies demonstrated the modulatory effects of immune checkpoint molecules on effector T-cell immunity, but their effects on Treg activation and function are still an enigma. In this review, we emphasize the potential influence of multiple immune checkpoint molecules, including CTLA-4, PD-1, Tim-3, LAG-3, and TIGIT, either in membrane or soluble form, on the function of decidual and peripheral Treg cells during pregnancy. Additionally, we discuss the promising future of targeting Treg cells via immune checkpoint molecules for pregnancy maintenance and prevention of complicated pregnancies.  相似文献   

14.
Regulatory T cells (Tregs) are essential for immune homeostasis and suppression of pathological autoimmunity but can also play a detrimental role in cancer progression via inhibition of anti-tumor immunity. Thus, there is broad applicability for therapeutic Treg targeting, either to enhance function, for example, through adoptive cell therapy (ACT), or to inhibit function with small molecules or antibody-mediated blockade. For both of these strategies, the metabolic state of Tregs is an important consideration since cellular metabolism is intricately linked to function. Mounting evidence has shown that targeting metabolic pathways can selectively promote or inhibit Treg function. This review aims to synthesize the current understanding of Treg metabolism and discuss emerging metabolic targeting strategies in the contexts of transplantation, autoimmunity, and cancer. We discuss approaches to gene editing and cell culture to manipulate Treg metabolism during ex vivo expansion for ACT, as well as in vivo nutritional and pharmacological interventions to modulate Treg metabolism in disease states. Overall, the intricate connection between metabolism and phenotype presents a powerful opportunity to therapeutically tune Treg function.  相似文献   

15.
Treg cells control immune responses to self and nonharmful foreign antigens. Emerging data from animal models indicate that Treg cells function in both secondary lymphoid organs and tissues, and that these different microenvironments may contain specialized subsets of Treg cells with distinct mechanisms of action. The design of therapies for the restoration of tissue‐localized immune homeostasis is dependent upon understanding how local immune responses are influenced by Treg cells in health versus disease. Here we review the current state of knowledge about human Treg cells in four locations: the skin, lung, intestine, and joint. Despite the distinct biology of these tissues, there are commonalities in the biology of their resident Treg cells, including phenotypic and functional differences from circulating Treg cells, and the presence of cytokine‐producing (e.g. IL‐17+) FOXP3+ cells. We also highlight the challenges to studying tissue Treg cells in humans, and opportunities to use new technologies for the detailed analysis of Treg cells at the single‐cell level. As emerging biological therapies are increasingly targeted toward tissue‐specific effects, it is critical to understand their potential impact on local immune regulation.  相似文献   

16.
Innate and adaptive immunity play important roles in immunosurveillance and tumor destruction. However, increasing evidence suggests that tumor-infiltrating immune cells may have a dual function: inhibiting or promoting tumor growth and progression. Although regulatory T (Treg) cells induce immune tolerance by suppressing host immune responses against self- or nonself-antigens, thus playing critical roles in preventing autoimmune diseases, they might inhibit antitumor immunity and promote tumor growth. Recent studies demonstrate that elevated proportions of Treg cells are present in various types of cancers and suppress antitumor immunity. Furthermore, tumor-specific Treg cells can inhibit immune responses only when they are exposed to antigens presented by tumor cells. Therefore, Treg cells at tumor sites have detrimental effects on immunotherapy directed to cancer. This review will discuss recent progress in innate immunity, Treg cells, and their regulation through Toll-like receptor (TLR) signaling. It was generally thought that TLR-mediated recognition of specific structures of invading pathogens initiate innate and adaptive immune responses through dendritic cells. New evidence suggests that TLR signaling may directly regulate the suppressive function of Treg cells. Linking TLR signaling to the functional control of Treg cells opens intriguing opportunities to manipulate TLR signaling to control both innate and adaptive immunity against cancer.An erratum to this article can be found at  相似文献   

17.
As potent suppressors of immune responses to self- and foreign-antigens, Foxp3+ Treg cells are suspected to be involved in immunosuppression leading to cancer, neurodegeneration and infection. Since ageing is associated with increased incidence of these diseases, we compared Treg activity in blood, lymphoid organs and lungs of young (5–6 months) and old (21–22 months) mice. Both the proportion and absolute number of Foxp3+ CD4+ Treg cells increased with age in secondary lymphoid organs but not in blood and lungs as compared to Foxp3 CD4+ T cells. Although numbers of thymic and naïve conventional T and Treg cells decreased with age, Treg cells with memory/effector phenotype increased disproportionately in peripheral lymphoid tissues. In addition, CD40 and CD86 co-stimulatory molecule expression by lymph node dendritic cells was impaired in old mice and could be restored to levels of young mice by inactivating Treg cells with anti-CD25 monoclonal antibodies. These findings have important implications for the understanding of age-related immune dysfunction.  相似文献   

18.
The role of aldehyde dehydrogenase (ALDH) in carcinogenesis and resistance to cancer therapies is well known. Mounting evidence also suggests a potentially important role for ALDH in the induction and function of regulatory T (Treg) cells. Treg cells are important cells of the immune system involved in promoting immune tolerance and preventing aberrant immune responses to beneficial or non-harmful antigens. However, Treg cells also impair tumor immunity, leading to the progression of various carcinomas. ALDH expression and the subsequent production of retinoic acid by numerous cells, including dendritic cells, macrophages, eosinophils and epithelial cells, seems important in Treg induction and function in multiple organ systems. This is particularly evident in the gastrointestinal tract, pulmonary tract and skin, which are exposed to a myriad of environmental antigens and represent interfaces between the human body and the outside world. Expression of ALDH in Treg cells themselves may also be involved in the proliferation of these cells and resistance to certain cytotoxic therapies. Hence, inhibition of ALDH expression may be useful to treat cancer. Besides the direct effect of ALDH inhibition on carcinogenesis and resistance to cancer therapies, inhibition of ALDH could potentially augment the immune response to tumor antigens by inhibiting Treg induction, function and ability to promote immune tolerance to tumor cells in multiple cancer types.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号