首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lymphocytes and myeloid cells (monocyte/macrophages) have important roles in multiple types of diseases characterized by unresolved inflammation. The relatively recent appreciation of obesity, insulin resistance and type 2 diabetes (T2D) as chronic inflammatory diseases has stimulated interest in understanding the role of immune cells in metabolic imbalance. Myeloid cells regulate inflammation through cytokine production and the adipose tissue remodeling that accompanies hyper-nutrition, thus are critical players in metabolic homeostasis. More recently, multiple studies have indicated a role for T cells in obesity-associated inflammation and insulin resistance in model organisms, with parallel work indicating that pro-inflammatory changes in T cells also associate with human T2D. Furthermore, the expansion of T cells with similar antigen-binding sites in obesity and T2D indicates these diseases share characteristics previously attributed to inflammatory autoimmune disorders. Parallel pro-inflammatory changes in the B-cell compartment of T2D patients have also been identified. Taken together, these studies indicate that in addition to accepted pro-inflammatory roles of myeloid cells in T2D, pro-inflammatory skewing of both major lymphocyte subsets has an important role in T2D disease pathogenesis. Basic immunological principles suggest that alterations in lymphocyte function in obesity and T2D patients are an integral part of a feed-forward pro-inflammatory loop involving additional cell types. Importantly, the pro-inflammatory loop almost inevitably includes adipocytes, known to respond to pro-inflammatory, pro-diabetogenic cytokines originating from the myeloid and lymphoid compartments. We propose a model for inflammation in T2D that functionally links lymphocyte, myeloid and adipocyte contributions, and importantly proposes that tools for B-cell ablation or regulation of T-cell subset balance may have a place in the endocrinologist's limited arsenal.  相似文献   

2.
A recent study has shown an indisputable relationship between psoriasis and obesity. Obesity leads to a higher risk in developing psoriasis and a poorer long-term clinical outcome of psoriasis. Furthermore, loosing weight may improve the psoriasis. A network of pro-inflammatory cytokines (especially tumour necrosis factor alpha (TNF-alpha)) is believed to play an important role in the pathophysiology of both obesity and psoriasis. The chronic low-level inflammation- as seen in obesity--may contribute to the extent of psoriatic lesions in obese patients. TNF-alpha in obesity is presumed to be derived from inflammatory cells (macrophages) in the adipose tissue and in psoriasis from activated T cells. Several drugs, such as peroxisome proliferator activated receptor (PPAR)-gamma agonists and TNF-alpha blocking agents, that target the pro-inflammatory pathways involved in both psoriasis and obesity have proven their benefit in the treatment of these entities. Furthermore, changes in levels of metabolic hormones as ghrelin and leptin in obesity may also play a role in the pathogenesis of deterioration of psoriasis by their potency to release pro-inflammatory mediators (e.g. interleukin (IL) 6 and TNF-alpha). We hypothesize that the treatment of obese psoriasis patient could be focused on reducing the obesity-induced inflammation. Reducing this obesity-induced inflammation may finally lead to a better clinical outcome. Weight loss could lead to a less inflammatory state by reducing concentrations of TNF-alpha, IL-6, leptin and improving insulin sensitivity.  相似文献   

3.
Obesity predisposes the affected individuals to several metabolic, inflammatory, cardiovascular and malignant pathologies and is a top risk factor for premature mortality. It is now well known that inflammation has a major causative role in obesity-associated disease development and that obesity favors the establishment of a pro-inflammatory milieu at the level of adipose microenvironment. These inflammatory signals result in a disruption of normal cellular-crosstalk between adipose and non-adipose components leading to an altered metabolic and immunological status and a dysfunctional phenotype. Abnormal secretion of adipokines – small adipose-derived signaling molecules – can further assist in the inflammatory processes to offset the adipose tissue towards a dysfunctional state. Although adipokines have been recognized as the link between obesity and pathogenesis, studies are needed to fully understand their mechanism of action and underscore their therapeutic value. Here, we have reviewed obesity-induced metabolic and immunological changes at the level of vasculature and emphasize on the importance of adipokines, particularly leptin, vaspin and visfatin, for their therapeutic relevance.  相似文献   

4.
Obesity is associated with the accumulation of pro‐inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro‐inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL‐4, IL‐5, and IL‐13, which keep adipose tissue macrophages (ATMs) in an anti‐inflammatory, M2‐like state. Diet‐induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN‐γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity‐induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8+ T cells, which produce IFN‐γ, driving M1 ATM polarization. A rapid accumulation of pro‐inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity‐induced loss of homeostasis which marks the initiation of VAT inflammation.  相似文献   

5.
Adipose tissue is an active organ playing a role not only in metabolism but also in immune and inflammatory processes, releasing several pro-inflammatory mediators. This can explain the possible association between obesity and rheumatoid arthritis (RA) and its role in the progression of the disease. Adipose and synovial tissues share common histological features of local inflammation in terms of activation of target tissues infiltrating cells (i.e. myeloid cells). Among the so-called adipocytokines, PEDF and Chemerin orchestrate the cellular cross-talk between adipose and myeloid cells, being possible biomarkers to monitor the effect of weight loss or the decrease of adipose tissue in patients with RA. Moreover, dietary intervention has been demonstrated to reduce Chemerin as well as IL-6 and MCP-1 expression. Finally, epigenetic regulators such as micro-RNAs (i.e. miR-155) are key regulators of myeloid cells activation in RA and obesity as well as in adipocytes. In this review, we will summarize the biological link between obesity/overweight state and RA focusing on pathophysiological mechanisms, consequences and management considerations.  相似文献   

6.
The global obesity epidemic and its associated co‐morbidities, including type 2 diabetes, cardiovascular disease and certain types of cancers, have drawn attention to the pivotal role of adipocytes in health and disease. Besides their ‘classical’ function in energy storage and release, adipocytes interact with adipose‐tissue‐resident immune cells, among which are lipid‐responsive invariant natural killer T (iNKT) cells. The iNKT cells are activated by lipid antigens presented by antigen‐presenting cells as CD1d/lipid complexes. Upon activation, iNKT cells can rapidly secrete soluble mediators that either promote or oppose inflammation. In lean adipose tissue, iNKT cells elicit a predominantly anti‐inflammatory immune response, whereas obesity is associated with declining iNKT cell numbers. Recent work showed that adipocytes act as non‐professional antigen‐presenting cells for lipid antigens. Here, we discuss endogenous lipid antigen processing and presentation by adipocytes, and speculate on how these lipid antigens, together with ‘environmental factors’ such as tissue/organ environment and co‐stimulatory signals, are able to influence the fate of adipose‐tissue‐resident iNKT cells, and thereby the role of these cells in obesity and its associated pathologies.  相似文献   

7.
The protozoan parasite Trypanosoma cruzi causes Chagas disease. Cardiac and adipose tissues are among the early targets of infection and are sites of persistent infection. In the heart and adipose tissue, T. cruzi infection results in an upregulation of pro-inflammatory mediators. In the heart, infection is associated with an increase in the markers of oxidative stress. To date, markers of oxidative stress have not been evaluated in adipose tissue in this infection. Brown and white adipose tissues were obtained from CD-1 mice infected with the Brazil strain of T. cruzi for 15, 30, and 130 days post infection. Protein carbonylation and lipid peroxidation assays were performed on these samples. There was an upregulation of these markers of oxidative stress at all time-points in both white and brown adipose tissue. Determinants of anti-oxidative stress were downregulated at similar time-points. This increase in oxidative stress during T. cruzi infection most likely has a deleterious effect on host metabolism and on the heart.  相似文献   

8.
Obesity is a major health burden worldwide and is a major factor in the development of insulin resistance and metabolic complications such as type II diabetes. Chronic nutrient excess leads to visceral adipose tissue (VAT) expansion and dysfunction in an active process that involves the adipocytes, their supporting matrix, and immune cell infiltrates. These changes contribute to adipose tissue hypoxia, adipocyte cell stress, and ultimately cell death. Accumulation of lymphocytes, macrophages, and other immune cells around dying adipocytes forms the so-called “crown-like structure”, a histological hallmark of VAT in obesity. Cross talk between immune cells in adipose tissue dictates the overall inflammatory response, ultimately leading to the production of pro-inflammatory mediators which directly induce insulin resistance in VAT. In this review, we summarize recent studies demonstrating the dramatic changes that occur in visceral adipose tissue during obesity leading to low-grade chronic inflammation and metabolic disease.  相似文献   

9.
T cells are involved in chronic inflammation of adipose tissue in obese conditions. However, the impact of age on the adipose T cells remains unknown. In this study, we investigated T cells in the white adipose tissue of young and adult mice. Obesity was induced in the mice using a high-fat diet (HFD) for 14 weeks. The young mice were fed an HFD at 3 weeks old, and adult mice were fed the HFD at 12 weeks old. Relative to adult mice, the young mice gained less fat and exhibited better glucose tolerance. Their adipose tissue contained more CD8+ T cells and higher levels of pro-inflammatory cytokines. Young mice showed a larger increase in CD4+ T cells. The young and adult mice showed similar insulin tolerance. HFD reduced the colon muscle layer, which was more obvious in the young mice. These data suggested that young and adult mice exhibit different responses to an HFD in terms of adipose tissue, glucose tolerance, and the colon muscle layer. The increase in CD8+ T cells and CD4+ T cells, together with higher levels of pro-inflammatory cytokines, suggested elevated inflammation in the presence of less fat gain in the young mice, which was unexpected. The significance of this inflammation remains unknown. We propose that inflammation might inhibit energy storage in the adipose tissue to provide more energy to the lean body mass in favor of growth in the young mice. The present study provides another example of the beneficial effect of inflammation in physiological conditions.  相似文献   

10.
11.
12.
Obesity and type‐2 diabetes (T2D) are associated with metabolic defects and inflammatory processes in fat depots. FoxP3+ regulatory T cells (Tregs) control immune tolerance, and have an important role in controlling tissue‐specific inflammation. In this mini‐review we will discuss current insights into how cross‐talk between T cells and adipose tissue shapes the inflammatory environment in obesity‐associated metabolic diseases, focusing on the role of CD4+T cells and Tregs. We will also highlight potential opportunities for how the immunoregulatory properties of Tregs could be harnessed to control inflammation in obesity and T2D and emphasize the critical need for more research on humans to establish mechanisms that are conserved in both mice and humans.  相似文献   

13.
Glucose is a vital source of energy for all mammals. The balance between glucose uptake, metabolism and storage determines the energy status of an individual, and perturbations in this balance can lead to metabolic diseases. The maintenance of organismal glucose metabolism is a complex process that involves multiple tissues, including adipose tissue, which is an endocrine and energy storage organ that is critical for the regulation of systemic metabolism. Adipose tissue consists of an array of different cell types, including specialized adipocytes and stromal and endothelial cells. In addition, adipose tissue harbors a wide range of immune cells that play vital roles in adipose tissue homeostasis and function. These cells contribute to the regulation of systemic metabolism by modulating the inflammatory tone of adipose tissue, which is directly linked to insulin sensitivity and signaling. Furthermore, these cells affect the control of thermogenesis. While lean adipose tissue is rich in type 2 and anti-inflammatory cytokines such as IL-10, obesity tips the balance in favor of a proinflammatory milieu, leading to the development of insulin resistance and the dysregulation of systemic metabolism. Notably, anti-inflammatory immune cells, including regulatory T cells and innate lymphocytes, protect against insulin resistance and have the characteristics of tissue-resident cells, while proinflammatory immune cells are recruited from the circulation to obese adipose tissue. Here, we review the key findings that have shaped our understanding of how immune cells regulate adipose tissue homeostasis to control organismal metabolism.  相似文献   

14.
Adipose tissue is a highly dynamic endocrine organ, secreting a number of bioactive substances (adipokines) regulating insulin sensitivity, energy metabolism and vascular homeostasis. Dysfunctional adipose tissue is a key mediator that links obesity with insulin resistance, hypertension and cardiovascular disease. Obese adipose tissue is characterized by adipocyte hypertrophy and infiltration of inflammatory macrophages and lymphocytes, leading to the augmented production of pro-inflammatory adipokines and vasoconstrictors that induce endothelial dysfunction and vascular inflammation through their paracrine and endocrine actions. By contrast, the secretion of adiponectin, an adipokine with insulin sensitizing and anti-inflammatory activities, is decreased in obesity and its related pathologies. Emerging evidence suggests that adiponectin is protective against vascular dysfunction induced by obesity and diabetes, through its multiple favourable effects on glucose and lipid metabolism as well as on vascular function. Adiponectin improves insulin sensitivity and metabolic profiles, thus reducing the classical risk factors for cardiovascular disease. Furthermore, adiponectin protects the vasculature through its pleiotropic actions on endothelial cells, endothelial progenitor cells, smooth muscle cells and macrophages. Data from both animal and human investigations demonstrate that adiponectin is an important component of the adipo-vascular axis that mediates the cross-talk between adipose tissue and vasculature. This review highlights recent work on the vascular protective activities of adiponectin and discusses the molecular pathways underlying the vascular actions of this adipokine.  相似文献   

15.
Lydia Lynch 《Immunology》2014,142(3):337-346
Adipose tissue is a dynamic organ that makes up a substantial proportion of the body; in severe obesity it can account for 50% of body mass. Details of the unique immune system resident in human and murine adipose tissue are only recently emerging, and so it has remained a largely unexplored and unappreciated immune site until now. Adipose tissue harbours a unique collection of immune cells, which often display unusual functions compared with their counterparts elsewhere in the body. These resident immune cells are key to maintaining tissue and immune homeostasis, yet in obesity their chronic aberrant stimulation can contribute to the inflammation and pathogenesis associated with obesity. Anti‐inflammatory adipose‐resident lymphocytes are often depleted in obesity, whereas pro‐inflammatory immune cells accumulate, leading to an overall inflammatory state, which is a key step in the development of obesity‐induced metabolic disease. A good example is invariant natural killer T (iNKT) cells, which make up a large proportion of lymphocytes in human and murine adipose tissue. Here, they are unusually poised to produce anti‐inflammatory or regulatory cytokines, however in obesity, iNKT cells are greatly reduced. As iNKT cells are potent transactivaors of other immune cells, and can act as a bridge between innate and adaptive immunity, their loss in obesity represents the loss of a major regulatory population. Restoring iNKT cells, or activating them in obese mice leads to improved glucose handling, insulin sensitivity, and even weight loss, and hence represents an exciting therapeutic avenue to be explored for restoring homeostasis in obese adipose tissue.  相似文献   

16.
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.  相似文献   

17.
18.
B-1 and B-2 B cell subsets carry out a diverse array of functions that range broadly from responding to innate stimuli, antigen presentation, cytokine secretion and antibody production. In this review, we first cover the functional roles of the major murine B cell subsets. We then highlight emerging evidence, primarily in preclinical rodent studies, to show that select B cell subsets are a therapeutic target in obesity and its associated co-morbidities. High fat diets promote accumulation of select murine B cell phenotypes in visceral adipose tissue. As a consequence, B cells exacerbate inflammation and thereby insulin sensitivity through the production of autoantibodies and via cross-talk with select adipose resident macrophages, CD4+ and CD8+ T cells. In contrast, interleukin (IL)-10-secreting regulatory B cells counteract the proinflammatory profile and improve glucose sensitivity. We subsequently review data from rodent studies that show pharmacological supplementation of obesogenic diets with long chain n-3 polyunsaturated fatty acids or specialized pro-resolving lipid mediators synthesized from endogenous n-3 polyunsaturated fatty acids boost B cell activation and antibody production. This may have potential benefits for improving inflammation in addition to combating the increased risk of viral infection that is an associated complication of obesity and type II diabetes. Finally, we propose potential underlying mechanisms throughout the review by which B cell activity could be differentially regulated in response to high fat diets.  相似文献   

19.
20.
It is known that a strong association exists between a suboptimal lifestyle (physical inactivity and sedentary behavior and/or high calorie diet) and increased propensity of developing age-associated diseases, such as obesity and T2DM. Physical exercise can alleviate obesity-induced insulin resistance and T2DM, however, the precise mechanism for this outcome is not fully understood. The endocrine disorder of adipose tissue in obesity plays a critical role in the development of insulin resistance. In this regard, spexin has been recently described as an adipokine that plays an important role in the pathophysiology of obesity-induced insulin resistance and T2DM. In obese states, expression of adipose tissue spexin is reduced, inducing the adipose tissue and skeletal muscle more susceptible to insulin resistance. Emerging evidences point out that exercise can increase spexin expression. In return, spexin could exert the exercise-protective roles to ameliorate insulin resistance, suggesting that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance and T2DM, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. This review summarizes our and others’ recent studies regarding the effects of obesity on adipose tissue spexin induction, along with the potential effect of exercise on this response in obese context, and provides a new insight into the multivariate relationship among exercise, spexin and T2DM. It should be therefore taken into account that a combination of spexin and exercise training is an effective therapeutic strategy for age-associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号