首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The successful implementation of immunotherapies has provided new impetus in the fight against cancer. Antibody‐mediated blockade of immune checkpoint molecules PD‐1/PD‐L1 and CTLA‐4 has had a dramatic impact upon the treatment of previously intractable cancers such as malignant melanoma, while adoptive cell therapies using chimeric antigen receptor‐bearing T cells have proven highly efficacious in B cell leukemia. Furthermore, significant progress has been made in understanding the mechanisms by which tumors evade or become resistant to these immunotherapies. In this regard, approaches to broaden the applicability and enhance the efficacy of immunotherapies increasingly include modulation of tumor and immune cell metabolism. In this mini‐review, we highlight the most recent studies describing novel approaches and targets for the manipulation of the tumor microenvironment and T cell metabolism and describe how these approaches are being combined with current immunotherapies in preclinical studies.  相似文献   

2.
Immune checkpoint inhibitors (ICIs) have revolutionized our approach to cancer treatment in the past decade. While monoclonal antibodies to CTLA‐4 and PD‐1/PD‐L1 have produced remarkable and durable responses in a subset of patients, the majority of patients will still develop primary or adaptive resistance. With complex mechanisms of resistance limiting the efficacy of checkpoint inhibitor monotherapy, it is critical to develop combination approaches to allow more patients to benefit from immunotherapy. In this review, I approach the current landscape of ICI research from the perspective of sarcomas, a rare group of bone and soft tissue cancers that have had limited benefit from checkpoint inhibitor monotherapy, and little investigation of biomarkers to predict responses. By surveying the various mechanisms of resistance and treatment modalities being explored in other solid tumors, I outline how ICIs will undoubtedly serve as the critical foundation for future directions in modern immunotherapy.  相似文献   

3.
Immune regulation of aggressive tumor growth is often outpaced by tumor up-regulation of ligands that inhibit effector immune responses through the activation of immune checkpoints. A few of such checkpoints include programmed death-1 (PD-1), cytotoxic T lymphocyte associated antigen-4 (CTLA-4), lymphocyte activation gene-3, T-cell immunoglobulin and mucin protein-3, Glucocorticoid-induced TNFR family-related receptor (GITR), and killer cell immunoglobulin like receptor. With the exception of GITR, after binding to their respective ligands these checkpoints induce down-modulation of immune responses to prevent autoimmunity. However, such immune mechanisms are co-opted by tumors to allow rapid tumor cell proliferation. Pre-clinical studies in antibody blockade of PD-1 and CTLA-4 have led to promising augmentation of effector immune responses in murine tumor models, and human antibodies against PD-1 and CTLA-4 alone or in combination have demonstrated tumor regression in clinical trials. The development of immune checkpoint blockade as a potential future immunotherapy has led to increasing interest in combining treatment modalities. Combination checkpoint blockade with chemotherapy and radiation therapy has shown synergistic effects in pre-clinical and clinical studies, and combination checkpoint blockade with bacterial vaccine vectors have produced increased effector immune responses in pre-clinical models. The future of immune checkpoint blockade may be as a powerful adjuvant alongside the current standard of care.  相似文献   

4.
While therapies targeting the co-inhibitory or immune checkpoint receptors PD-1 and CTLA-4 have shown remarkable success in many cancers, not all patients benefit from these therapies. This has catalyzed enormous interest in the targeting of other immune checkpoint receptors. In this regard, TIGIT and CD96 have recently entered the limelight as novel immune checkpoint receptor targets. TIGIT and CD96 together with the co-stimulatory receptor CD226 form a pathway that is analogous to the CD28/CTLA-4 pathway, in which shared ligands and differential receptor:ligand affinities fine-tune the immune response. Although the roles of TIGIT and CD96 as immune checkpoint receptors in T cell and natural killer cell biology are just beginning to be uncovered, accumulating data support the targeting of these receptors for improving anti-tumor immune responses. A clear understanding of the immune cell populations regulated by TIGIT and CD96 is key to the design of immunotherapies that target these receptors in combination with other existing immune checkpoint blockade therapies.  相似文献   

5.
Using a patient’s own immune system to fight cancer is a highly active area of cancer research. Four years ago, sipuleucel-T became the first approved cancer vaccine, which was developed to enhance T-cell immunity against metastatic castration-resistant prostate cancer. Other prostate cancer vaccines, including a viral-based vaccine PROSTVAC-VF and a cellular vaccine GVAX, are in development. Moreover, several clinical trials are investigating the role of immune checkpoint blockade in the treatment of prostate cancer. Ipilimumab and nivolumab are potent T cell checkpoint inhibitors that reverse immunologic tolerance in multiple types of cancers. Here we discuss the mechanisms underlying antitumor T cell responses as well as the development of immunotherapies for prostate cancer.  相似文献   

6.
Cancer cells employ a number of mechanisms to escape immunosurveillance and facilitate tumour progression. The recent explosion of interest in immunotherapy, especially immune checkpoint blockade, is a result of discoveries about the fundamental ligand-receptor interactions that occur between immune and cancer cells within the tumour microenvironment. Distinct ligands expressed by cancer cells engage with cell surface receptors on immune cells, triggering inhibitory pathways (such as PD-1/PD-L1) that render immune cells immunologically tolerant. Importantly, recent studies on the role of epigenetics in immune evasion have exposed a key role for epigenetic modulators in augmenting the tumour microenvironment and restoring immune recognition and immunogenicity. Epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can reverse immune suppression via several mechanisms such as enhancing expression of tumour-associated antigens, components of the antigen processing and presenting machinery pathways, immune checkpoint inhibitors, chemokines, and other immune-related genes. These discoveries have established a highly promising basis for studies using combined epigenetic and immunotherapeutic agents as anti-cancer therapies. In this review, we discuss the exciting role of epigenetic immunomodulation in tumour immune escape, emphasising its significance in priming and sensitising the host immune system to immunotherapies through mechanisms such as the activation of the viral defence pathway. With this background in mind, we highlight the promise of combined epigenetic therapy and immunotherapy, focusing on immune checkpoint blockade, to improve outcomes for patients with many different cancer types.  相似文献   

7.
Graham Pawelec 《Immunology》2018,153(4):415-422
Melanoma has long been recognized as a potentially immunogenic tumour, but only recently has it become clear that the reason for this resides in its many ultraviolet (UV)‐induced mutations and expression of multiple autoantigens which can be targeted by the immune system. The first successful applications of immune‐based treatments included passive immunotherapy using high‐dose interleukin (IL)‐2 and/or adoptive transfer of natural killer (NK)‐cells, as well as active immunotherapy using whole cell‐derived or peptide vaccines. In the intervening decades, it has become clear that these approaches can lead to durable responses in stage III/IV melanoma, and even to functional cures – but only in a vanishingly small fraction of patients. With the advent of immune checkpoint blockade first with anti‐cytotoxic T‐lymphocyte 4 (CTLA‐4), then with anti‐programmed cell death 1 (PD‐1) antibodies, and combinations thereof, the small percentage of responding patients may be increased to half, a major accomplishment in this refractory disease. Improved techniques for identifying mutation‐derived neoantigens and thus more sophisticated active immunotherapies, probably combined with checkpoint blockade, currently hold great promise for further increasing the fraction of responding patients. As additional immunomodulatory antibodies and therapies become available, it will be increasingly important to develop diagnostic tools to determine which particular therapy is likely to elicit the best response for the individual patient. Practically speaking, therapy selection and efficacy monitoring on the basis of the results of a blood test would be most desirable. The purpose of this review is to consider the feasibility of identifying ‘immune signatures’ for predicting responses and determining mechanisms responsible for success or failure of these immunotherapies.  相似文献   

8.
CD8+ T细胞是介导抗原特异性免疫应答的主要细胞,其功能状态受到分子机制的精密调控,在肿瘤免疫中发挥关键作用。近年来,基于CD8+ T细胞杀伤功能的过继性细胞疗法 (例如TCR-T和CAR-T细胞治疗) 和阻断PD-1抑制性信号的免疫检测点疗法在肿瘤临床治疗中取得了前所未有的效果。但是这些免疫疗法对患者的治疗效果仍然有限,主要表现为免疫治疗抵抗,其中重要的机制是肿瘤抗原特异性CD8+ T细胞功能耗竭。因此,免疫治疗研究的热点和难点是探究肿瘤抗原特异性CD8+ T细胞功能耗竭的调控机制,并探索干预策略和靶点以增强CD8+ T细胞的效应功能,抵抗功能耗竭。本文分别从耗竭 CD8+ T 细胞的异质性、对 PD-1 ICB 的响应及表观遗传特征三个方面综述 CD8+ T 细胞抗肿瘤免疫应答的研究进展。  相似文献   

9.
It is widely understood that cancer is a significant cause of morbidity and mortality worldwide. Despite numerous available treatments, prognosis for many remains poor, thus, the development of novel therapies remains essential. Given the incredible success of many immunotherapies in this field, the important contribution of the immune system to the control, and elimination, of malignancy is clear. While many immunotherapies target higher-order pathways, for example, through promoting T-cell activation via immune checkpoint blockade, the potential to target specific immunological pathways is largely not well researched. Precisely understanding how immunity can be tailored to respond to specific challenges is an exciting idea with great potential, and may trigger the development of new therapies for cancer. Inborn Errors of Immunity (IEI) are a group of rare congenital disorders caused by gene mutations that result in immune dysregulation. This heterogeneous group, spanning widespread, multisystem immunopathology to specific immune cell defects, primarily manifest in immunodeficiency symptoms. Thus, these patients are particularly susceptible to life-threatening infection, autoimmunity and malignancy, making IEI an especially complex group of diseases. While precise mechanisms of IEI-induced malignancy have not yet been fully elucidated, analysis of these conditions can highlight the importance of particular genes, and downstream immune responses, in carcinogenesis and may help inform mechanisms which can be utilised in novel immunotherapies. In this review, we examine the links between IEIs and cancer, establishing potential connections between immune dysfunction and malignancy and suggesting roles for specific immunological mechanisms involved in preventing carcinogenesis, thus, guiding essential future research focused on cancer immunotherapy and providing valuable insight into the workings of the immune system in both health and disease.  相似文献   

10.
Clinical studies of cell-based immunotherapies have included both patient-specific (autologous) and non-patient-specific (allogeneic) approaches. Major concerns in using allogeneic immunotherapies are that the induced immune responses may be predominantly directed against the allogeneic HLA molecules of the cellular immunotherapy and not against its potential tumor antigens and that only the allogeneic responses will be enhanced when the immunotherapies are combined with immune checkpoint regulators in an effort to enhance overall immunotherapy potency. To evaluate these possibilities, studies were performed using the GM-CSF-secreting B16F1 cell line as autologous immunotherapy (Auto) and the same cell line modified to over-express the MHC molecule Kd to generate an immunotherapy that expresses an allogeneic component (Allo) when injected into C57/Bl6 mice. The goal was to compare the specific anti-tumor immune responses induced by these two immunotherapies, which share an identical antigen repertoire, with the exception of the allogeneic MHC class I molecule expressed by the Allo cells, and have identical GM-CSF-secretion levels. Both immunotherapies provided similar therapeutic benefit to tumor-bearing animals with a trend towards a more pronounced tumor growth delay in animals injected with the Allo immunotherapy. This correlated with a significant increase in the number of activated DCs and T-cells in the DLN of Allo-treated animals. In addition, persistent infiltration of effector CD8+ T-cells was detected in the tumors of animals treated with the Allo immunotherapy, which correlated with a trend towards a greater antigen-specific T-cell response in these animals. When combined with the immune checkpoint regulator anti-PD-1, tumor-specific and allogeneic immune responses were equally enhanced. Thus, the ability of an allogeneic tumor cell immunotherapy to induce a therapeutic anti-tumor immune response is comparable, if not superior, to an autologous tumor cell immunotherapy and its anti-tumor potency can be enhanced when combined with immunomodulatory compounds.  相似文献   

11.
Lung cancer remains the most common cancer and the leading cause of cancer death worldwide. Despite effective chemotherapy and molecular-based therapies, the median and overall survival remains poor. Immune checkpoint inhibitors have changed the treatment landscape for patients with non-small cell lung cancer (NSCLC) by inhibiting negative T cell regulators, including programmed death 1 (PD-1, CD279) and programmed death ligand 1 (PD-L1, also known as B-H1, CD274) inhibitors. Nonetheless, most patients do not respond to these inhibitors. Recently, PD-L1 expression has been demonstrated to influence the anti-tumor efficacy of immune checkpoint inhibitors. However, the mechanisms of PD-L1 regulation are not clearly understood. This review thus aims to summarize the current knowledge and recent developments in the regulatory mechanisms of PD-L1 expression levels and attempts to clarify its latent function in anti-tumor activity, with the goal of guiding better designs for future NSCLC immunotherapies.  相似文献   

12.
Adoptive cell transfer (ACT) using chimeric antigen receptor (CAR)‐modified T cells can induce durable remissions in patients with refractory B‐lymphoid cancers. By contrast, results applying CAR‐modified T cells to solid malignancies have been comparatively modest. Alternative strategies to redirect T cell specificity and cytolytic function are therefore necessary if ACT is to serve a greater role in human cancer treatments. T cell receptors (TCRs) are antigen recognition structures physiologically expressed by all T cells that have complementary, and in some cases superior, properties to CARs. Unlike CARs, TCRs confer recognition to epitopes derived from proteins residing within any subcellular compartment, including the membrane, cytoplasm and nucleus. This enables TCRs to detect a broad universe of targets, such as neoantigens, cancer germline antigens, and viral oncoproteins. Moreover, because TCRs have evolved to efficiently detect and amplify antigenic signals, these receptors respond to epitope densities many fold smaller than required for CAR‐signaling. Herein, we summarize recent clinical data demonstrating that TCR‐based immunotherapies can mediate regression of solid malignancies, including immune‐checkpoint inhibitor refractory cancers. These trials simultaneously highlight emerging mechanisms of TCR resistance. We conclude by discussing how TCR‐based immunotherapies can achieve broader dissemination through innovations in cell manufacturing and non‐viral genome integration techniques.  相似文献   

13.
Over the past few decades, with the rise of immunotherapies, tumor infiltrating immune cells were increasingly investigated. Indeed, they may represent biomarkers for patient outcome prediction, they may bear immune checkpoint markers that can be targeted by therapeutic antibodies and mechanistic studies may reveal how to tweak their activation profile so that we can re-direct them towards tumor cells. Macrophages possess a central place in tissue homeostasis for tissue remodeling and cleaning, transformed cell elimination, phagocytosis and regulation of inflammation via cytokine production. All these functions allow the discovery of approaches to target Tumor Associated Macrophages (TAMs) using immunotherapies. Indeed, TAMs express known immune checkpoint markers such as PD-L1, CD40, Sirp-α and markers such as CD163, CD204, TREM2, TREM1 associated with prognosis. In the context of therapies TAM may participate to antibody dependent cell phagocytosis (ADCP) thanks to FCγ−Receptors. Here, we will review the recent literature on TAMs in the specific context of HPV+ tumors. Indeed, HPV infection of mucosal tissue may lead to head and neck, cervical, penile, anal and vaginal cancers. HPV+ tumors exhibit a higher immune cell infiltrate, which relies on inflammation, immunosuppression and anti-viral response. In this context, and considering the many functions on macrophages, we will show the versatility of TAMs in a tumor microenvironment with viral infection features.  相似文献   

14.
Among all immune cells, dendritic cells (DC) are the most potent APCs in the immune system and are central players of the adaptive immune response. There are phenotypically and functionally distinct DC populations derived from blood and lymphoid organ including plasmacytoid DC (pDC), conventional DC (cDC1 and cDC2) and monocyte-derived DC (moDC). The interaction between these different DCs and tumors is a dynamic process where DC-mediated cross-priming of tumor specific T cells is critical in initiating and sustaining anti-tumor immunity. Their presence within the tumor tends to induce T cell responses and to reduce cancer progression and is associated with improved patient survival. This review will focus on the distinct tumor-associated DCs (TADC) subsets in the tumor microenvironment (TME), their roles in tumor immunology and their prognostic and/or predictive impact in human cancers. The development of therapeutic immunity strategies targeting TADC is promising to enhance their immune-stimulatory capacity in cancers and improve the efficacy of current immunotherapies including immune checkpoint inhibitor (ICI) blockade and DC-based therapies.  相似文献   

15.
免疫检查点是人类进化出的控制免疫反应强度和持续时间、最大限度减少过度活跃的免疫应答导致的过度炎症反应和自身免疫性疾病的一种机制.相比于放疗、化疗等传统治疗手段,免疫疗法因其对正常细胞毒副作用小而在肿瘤治疗中日渐兴起.该疗法种类繁多,其中免疫检查点抑制疗法通过解除肿瘤免疫耐受、激活机体自身免疫系统进而清除肿瘤细胞,治疗手段极具潜力,成为肿瘤治疗中的研究热点.针对肿瘤免疫效应机制和逃逸机制进行了阐述,综述了抗细胞毒T淋巴细胞相关抗原4和程序性细胞死亡受体1两个免疫检查点抑制剂的作用机制和临床应用,对免疫检查点抑制剂的应用前景进行了展望.  相似文献   

16.
Immune responses must be fine-tuned to allow effective clearance of invading pathogens, while maintain tolerance to self-antigens. T cells are the major effector cells for fighting and killing tumor cells. Immune checkpoints play a pivotal role in T cell activation, and determine the functional outcome of T cell receptor (TCR) signaling. The blockade of immune checkpoints CTLA-4 and PD-1 has already been one of the most successful cancer immunotherapies. In this review, we will focus on three novel inhibitory B7 family checkpoint molecules, B7-H3, B7S1 and VISTA. The aim of this article is to summarize their expressions in tumors as well as their roles in controlling and suppressing T cell immune responses and anti-tumor immunity. These pathways may be explored in future cancer immunotherapy.  相似文献   

17.
Melanoma, an immunogenic tumor, is the first indication where oncolytic viruses are now becoming part of clinical practice. ONCOS-102, a transgened adenovirus, has shown to act as a primer of relevant tumor targeting immune cells both in preclinical and clinical melanoma studies. Strategies to augment its effectiveness warrant investigation. Combination therapy of ONCOS-102 with the checkpoint inhibitor (CPI) pembrolizumab was evaluated in a quasi-human animal model, the humanized NOG mouse model. A dosing schedule of the combination, beginning the CPI concurrently with the oncolytic viral therapy and continuing the CPI treatment, appeared to induce an abscopal effect in untreated tumor lesions. Concurrent combination therapy with checkpoint inhibitors may improve the induction of antitumor immune responses of ONCOS-102.  相似文献   

18.
Although the first cancer immunotherapy was given in the clinic more than a century ago, this line of treatment has remained more of a distant goal than a practical therapy due to limited understanding of the tumour microenvironment and the mechanisms at play within it, which led to failures of numerous clinical trials. However, in the last two decades, the immune checkpoint inhibitors (ICIs) and chimeric antigen receptor-T cell therapies have revolutionized the treatment of cancer and provided proof-of-concept that immunotherapies are a viable option. So far, immunotherapies have majoritarily focused on utilizing T cells; however, T cells are not autonomous but rather function as part of, and therefore are influenced by, a vast cast of other immune cells, including innate lymphoid cells (ILCs). Here, we summarize the role of ILCs, especially helper ILCs, in tumour development, progression and metastasis, as well as their potential to be used as immunotherapy for cancer. By reviewing the studies that used helper ILCs as adoptive cell therapy (ACT), we highlight the rationale behind considering these cells as novel ACT for cancer as well as identify open questions and areas for future research.  相似文献   

19.
T cells play a critical role in promoting tumor regression in both experimental models and humans. Yet, T cells that are chronically exposed to tumor antigen during cancer progression can become dysfunctional/exhausted and fail to induce tumor destruction. Such tumor-induced T cell dysfunction may occur via multiple mechanisms. In particular, immune checkpoint inhibitory receptors that are upregulated by tumor-infiltrating lymphocytes in many cancers limit T cell survival and function. Overcoming this inhibitory receptor-mediated T cell dysfunction has been a central focus of recent developments in cancer immunotherapy. Immunotherapies targeting inhibitory receptor pathways such as programmed cell death 1 (PD-1)/programmed death ligand 1 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), alone or in combination, confer significant clinical benefits in multiple tumor types. However, many patients with cancer do not respond to immune checkpoint blockade, and dual PD-1/CTLA-4 blockade may cause serious adverse events, which limits its indications. Targeting novel non-redundant inhibitory receptor pathways contributing to tumor-induced T cell dysfunction in the tumor microenvironment may prove efficacious and non-toxic. This review presents preclinical and clinical findings supporting the roles of two key pathways—T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and T cell immunoreceptor with Ig and ITIM domain (TIGIT)/CD226/CD96/CD112R—in cancer immunotherapy.  相似文献   

20.
Immune checkpoint blockers improve the overall survival of a limited number of patients among different cancers. Identifying pathways that influence the immunological and clinical response to treatment is critical to improve the therapeutic efficacy and predict clinical responses. Recently, a key role has been assigned to innate immune mechanisms in checkpoint blockade-driven anti-tumor responses. However, inflammatory pathways can both improve and impair anti-tumor immunity. In this review, we discuss how different inflammatory pathways, particularly inflammasome activation, can influence the clinical outcome of immune checkpoint blockers. Inflammasome activation may reinforce anti-tumor immunity by boosting CD8+ T cell priming as well as by enhancing T helper type 17 (Th17) responses. In particular, we focus on the modulation of the cation channel transmembrane protein 176B (TMEM176B) and the ectonucleotidase CD39 as potential targets to unleash inflammasome activation leading to reinforced anti-tumor immunity and improved efficacy of immune checkpoint blockers. Future studies should be aimed at investigating the mechanisms and cell subsets involved in inflammasome-driven anti-tumor responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号