首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 1 diabetes results from destruction of pancreatic beta cells by autoreactive T cells. Both CD4+ and CD8+ T cells have been shown to mediate beta‐cell killing. While CD8+ T cells can directly recognize MHC class I on beta cells, the interaction between CD4+ T cells and beta cells remains unclear. Genetic association studies have strongly implicated HLA‐DQ alleles in human type 1 diabetes. Here we studied MHC class II expression on beta cells in nonobese diabetic mice that were induced to develop diabetes by diabetogenic CD4+ T cells with T‐cell receptors that recognize beta‐cell antigens. Acute infiltration of CD4+ T cells in islets occurred with rapid onset of diabetes. Beta cells from islets with immune infiltration expressed MHC class II mRNA and protein. Exposure of beta cells to IFN‐γ increased MHC class II gene expression, and blocking IFN‐γ signaling in beta cells inhibited MHC class II upregulation. IFN‐γ also increased HLA‐DR expression in human islets. MHC class II+ beta cells stimulated the proliferation of beta‐cell‐specific CD4+ T cells. Our study indicates that MHC class II molecules may play an important role in beta‐cell interaction with CD4+ T cells in the development of type 1 diabetes.  相似文献   

2.
Summary: This review examines the field of current HLA class II transgenic mouse models and the individual approaches applied in production of these mice. The majority of these mice have been created with the objective of obtaining a disease model with clinical features mimicking human autoimmune disease. The development process of a different type of HLA class II transgenic mice, which are designed to function as a substitute for a normal human immune system in studies of human autoantigens, is described. Several HLA-DR4 transgenic lines with normally expressed HLA-DR4 molecules have been produced. To obtain adequate positive selection of the HLA-DR4-restricted CD4+ T-cell repertoire in these mice it is essential both to introduce a human CD4 transgene. and to delete the murine major histocompatibility complex (MHC) class II molecules. These HLA-DR4 transgenic mice have been used to determine the immunogenic CD4+ T-cell epitopes of several human autoantigenic proteins.  相似文献   

3.
A promising cancer treatment strategy involves stimulation of anti-tumor immune responses. CD4+ T cell responses are particularly desirable, as they enhance CD8+ T cell activity and provide immune memory. The major histocompatibility complex (MHC) class II transactivator CIITA can be used to stimulate expression of MHC II on tumor cells, thereby promoting CD4+ T cell activation. In this study, N2a neuroblastoma cells were stably transfected with CIITA. N2aCIITA cells displayed increased expression of MHC I, MHC II and invariant chain; CD80 and CD86 were expressed by neither the parental N2a cells nor by the N2aCIITA cells. All mice injected with N2aCIITA cells developed tumors. Furthermore, no increase in the numbers of T cells, natural killer cells, macrophages, or eosinophils was observed in the spleens or tumors of mice injected with N2aCIITA cells, compared to tissues from mice injected with the parental N2a cells. This absence of an anti-tumor immune response despite MHC II expression is likely due to the presence of invariant chain, in support of the MHCII+/Ii paradigm.  相似文献   

4.
Mature CD4+ and CD8+ T cells are restricted by major histocompatibility complex (MHC) class II and class I molecules, respectively. In a primary mixed lymphocyte reaction (MLR), CD8+ T cells from C57BL/6 (B6) mice can respond to allo-class I molecules, but not allo-class II molecules. However, a significant fraction of CD8+ T cells from C57BL/6 class II-deficient (B6Aα?) mice violate this rule by responding vigorously in a MLR to class II molecules. The frequency of responding cells is ~ 50 % of that of B6 CD8+ T cells responding to B6bm1 allo-class I molecules. This response requires neither appropriate co-receptor, i.e. CD4, nor exogenous lymphokines, indicating that interactions between the T cell receptors (TCR) and class II molecules are remarkably efficient. Since these CD8+ T cells are positively selected by class I molecules in the thymus of class II-deficient mice, these CD8+ T cells should interact with both classes of MHC molecules. The absence of thymic negative selection by class II molecules may result in the production of these CD8+ T cells. The data imply that a substantial fraction of CD4+CD8+ double-positive thymocytes in wild-type mice interacts with both classes of MHC molecules prior to thymic selection.  相似文献   

5.
CD4+ helper T (Th) cells play crucial role in priming, expansion and survival of CD8+ cytotoxic T lymphocytes (CTLs). However, how CD4+ Th cell's help is delivered to CD8+ T cells in vivo is still unclear. We previously demonstrated that CD4+ Th cells can acquire ovalbumin (OVA) peptide/major histocompatibility complex (pMHC I) and costimulatory CD80 by OVA-pulsed DC (DCOVA) stimulation, and then stimulate OVA-specific CD8+ CTL responses in C57BL/6 mice. In this study, we further investigated CD4+ Th cell's effect on stimulation of CD8 CTL responses in major histocompatibility complex (MHC II) gene knockout (KO) mice and transgenic rat insulin promoter (RIP)-mOVA mice with moderate expression of self OVA by using CD4+ Th cells or Th cells with various gene deficiency. We demonstrated that the in vitro DCOVA-activated CD4+ Th cells (3 × 106 cells/mouse) can directly stimulate OVA-specific CD8+ T-cell responses in wild-type C57BL/6 mice and MHC II gene KO mice lacking CD4+ T cells. A large amount of CD4+ Th cells (12 × 106 cells/mouse) can even overcome OVA-specific immune tolerance in transgenic RIP-mOVA mice, leading to CD8+ CTL-mediated mouse pancreatic islet destruction and diabetes. The stimulatory effect of CD4+ Th cells is mediated by its IL-2 secretion and CD40L and CD80 costimulations, and is specifically delivered to OVA-specific CD8+ T cells in vivo via its acquired pMHC I complexes. Therefore, the above elucidated principles for CD4+ Th cells will have substantial implications in autoimmunity and antitumor immunity, and regulatory T-cell-dependent immune suppression.  相似文献   

6.
Previous studies have suggested that granulomatous inflammation in schistosomiasis is mediated by CD4+ T helper lymphocytes sensitized to parasite egg antigens. However, CD8+ T cells have also frequently been associated with the immune response to schistosome eggs. To examine more precisely the role of CD4+ and CD8+ T cells in the pathology of the schistosomal infection, we used mice with targeted mutations in major histocompatibility complex (MHC) class II or class I molecules. These mutations lead, respectively, to the virtual absence of CD4+ and CD8+ T cells. The results clearly show that schistosome-infected MHC class II mutant mice failed to form granulomas around parasite eggs. In contrast, infected MHC class I mutant mice displayed characteristic granulomatous lesions that were comparable to those in wild-type control mice. Moreover, lymphoid cells from MHC class II mutant mice were unable to react to egg antigens with either proliferative or cytokine [interferon-gamma, interleukin (IL)-4, IL-10] responses; nor were they able to present egg antigens to specifically sensitized CD4+ T helper cells from infected syngeneic control mice. By comparison, cells from MHC class I mutant mice exercised all these functions in a manner comparable with those from wild-type controls. These observations clearly demonstrate that schistosomal egg granulomas are mediated by MHC class II-restricted CD4+ T helper cells. They also suggest that CD8+ T cells do not become sensitized to egg antigens and play little role, if any, in the pathogenesis of schistosomiasis.  相似文献   

7.
Three-color flow cytometric analysis was carried out with intraepithelial lymphocytes from mice deficient in expression of major histocompatibility complex (MHC) antigens. These experiments were done to address the possible role of MHC class II molecules in the positive selection of Vδ4+ γδ T cells. By analyzing mice deficient MHC class II antigens alone or in combination with MHC class I antigens, no evidence was found for positive selection of Vδ4+ cells among CD8a+ or CD4?CD8? subpopulations of γδ T cell receptor-positive cells. Because V54+, CD8a+ cells were reported to be positively selected on I-Ek and hybrid I-Ek/b molecules, class II-deficient animals were crossed with I-Ek transgenic mice and progeny examined for Vδ4 expression. Again, no evidence for positive selection was found. Interestingly, in MHC class I-deficient animals, the total number of γδ T cells was about twofold higher than in control and MHC class II-deficient mice and the proportion of V8δ-expressing cells was correspondingly decreased. Taken together, these results cast doubt on a major role for conventional MHC antigens in shaping the γδ T cell repertoire of intraepithelial lymphocytes.  相似文献   

8.
《Immunology》2017,152(1):150-162
The humanized mouse model has been developed as a model to identify and characterize human immune responses to human pathogens and has been used to better identify vaccine candidates. In the current studies, the humanized mouse was used to determine the ability of a vaccine to affect the immune response to infection with Mycobacterium tuberculosis. Both human CD4+ and CD8+ T cells responded to infection in humanized mice as a result of infection. In humanized mice vaccinated with either BCG or with CpG‐C, a liposome‐based formulation containing the M. tuberculosis antigen ESAT‐6, both CD4 and CD8 T cells secreted cytokines that are known to be required for induction of protective immunity. In comparison to the C57BL/6 mouse model and Hartley guinea pig model of tuberculosis, data obtained from humanized mice complemented the data observed in the former models and provided further evidence that a vaccine can induce a human T‐cell response. Humanized mice provide a crucial pre‐clinical platform for evaluating human T‐cell immune responses in vaccine development against M. tuberculosis.  相似文献   

9.
Contact sensitivity (CS) is a form of delayed-type hypersensitivity to haptens applied epicutaneously and is thought to be mediated, like classical delayed-type hypersensitivity responses, by CD4+ T helper-1 cells. The aim of this study was to identify the effector T cells involved in CS. We studied CS to the strongly sensitizing hapten dinitrofluorobenzene (DNFB) in mice rendered deficient by homologous recombination in either major histocompatibility complex (MHC) class I, MHC class II, or both, and which exhibited deficiencies in, respectively, CD8+, CD4+, or both, T cells. MHC class I single-deficient and MHC class I/class II double-deficient mice, both of which have a drastic reduction in the number of CD8+ T cells, were unable to mount a CS response to DNFB. In contrast, both MHC class II-deficient mice and normal mice treated with an anti-CD4 monoclonal antibody (mAb) developed exaggerated and persistent responses relative to heterozygous control littermates. Furthermore, anti-CD8 mAb depletion of class II-deficient mice totally abolished their ability to mount an inflammatory response to DNFB. Removal of residual CD4+ T cells in class II-deficient mice by anti-CD4 mAb treatment did not diminish the intensity of CS. These data clearly demonstrate that class I-restricted CD8+ T cells are sufficient for the induction of CS to DNFB, and further support the idea that MHC class II-restricted CD4+ T cells down-regulate this inflammatory response.  相似文献   

10.
Human autoimmune diseases are a class of complex immune system disorders characterized by loss of tolerance to self-antigens. HLA class II molecules play a central role in the initiation, propagation and prolongation of the disease process. HLA class II transgenic mice with mouse endogenous class II gene Ab knockout were used successfully in several mouse models for human autoimmune diseases, such as IDDM, SLE and EAE in our Lab. However, these mice carry the functional mouse Eb gene from the Abeta(0/0) construct and could express Ebeta/DRalpha(Ealpha) molecules and shape the T cell repertoire in these mice. Recently, we have obtained the new MHCII(Delta/Delta) mice that are devoid of all endogenous conventional mouse MHC class II genes. When these mice are mated with our HLA class II transgenic mice, only human class II genes are expressed. The DR and DQ molecules expressed in these mice shape the T cell repertoire and regulate the immune response. Therefore, this new class of HLA transgenic mice is the first to be completely "humanized" in their MHC class II genes and will be an invaluable mouse model for human MHC class II associated autoimmune diseases.  相似文献   

11.
Acute enteritic or respiratory disease is a consequence of coronavirus infection in man and rodents. Mouse hepatitis virus, stain A59 (MHV-A59) causes acute hepatitis in mice and rats and induces a response of major histocompatibility complex (MHC) class II-restricted CD4+ cytotoxic T cells, protecting mice against acute infection. In the present study we show that MHV-A59 infection of mice that lack a functional CD4 gene activates effector cells of the CD8+ phenotype. These cytotoxic T cells lyse virus-infected target cells in a MHC class II-restricted fashion. The results indicate that CD8+ T cells have the potential to utilize MHC class II as restriction element, illustrating that the immune system can effectively deal with evading microorganisms, such as viruses which down-regulate MHC class I.  相似文献   

12.
Interactions of CD4 with the major histocompatibility complex (MHC) class II molecules are crucial during thymic development and subsequently for the function of single-positive CD4+CD8? T lymphocytes. Here, we have investigated the potential effects of soluble CD4 (sCD4) on the immune system. We generated two different transgenic mouse lines, which constitutively expressed either ?100 μg/ml of monovalent or ?20 μg/ml f decavalent mouse sCD4 molecules in their sera. Analysis of these mice revealed no differences compared to control littermates, e.g. the single-positive CD4+ cells developed normally and these cells responded to allogeneic and anti-CD3 antibody stimuli like the cells from control mice. Furthermore, the T helper cell function for antibody responses in vivo were not affected. Our data provide evidence that, in mouse, the CD4-MHC class II-interaction has very low affinity. Since sCD4 is considered to be a therapeutical agent for human immunodeficiency virus infection, these findings are not only of basic, but also of clinical interest.  相似文献   

13.
Autophagy plays an important role in maintaining intracellular homeostasis by promoting the transit of cytoplasmic material, such as proteins, organelles and pathogens, for degradation within acidic organelles. Yet, in immune cells, autophagy pathways serve an additional role in facilitating intracellular surveillance for pathogens and changes in self. Autophagy pathways can modulate key steps in the development of innate and adaptive immunity. In terms of adaptive immunity, autophagy regulates the development and survival of lymphocytes as well as the modulation of antigen processing and presentation. Specialized forms of autophagy may be induced by some viral pathogens, providing a novel route for major histocompatibility complex (MHC) class I antigen presentation and enhanced CD8+ T-cell responses. Autophagy induction in target cells also increases their potential to serve as immunogens for dendritic cell cross-presentation to CD8+ T cells. The requirement for autophagy in MHC class II presentation of cytoplasmic and nuclear antigens is well established, yet recent studies also point to a critical role for autophagy in modulating CD4+ T-cell responses to phagocytosed pathogens. Autophagy pathways can also modulate the selection and survival of some CD4+ T cells in the thymus. However, much still remains to be learned mechanistically with respect to how autophagy and autophagy-linked genes regulate pathogen recognition and antigen presentation, as well as the development and survival of immune cells.  相似文献   

14.
Oral tolerance is defined by immune unresponsiveness after oral administration of soluble antigens and by antigen-specific inhibition of peripheral immune responses induced by prior antigen feeding. The aim of this study was to investigate the implication of the major histocompatibility complex (MHC) class II presentation pathway to CD4+ T cells in oral tolerance of contact sensitivity (CS) to the hapten dinitrofluorobenzene (DNFB). We used MHC class II knockout (ABº/º) and invariant chain knockout (Iiº/º) mice, which have, respectively, a total or partial defect in class II-restricted activation of CD4+ T cells, as well as normal C57BL/6 mice depleted of CD4+ T cells by injection of a specific antibody. Intragastric administration of DNFB prior to skin sensitization induced specific inhibition of contact sensitivity to DNFB in Aβ+/º and Ii+/º heterozygotes comparable to that observed in C57BL/6 mice. In contrast, no oral tolerance was observed in either MHC class II-deficient Aβº/º and Iiº/º homozygote mutants or in syngeneic anti-CD4-depleted C57BL/6 mice. Moreover, a single oral administration of DNFB, without skin sensitization, could prime Aβº/º, Iiº/º as well as anti-CD4-depleted C57BL/6 mice for DNFB-specific CS. These findings demonstrate that the class II/CD4 pathway is involved in oral tolerance manifested both as the inhibition of CS by hapten feeding prior to skin sensitization, and as immune unresponsiveness of normal mice to oral administration of hapten. Furthermore, our data provide evidence that a single oral feeding with DNFB is able to prime mice for hapten-specific CS, provided that the class II/CD4 pathway is bypassed.  相似文献   

15.
Haematopoietic humanization of mice is used frequently to study the human immune system and its reaction upon experimental intervention. Immunocompromised non‐obese diabetic (NOD)‐Rag1–/– mice, additionally deficient for the common gamma chain of cytokine receptors (γc) (NOD‐Rag1–/– γc–/– mice), lack B, T and natural killer (NK) cells and allow for efficient human peripheral mononuclear cell (PBMC) engraftment. However, a major experimental drawback for studies using these mice is the rapid onset of graft‐versus‐host disease (GVHD). In order to elucidate the contribution of the xenogenic murine major histocompatibility complex (MHC) class II in this context, we generated immunodeficient mice expressing human MHC class II [human leucocyte antigen (HLA)‐DQ8] on a mouse class II‐deficient background (Aβ–/–). We studied repopulation and onset of GVHD in these mouse strains following transplantation of DQ8 haplotype‐matched human PBMCs. The presence of HLA class II promoted the repopulation rates significantly in these mice. Virtually all the engrafted cells were CD3+ T cells. The presence of HLA class II did not advance B cell engraftment, such that humoral immune responses were undetectable. However, the overall survival of DQ8‐expressing mice was prolonged significantly compared to mice expressing mouse MHC class II molecules, and correlated with an increased time span until onset of GVHD. Our data thus demonstrate that this new mouse strain is useful to study GVHD, and the prolonged animal survival and engraftment rates make it superior for experimental intervention following PBMC engraftment.  相似文献   

16.
NOD/LtSzscid/IL‐2Rγ?/? (NSG) mice have advantages in establishing humanized mouse models. However, transferring human PBMCs into these mice often causes lethal GVH disease. In this study, we discovered an improved method for the engraftment of normal or pathological human PBMCs into NSG mice and examined the subsequent induction of specific immune responses. We sequentially transferred human CD4+ memory T (Tm) and B cells obtained from PBMCs of healthy adults or patients with autoimmune diseases into NSG mice. Removing naïve CD4+ T cells from the transferred PBMCs allowed successful engraftment without lethal GVH disease. The transferred Tm cells were found to reside mainly in the spleen and the lymphoid nodules, where they expressed MHC class II molecules and produced cytokines, including IL‐21. Surprisingly, the transferred B cells were also well maintained in the lymphoid organs, underwent de novo class‐switch recombination, and secreted all isotypes of human Igs at significant levels. Moreover, transferring patient‐derived Tm and B cells resulted in sustained production of IgM‐rheumatoid factor and antiaminoacyl transfer RNA synthetase Abs in these mice. These results suggest that transfer of Tm and B cells derived from human PBMCs into NSG mice could be a useful method for the study of human autoimmune mechanisms.  相似文献   

17.
In a variety of inflammatory skin diseases like leprosy, keratinocytes (KC) are induced to express MHC class II molecules and may therefore serve as antigen-presenting cells (APC) for MHC class II restricted T cells infiltrating the lesions. However, KC have been thought to be improper APC for MHC class II restricted T cells and to drive T cells into an anergic rather than into an activation state. We evaluated this issue in relation to leprosy and tested whether HLA-DR+ KC could present M. leprae antigens to well-defined, CD4 +, cytotoxic as well as proliferative, Thl -like cell clones. Using a recently developed sensitive assay system which employs intact layers of basal KC as APC we found that most T-cell clones (6/8) lysed HLA-DR+ KC pulsed with M. leprae antigens. KC were only recognized after induction of HLA-DR expression by IFN-γ, in an antigen-specific and HLA class II restricted manner. All T-cell clones tested also showed significant proliferation and IFN-γ production in response to M. leprae antigens presented by HLA-DR+ KC, arguing against a KC dependent anergizing effect on T cells. Thus, HLA class II+ KC can function as proper APC for HLA class II restricted CD4+ Th l -like cells. It seems therefore possible that antigen presentation by KC contributes to the local cell-mediated immune responses in DTH lesions.  相似文献   

18.
Molecular chaperones such as heat shock protein 90 (Hsp90) have been shown to form complexes with tumor antigens and can be used to prepare anticancer vaccines largely due to this property. Earlier studies had suggested that mice immunized with a molecular chaperone-based vaccine derived from tumors became immune to further vaccination and that both CD8+ and CD4+ T cells were activated by the chaperone vaccine in a manner dependent on scavenger receptor SREC-I. Here we have investigated mechanisms whereby SREC-I might facilitate uptake of Hsp90-conjugated peptides by APC into the MHC class II pathway for presentation to CD4+ T cells. Our studies showed that antigenic peptides associated with Hsp90 were taken up into the class II pathway by a mechanism dependent on SREC-I binding and internalization and presented to CD4+ T cells. In addition our studies showed that SREC-I could associate with MHC class II molecules on the cell surface and in intracellular endosomes, suggesting a mechanism involving facilitated uptake of peptides into the MHC class II pathway. These studies in addition to our earlier findings showed SREC-I to play a primary role in chaperone-associated antigen uptake both through cross priming of MHC class I molecules and entry into the class II pathway.  相似文献   

19.
Under conditions of cellular stress, proteins can be post-translationally modified causing them to be recognized by the immune system. One such stress-induced post-translational modification (siPTM) is citrullination, the conversion of arginine residues to citrulline by peptidylarginine deiminase (PAD) enzymes. PAD enzymes are activated by millimolar concentrations of calcium which can occur during apoptosis, leading to precipitation of proteins, their subsequent uptake by B cells and stimulation of antibody responses. Detection of anti-citrullinated protein antibodies (ACPAs) is a diagnostic of rheumatoid arthritis (RA), where immune complexes stimulate inflammation around the joints. More recently, autophagy has been shown to play a role in the presentation of citrullinated peptides on MHC class II molecules to CD4+ helper T cells, suggesting that citrullination may be a way of alerting immune cells to cellular stress. Additionally, inflammation-induced IFNγ and concomitant MHC class II expression on target cells contributes to immune activation. Stressful conditions in the tumor microenvironment induce autophagy in cancer cells as a pro-survival mechanism. Cancer cells also over express PAD enzymes and in light of this the hypothesis that citrullinated peptides stimulate CD4+ T cell responses that would recognize these siPTM’s produced during autophagy has been investigated. The induction of potent citrullinated peptide-specific CD4 responses has been shown in both humans and HLA transgenic mouse models. Responses in mouse models resulted in potent anti-tumour responses against tumours expressing either constitutive or IFNγ-inducible MHC class II. The anti-tumour effect relied upon direct recognition of tumours by specific CD4 T cells suggesting that citrullinated peptides are attractive targets for cancer vaccines.  相似文献   

20.
《Immunology》2017,150(1):16-24
The MHC class I and II antigen processing and presentation pathways display peptides to circulating CD8+ cytotoxic and CD4+ helper T cells respectively to enable pathogens and transformed cells to be identified. Once detected, T cells become activated and either directly kill the infected / transformed cells (CD8+ cytotoxic T lymphocytes) or orchestrate the activation of the adaptive immune response (CD4+ T cells). The immune surveillance of transformed/tumour cells drives alteration of the antigen processing and presentation pathways to evade detection and hence the immune response. Evasion of the immune response is a significant event tumour development and considered one of the hallmarks of cancer. To avoid immune recognition, tumours employ a multitude of strategies with most resulting in a down‐regulation of the MHC class I expression at the cell surface, significantly impairing the ability of CD8+ cytotoxic T lymphocytes to recognize the tumour. Alteration of the expression of key players in antigen processing not only affects MHC class I expression but also significantly alters the repertoire of peptides being presented. These modified peptide repertoires may serve to further reduce the presentation of tumour‐specific/associated antigenic epitopes to aid immune evasion and tumour progression. Here we review the modifications to the antigen processing and presentation pathway in tumours and how it affects the anti‐tumour immune response, considering the role of tumour‐infiltrating cell populations and highlighting possible future therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号